Integration of Electrical Resistivity and Modified DRASTIC Model to Assess Groundwater Vulnerability in the Surrounding Area of Hulene-B Waste Dump, Maputo, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Electrical Resistivity
2.3. Modified DRASTIC Groundwater Vulnerability
3. Results
3.1. Resistivity Models and Potential Contamination Risk
3.2. Modified DRASTIC Index
3.2.1. Depth to Water Table (D)
3.2.2. Net Recharge (R)
3.2.3. Aquifer Media (A)
3.2.4. Distance of the Anomalous Surface Layer and Groundwater (S)
3.2.5. Topography (T)
3.2.6. Vadose (I)
3.2.7. Hydraulic Conductivity (C)
3.3. Descriptive Statistics of Electrical Resistivity and DRASTIC Index
4. Data Integration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- González-Arqueros, M.L.; Domínguez-Vázquez, G.; Alfaro-Cuevas-Villanueva, R.; Israde-Alcántara, I.; Buenrostro-Delgado, O. Hazardous solid waste confined in closed dump of Morelia: An urgent environmental liability to attend in developing countries. Sustainability 2021, 13, 2557. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- Boufekane, A.; Yahiaoui, S.; Meddi, H.; Meddi, M.; Busico, G. Modified DRASTIC index model for groundwater vulnerability mapping using geostatistic methods and GIS in the Mitidja plain area (Algeria). Environ. Forensics 2021, 1–18. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. A comparative analysis on groundwater vulnerability models—Fuzzy DRASTIC and fuzzy DRASTIC-L. Environ. Sci. Pollut. Res. 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sresto, M.A.; Siddika, S.; Haque, M.N.; Saroar, M. Groundwater vulnerability assessment in Khulna district of Bangladesh by integrating fuzzy algorithm and DRASTIC (DRASTIC-L) model. Model. Earth Syst. Environ. 2021, 1–15. [Google Scholar] [CrossRef]
- Ghosh, R.; Sutradhar, S.; Mondal, P.; Das, N. Application of DRASTIC model for assessing groundwater vulnerability: A study on Birbhum district, West Bengal, India. Model. Earth Syst. Environ. 2021, 7, 1225–1239. [Google Scholar] [CrossRef]
- El Mouine, Y.; El Hamdi, A.; Morarech, M.; Kacimi, I.; Touzani, M.; Mohsine, I.; Tiouiouine, A.; Ouardi, J.; Zouahri, A.; Yachou, H.; et al. Landfill pollution plume survey in the Moroccan Tadla using spontaneous potential. Water 2021, 13, 910. [Google Scholar] [CrossRef]
- Kayode, J.S.; Arifin, M.H.; Nawawi, M. Characterization of a proposed quarry site using multi-electrode electrical resistivity tomography. Sains Malays. 2019, 48, 945–963. [Google Scholar] [CrossRef]
- Touzani, M.; Mohsine, I.; Ouardi, J.; Kacimi, I.; Morarech, M.; El Bahajji, M.H.; Bouramtane, T.; Tiouiouine, A.; Yameogo, S.; El Mahrad, B. Mapping the pollution plume using the self-potential geophysical method: Case of Oum Azza Landfill, Rabat, Morocco. Water 2021, 13, 961. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Xing, B.; Liu, G.D.; Liang, Y. Study on the effect of municipal solid landfills on groundwater by combining the models of variable leakage rate, leachate concentration, and contaminant solute transport. J. Environ. Manag. 2021, 292, 112815. [Google Scholar] [CrossRef]
- Mepaiyeda, S.; Madi, K.; Gwavava, O.; Baiyegunhi, C. Geological and geophysical assessment of groundwater contamination at the Roundhill landfill site, Berlin, Eastern Cape, South Africa. Heliyon 2020, 6, e04249. [Google Scholar] [CrossRef] [PubMed]
- Aller, G.; Bennett, L.; Lehr, T.; Petty, J.H.; Hackett, R.J. DRASTIC: A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; USEPA Report 600/2-87/035; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- Gemail, K.S.; El Alfy, M.; Ghoneim, M.F.; Shishtawy, A.M.; El-Bary, M.A. Comparison of DRASTIC and DC resistivity modeling for assessing aquifer vulnerability in the central Nile Delta, Egypt. Environ. Earth Sci. 2017, 76, 350. [Google Scholar] [CrossRef]
- Voudouris, K.; Kazakis, N. Groundwater quality and groundwater vulnerability assessment. Environments 2021, 8, 100. [Google Scholar] [CrossRef]
- Shah, S.H.I.A.; Yan, J.; Ullah, I.; Aslam, B.; Tariq, A.; Zhang, L.; Mumtaz, F. Classification of aquifer vulnerability by using the DRASTIC index and geo-electrical techniques. Water 2021, 13, 2144. [Google Scholar] [CrossRef]
- Arowoogun, K.I.; Osinowo, O.O. 3D resistivity model of 1D vertical electrical sounding (VES) data for groundwater potential and aquifer protective capacity assessment: A case study. Model. Earth Syst. Environ. 2021, 8, 2615–2626. [Google Scholar] [CrossRef]
- Dhakate, R.; Mogali, N.J.; Modi, D. Characterization of proposed waste disposal site of granite quarry pits near Hyderabad using hydro-geophysical and groundwater modeling studies. Environ. Earth Sci. 2021, 80, 516. [Google Scholar] [CrossRef]
- George, N.J. Geo-electrically and hydrogeologically derived vulnerability assessments of aquifer resources in the hinterland of parts of Akwa Ibom State, Nigeria. Solid Earth Sci. 2021, 6, 70–79. [Google Scholar] [CrossRef]
- Islami, N.; Irianti, M.; Fakhruddin, F.; Azhar, A.; Nor, M. Application of geoelectrical resistivity method for the assessment of shallow aquifer quality in landfill areas. Environ. Monit. Assess. 2020, 192, 606. [Google Scholar] [CrossRef]
- El Naqa, A. Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ. Geol. 2004, 47, 51–62. [Google Scholar] [CrossRef]
- Vosoogh, A.; Baghvand, A.; Karbassi, A.; Nasrabadi, T. Landfill site selection using pollution potential zoning of aquifers by modified DRASTIC method: Case study in Northeast Iran. Iran. J. Sci. Technol. Trans. Civ. Eng. 2017, 41, 229–239. [Google Scholar] [CrossRef]
- Santhosh, L.G.; Sivakumar Babu, G.L. Landfill site selection based on reliability concepts using the DRASTIC method and AHP integrated with GIS—A case study of Bengaluru city, India. Georisk 2018, 9518, 234–252. [Google Scholar] [CrossRef]
- Abad, P.M.S.; Pazira, E.; Abadi, M.H.M. Application AHP-PROMETHEE technic for landfill site selection on based assessment of aquifers vulnerability to pollution. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 1011. [Google Scholar] [CrossRef]
- Majolagbe, A.O.; Adeyi, A.A.; Osibanjo, O. Vulnerability assessment of groundwater pollution in the vicinity of an active dumpsite (Olusosun), Lagos, Nigeria. Chem. Int. 2016, 2, 232–241. [Google Scholar]
- Nogueira, G.; Stigter, T.Y.; Zhou, Y.; Mussa, F.; Juizo, D. Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Sci. Total Environ. 2019, 661, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Cendón, D.I.; Haldorsen, S.; Chen, J.; Hankin, S.; Nogueira, G.; Momade, F.; Achimo, M.; Muiuane, E.; Mugