Dissolved Phosphorus Concentrations in Surface Runoff from Agricultural Land Based on Calcium–Acetate–Lactate Soluble Phosphorus Soil Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Work
2.1.1. Soil Sampling and Analysis
- Total phosphorus (TP) according to DIN EN ISO 6878 [36];
- Calcium–acetate–lactate-soluble phosphorus (PCAL) according to VDLUFA method A 6.2.1.1 [28], including a correction for soils with pH >7.1;
- Water-soluble phosphorus (WSP) was determined using a batch extraction test, in which 2 g soil and 100 mL distilled water were merged, shaken for 1 h, centrifuged, and filtered with a vacuum pump (0.45 µm). The filtrate was analyzed photometrically at 700 nm for ortho-phosphate according to DIN EN ISO 6878 [36];
- Granulometry by wet sieving following DIN ISO 11277 [37]. As the humus content of agricultural, non-arid soils is supposed to be <4%, the following steps of the method were omitted: (a) destruction of organic material using H2O2; (b) removal of soluble salts and gypsum by shaking with water; (c) elimination of ferric oxides and carbonates;
- Clay content using the pipet method according to Köhn/DIN ISO 11277 [37];
- Ca with an atomic absorption spectroscopy after an aqua regia digestion according to DIN EN 13346 [40];
- Carbonate (CO32−) volumetrically according to Scheibler/DIN EN ISO 10693 [41];
2.1.2. Interview with the Farmers
2.1.3. Experimental Setup
- 60 min; 100-year return period with 41–69 mm h−1 (dry preconditions)
- 60 min; 100-year return period with 41–69 mm h−1
- 30 min; 100-year return period with 80–113 mm h−1
- 15 min; 100-year return period with 108–173 mm h−1
- 180 min; “worst case” scenario with 46 mm h−1 (highest observed intensity ever in Baden-Württemberg for event of 180 min duration, cf. Ries et al. [31])
- 60 min; “worst case” scenario with 106 mm h−1 (highest observed intensity ever in Baden-Württemberg for event of 60 min duration, cf. Ries et al. [31])
2.1.4. Runoff Sampling and Analysis
2.2. Data Processing
2.2.1. Derivation of Representative Concentrations for Each Site
2.2.2. Statistical Analysis
3. Results
3.1. Derivation and Prediction of Robust Dissolved Phosphorus Concentrations in Surface Runoff
3.2. Prediction of Dissolved Phosphorus Concentrations in Subsurface Flow
4. Discussion
- P equilibrium concentrations in the soil solution (at zero net sorption and desorption) are attained during undisturbed contact of water and soil. During the occurrence of surface runoff, the soil solution is permanently diluted. Although dilution stimulates the desorption process from the labile P pool, the rate of the desorption process might be physically limited when the labile P pool cannot be replenished fast enough by P diffusion into the outer layers of soil aggregates [43]. Yli-Halla et al. [44] found that the concentration of the dissolved reactive phosphorus in the surface runoff is much lower than the EPC0 concentrations calculated from sorption–desorption isotherms. For these reasons, the assumption that the P concentration in surface runoff can be equated to the P equilibrium concentration is untenable.
- In several studies in which plot experiments with artificial rainfall have been performed directly in the field, linear relationships between the P soil content (measured as WSP) and P concentration in surface runoff have been found [11,21,24,25,26,46]. Fischer [12] also recommends the use of a linear relationship for this reason.
- Large datasets of spatially distributed data always show a wide range of values and also contain extreme values. For a small sample size or when only a few or even no extreme values were available for the derivation of an approach, it is obvious that this approach can never be transferred to such extreme values in an adequate way. This is particularly problematic for approaches with steep rising courses as, in addition to the uncertainty concerning the transfer to extreme values, the predicted values increase limitlessly.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | P Concentration in Surface Runoff in mg L−1 | PCAL Upper Soilin mg P kg−1 | Total Phosphorus in mg kg−1 | Clay Content in % | pH Value | Time Since Last Fertilization in Days | Amountof Fertilizer in g P m−2 |
---|---|---|---|---|---|---|---|
1 | 0.183 | 57 | 1490 | 34.42 | 5.75 | 120 | 2.62 |
2 | 0.234 | 28 | 886 | 20.44 | 5.05 | 30 | 1.75 |
3 | 0.055 | 25 | 788 | 18.88 | 4.67 | 180 | 0 |
4 | 0.262 | 55 | 935 | 19.21 | 5.8 | 210 | 1.75 |
5 | 0.044 | 73 | 1235 | 24.8 | 4.71 | 180 | 0.98 |
6 | 0.038 | 24 | 972 | 24.4 | 4.58 | 210 | 0.35 |
7 | 0.422 | 158 | 1256 | 18.89 | 7.38 | 60 | 8 |
8 | 0.466 | 91 | 1018 | 13.77 | 4.97 | 20 | 3.97 |
9 | 0.249 | 28 | 721 | 14.49 | 5.17 | 90 | 1.48 |
10 | 0.069 | 55 | 1710 | 23.39 | 4.59 | 3 | 1.05 |
11 | 0.096 | 12 | 900 | 37.9 | 5.67 | 360 | 0 |
12 | 0.017 | 13 | 1131 | 54.33 | 6.78 | 270 | 1.48 |
13 | 0.068 | 17 | 1633 | 45.3 | 6.92 | 360 | 0 |
14 | 0.029 | 15 | 887 | 51.46 | 5.61 | 360 | 0 |
15 | 0.205 | 52 | 1665 | 43.17 | 7.42 | 5 | 1.75 |
16 | 0.053 | 46 | 1401 | 30.29 | 7.34 | 360 | 0 |
17 | 0.596 | 91 | 1693 | 43.77 | 7.08 | 30 | 0.87 |
18 | 0.580 | 197 | 1622 | 48.53 | 7.28 | 120 | 0.87 |
19 | 0.015 | 57 | 761 | 19.43 | 4.52 | 330 | 1.31 |
20 | 0.257 | 118 | 916 | 22.13 | 7.38 | 210 | 5.02 |
21 | 0.195 | 121 | 1143 | 28.89 | 7.31 | 60 | 3.97 |
22 | 1.078 | 110 | 1802 | 53.88 | 7.17 | 30 | 6.55 |
23 | 0.186 | 95 | 1122 | 20.09 | 5.89 | 180 | 3.21 |
Site | P Concentration in Subsurface Flow in mg L−1 | P Concentration in Surface Runoff in mg L−1 | PCAL in the Lower Soil in mg P kg−1 |
---|---|---|---|
mean of runoff proportional samples of the two sampled events | |||
1 | 0.179 | 0.183 | 9 |
2 | 0.130 | 0.234 | 5 |
3 | 0.031 | 0.055 | 4 |
4 | 0.266 | 0.262 | 20 |
6 | 0.022 | 0.038 | 7 |
7 | 0.504 | 0.422 | 43 |
9 | 0.084 | 0.355 1 | 10 |
11 | 0.023 | 0.096 | 3 |
12 | 0.007 | 0.017 | 1 |
13 | 0.056 | 0.068 | 2 |
14 | 0.017 | 0.029 | 3 |
16 | 0.055 | 0.052 1 | 9 |
17 | 0.352 | 0.596 | 35 |
18 | 0.356 | 0.621 1 | 60 |
19 | 0.015 | 0.015 | 10 |
20 | 0.194 | 0.257 | 10 |
21 | 0.105 | 0.195 | 7 |
22 | 0.823 | 1.078 | 2 |
23 | 0.116 | 0.186 | 4 |
end of Event 5 (duration 180 min) | |||
11 | 0.013 | 0.025 | 3 |
12 | 0.008 | 0.011 | 1 |
13 | 0.025 | 0.028 | 2 |
14 | 0.019 | 0.023 | 3 |
16 | 0.010 | 0.017 | 9 |
17 | 0.244 | 0.303 | 35 |
18 | 0.327 | 0.434 | 60 |
19 | 0.019 | 0.008 | 10 |
21 | 0.101 | 0.135 | 7 |
22 | 0.353 | 0.429 | 2 |
23 | 0.136 | 0.160 | 4 |
References
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32000L0060&from=de (accessed on 2 April 2022).
- Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0056&qid=1648911451878&from=EN (accessed on 2 April 2022).
- HELCOM. HELCOM Baltic Sea Action Plan; HELCOM: Krakow, Poland, 2007. Available online: https://www.helcom.fi/wp-content/uploads/2019/08/BSAP_Final.pdf (accessed on 3 July 2018).
- Umweltbundesamt. Güteklassifikation Gesamtphosphor 1982–2019 (LAWA-Messstellen). Zusammenstellung des Umweltbundesamtes Nach Angaben der Bund/Länderarbeitsgemeinschaft Wasser (LAWA). 2020. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/2875/bilder/dateien/gueteklassen_phosphor_2020.pdf (accessed on 29 March 2022).
- Umweltbundesamt. Stickstoff- und Phosphoreinträge aus Punktquellen und diffusen Quellen in die Oberflächengewässer in Deutschland. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/2_abb_n-p-eintraege_2020-09-17.pdf (accessed on 29 March 2022).
- Umweltbundesamt. Gewässer in Deutschland: Zustand und Bewertung; Umweltbundesamt: Dessau-Roßlau, Germany, 2017. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1968/publikationen/170829_uba_fachbroschure_wasse_rwirtschaft_mit_anderung_bf.pdf (accessed on 3 July 2018).
- Krämer, I.; Nausch, M.; Mehl, D.; Nausch, G.; Deutsch, B. Phosphor—Von der Quelle bis ins Meer. Wasser Abfall 2016, 18, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Schulz, F. Trendauswertung der stofflichen Belastung schleswig-holsteinischer Fließgewässer. In Jahresbericht 1999; Landesamt für Natur und Umwelt des Landes Schleswig-Holstein: Flintbek, Germany, 2000; pp. 59–65. [Google Scholar]
- Holsten, B.; Pfannerstill, M.; Trepel, M. Phosphor in der Landschaft: Management Eines begrenzt Verfügbaren Nährstoffs; Institut für Ökosystemforschung, Christian-Albrechts-Universität zu Kiel: Kiel, Germany, 2016; Available online: https://www.ecosystems.uni-kiel.de/en/pdf/phosphor_in_der_landschaft_download.pdf (accessed on 2 April 2022).
- Prasuhn, V. Gülleabschwemmung von Graslandflächen—Versuchsergebnisse aus der Schweiz. In Gülle 11. Gülle- und Gärrestdüngung auf Grünland, Tagungsband Internationale Tagung 17. + 18.10.2011, Kloster Reute; Elsäßer, M., Diepolder, M., Huguenin-Elie, O., Pötsch, E., Nußbaum, H., Messner, J., Eds.; LAZ BW: Aulendorf, Germany, 2011; pp. 185–189. ISBN 3000360565. [Google Scholar]
- Pote, D.H.; Daniel, T.C.; Nichols, D.J.; Sharpley, A.N.; Moore, P.A.; Miller, D.M.; Edwards, D.R. Relationship between Phosphorus Levels in Three Ultisols and Phosphorus Concentrations in Runoff. J. Environ. Qual. 1999, 28, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Fischer, P. The Degree of Phosphorus Saturation of Agricultural Soils in Brazil and Germany: New Approaches for Risk Assessment of Diffuse Phosphorus Losses and Soil Phosphorus Management. Dissertation, Humboldt-Universität Berlin, Berlin, Germany, 2018. [Google Scholar]
- Venohr, M.; Hirt, U.; Hofmann, J.; Opitz, D.; Gericke, A.; Wetzig, A.; Natho, S.; Neumann, F.; Hürdler, J.; Matranga, M.; et al. Modelling of Nutrient Emissions in River Systems—MONERIS—Methods and Background. Int. Rev. Hydrobiol. 2011, 96, 435–483. [Google Scholar] [CrossRef]
- Wendland, F.; Herrmann, F.; Kunkel, R.; Tetzlaff, B.; Wolters, T. AGRUM-DE—Modellbeschreibung mGROWA-DENUZ-WEKU-MEPHOS. 2019. Available online: https://www.thuenen.de/media/institute/lr/Projekt-Downloads-pdf/AGRUM-Modellbeschreibung_aus_Zwischenbericht_2019.pdf (accessed on 14 June 2021).
- Hürdler, J.; Prasuhn, V.; Spiess, E. Abschätzung Diffuser Stickstoff- und Phosphoreinträge in die Gewässer der Schweiz MODIFFUS 3.0. 2015. Available online: https://www.agroscope.admin.ch/agroscope/de/home/themen/umwelt-ressourcen/boden-gewaesser-naehrstoffe/landwirtschaftlicher-gewaesserschutz/modiffus/_jcr_content/par/columncontrols/items/0/column/externalcontent_746471554.bitexternalcontent.exturl.pdf/aHR0cHM6Ly9pcmEuYWdyb3Njb3BlLmNoLzAvQWpheC9FaW56ZW/xwdWJsaWthdGlvbi9Eb3dubG9hZD9laW56ZWxwdWJsaWthdGlv/bklkPTM1NDQx.pdf (accessed on 2 April 2022).
- Aase, J.K.; Bjorneberg, D.L.; Westermann, D.T. Phosphorus Runoff from Two Water Sources on a Calcareous Soil. J. Environ. Qual. 2001, 30, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Andraski, T.W.; Bundy, L.G. Relationships between Phosphorus Levels in Soil and in Runoff from Corn Production Systems. J. Environ. Qual. 2003, 32, 310–316. [Google Scholar] [CrossRef]
- Andraski, T.W.; Bundy, L.G.; Kilian, K.C. Manure history and long-term tillage effects on soil properties and phosphorus losses in runoff. J. Environ. Qual. 2003, 32, 1782–1789. [Google Scholar] [CrossRef]
- Daverede, I.C.; Kravchenko, A.N.; Hoeft, R.G.; Nafziger, E.D.; Bullock, D.G.; Warren, J.J.; Gonzini, L.C. Phosphorus Runoff: Effect of Tillage and Soil Phosphorus Levels. J. Environ. Qual. 2003, 32, 1436–1444. [Google Scholar] [CrossRef]
- Davis, R.L.; Zhang, H.; Schroder, J.L.; Wang, J.J.; Payton, M.E.; Zazulak, A. Soil Characteristics and Phosphorus Level Effect on Phosphorus Loss in Runoff. J. Environ. Qual. 2005, 34, 1640–1650. [Google Scholar] [CrossRef]
- Hahn, C.; Prasuhn, V.; Stamm, C.; Schulin, R. Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agric. Ecosyst. Environ. 2012, 153, 65–74. [Google Scholar] [CrossRef]
- McDowell, R.W.; Sharpley, A.N. Approximating Phosphorus Release from Soils to Surface Runoff and Subsurface Drainage. J. Environ. Qual. 2001, 30, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Penn, C.J.; Mullins, G.L.; Zelazny, L.W.; Sharpley, A.N. Estimating Dissolved Phosphorus Concentrations in Runoff from Three Physiographic Regions of Virginia. Soil Sci. Soc. Am. J. 2006, 70, 1967–1974. [Google Scholar] [CrossRef]
- Pote, D.H.; Daniel, T.C.; Moore, P.A.; Nichols, D.J.; Sharpley, A.N.; Edwards, D.R. Relating Extractable Soil Phosphorus to Phosphorus Losses in Runoff. Soil Sci. Soc. Am. J. 1996, 60, 855–859. [Google Scholar] [CrossRef]
- Schroeder, P.D.; Radcliffe, D.E.; Cabrera, M.L.; Belew, C.D. Relationship between Soil Test Phosphorus and Phosphorus in Runoff: Effects of Soil Series Variability. J. Environ. Qual. 2004, 33, 1452–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torbert, H.A.; Daniel, T.C.; Lemunyon, J.L.; Jones, R.M. Relationship of Soil Test Phosphorus and Sampling Depth to Runoff Phosphorus in Calcareous and Noncalcareous Soils. J. Environ. Qual. 2002, 31, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Kay, M.A.; Westermann, D.T. Phosphorus in Surface Runoff from Calcareous Arable Soils of the Semiarid Western United States. J. Environ. Qual. 2004, 33, 1814–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methode A 6.2.1.1: Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug. Verbandsmethode. In Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch): Band I Die Untersuchung von Böden; Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (Ed.) VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Kiemle, L.; Fuchs, S.; Henning, K. Modellierung der Nährstoffeinträge in der Fließgewässer Baden-Württembergs für Die Aktualisierung der Bewirtschaftungspläne Nach WRRL: Modellbeschreibung und Ergebnisse der MONERIS-BW Version “März 2015”; Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW): Karlsruhe, Germany, 2015; Available online: https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/3_Umwelt/Wasser/Rechtsvorschriften/WRRL/Zyklus-2/Hintergrund-2/Modellierung_Naehrstoffeintraege_2015.pdf (accessed on 4 July 2018).
- Ries, F.; Kirn, L.; Weiler, M. Experimentelle Untersuchung der Abflussbildung bei Starkregen. Experimental investigation of runoff generation following extreme precipitation. Hydrol. Und Wasserbewirtsch. 2020, 64, 221–236. [Google Scholar] [CrossRef]
- Ries, F.; Kirn, L.; Weiler, M. Runoff reaction from extreme rainfall events on natural hillslopes: A data set from 132 large-scale sprinkling experiments in south-western Germany. Earth Syst. Sci. Data 2020, 12, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Scheinost, A. Pedotransfer-Funktionen zum Wasser- und Stoffhaushalt einer Bodenlandschaft. Dissertation, Shaker-Verlag, Aachen, Germany, 1995. [Google Scholar]
- Pöthig, R.; Behrendt, H.; Opitz, D.; Furrer, G. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems. Environ. Sci. Pollut. Res. Int. 2010, 17, 497–504. [Google Scholar] [CrossRef]
- Fischer, P.; Pöthig, R.; Venohr, M. The degree of phosphorus saturation of agricultural soils in Germany: Current and future risk of diffuse P loss and implications for soil P management in Europe. Sci. Total Environ. 2017, 599–600, 1130–1139. [Google Scholar] [CrossRef]
- Vadas, P.A.; Kleinman, P.J.A.; Sharpley, A.N.; Turner, B.L. Relating Soil Phosphorus to Dissolved Phosphorus in Runoff. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef] [Green Version]
- DIN EN ISO 6878; Wasserbeschaffenheit—Bestimmung von Phosphor—Photometrisches Verfahren Mittels Ammoniummolybdat; Deutsche Fassung EN ISO 6878:2004. Deutsches Institut für Normung e. V.: Berlin, Germany, 2004.
- DIN ISO 11277; Bodenbeschaffenheit—Bestimmung der Partikelgrößenverteilung in Mineralböden—Verfahren Mittels Siebung und Sedimentation. Deutsches Institut für Normung e. V.: Berlin, Germany, 2002.
- Blume, H.-P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum: Eine Einführung in Pedologisches Arbeiten für Ökologen, Insbesondere Land- und Forstwirte, und für Geowissenschaftler; 3., Neubearb. Aufl.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2011; ISBN 978-3-8274-2733-5. [Google Scholar]
- DIN 19684-3; Bodenuntersuchungsverfahren im Landwirtschaftlichen Wasserbau—Chemische Laboruntersuchungen—Teil 3: Bestimmung des Glühverlusts und des Glührückstands. Deutsches Institut für Normung e. V.: Berlin, Germany, 2000.
- DIN EN 13346; Charakterisierung von Schlämmen—Bestimmung von Spurenelementen und Phosphor—Extraktionsverfahren mit Königswasser. Deutsche Fassung EN 13346:2000. Deutsches Institut für Normung e. V.: Berlin, Germany, 2001.
- DIN EN ISO 10693; Bodenbeschaffenheit—Bestimmung des Carbonatgehaltes—Volumetrisches Verfahren. Deutsche Fassung EN ISO 10693:2014. Deutsches Institut für Normung e. V.: Berlin, Germany, 2014.
- DIN ISO 10390; Bodenbeschaffenheit—Bestimmung des pH-Wertes. Deutsches Institut für Normung e. V.: Berlin, Germany, 2005.
- Penn, C.J.; Williams, M.R.; Camberato, J.; Wenos, N.; Wason, H. Desorption Kinetics of Legacy Soil Phosphorus: Implications for Non-Point Transport and Plant Uptake. Soil Syst. 2022, 6, 6. [Google Scholar] [CrossRef]
- Yli-Halla, M.; Hartikainen, H.; Ekholm, P.; Turtola, E.; Puustinen, M.; Kallio, K. Assessment of soluble phosphorus load in surface runoff by soil analyses. Agric. Ecosyst. Environ. 1995, 56, 53–62. [Google Scholar] [CrossRef]
- Seibert, S.P.; Auerswald, K. Hochwasserminderung im Ländlichen Raum; Springer Spektrum: Berlin, Heidelberg, 2020; ISBN 978-3-662-61033-6. [Google Scholar]
- Leinweber, P.; Turner, B.L.; Meissner, R. Phosphorus. In Agriculture, Hydrology and Water Quality; Haygarth, P.M., Jarvis, S.C., Eds.; CABI: Wallingford, UK, 2002; ISBN 9780851995458. [Google Scholar]
- Landwirtschaftliches Technologiezentrum Augustenberg. Daten der Grunduntersuchung 2009–2014 in BW: Phosphor (mg/100 g Boden, Angabe als P2O5), gemäß VDLUFA-Methode A 6.2.2.1; Landwirtschaftliches Technologiezentrum Augustenberg: Karlsruhe, Germany, 2018. [Google Scholar]
- Kiemle, L.; Wagner, A.; Hüsener, J.; Fuchs, S.; Henning, K.; Haile, C. Modellierung der Nährstoffeinträge in die Fließgewässer Baden-Württembergs für die Aktualisierung der Bewirtschaftungspläne nach WRRL: Modellbeschreibung und Ergebnisse der METRIS-BW Version “August 2019”; Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW): Karlsruhe, Germany, 2022. (In Bearbeitung) [Google Scholar]
- Fuchs, S.; Kaiser, M.; Kiemle, L.; Kittlaus, S.; Rothvoß, S.; Toshovski, S.; Wagner, A.; Wander, R.; Weber, T.; Ziegler, S. Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System. Water 2017, 9, 239. [Google Scholar] [CrossRef]
- Fuchs, S.; Allion, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. Phosphoreinträge in die Gewässer bundesweit Modellieren. In Neue Ansätze und Aktualisierte Ergebnisse von MoRE-DE: Abschlussbericht (Forschungskennzahl 3718 72 211 0). TEXTE XX/2022; Umweltbundesamt: Dessau-Roßlau, Germany, 2022. (In Bearbeitung) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiemle, L.; Fuchs, S. Dissolved Phosphorus Concentrations in Surface Runoff from Agricultural Land Based on Calcium–Acetate–Lactate Soluble Phosphorus Soil Contents. Water 2022, 14, 1742. https://doi.org/10.3390/w14111742
Kiemle L, Fuchs S. Dissolved Phosphorus Concentrations in Surface Runoff from Agricultural Land Based on Calcium–Acetate–Lactate Soluble Phosphorus Soil Contents. Water. 2022; 14(11):1742. https://doi.org/10.3390/w14111742
Chicago/Turabian StyleKiemle, Lisa, and Stephan Fuchs. 2022. "Dissolved Phosphorus Concentrations in Surface Runoff from Agricultural Land Based on Calcium–Acetate–Lactate Soluble Phosphorus Soil Contents" Water 14, no. 11: 1742. https://doi.org/10.3390/w14111742
APA StyleKiemle, L., & Fuchs, S. (2022). Dissolved Phosphorus Concentrations in Surface Runoff from Agricultural Land Based on Calcium–Acetate–Lactate Soluble Phosphorus Soil Contents. Water, 14(11), 1742. https://doi.org/10.3390/w14111742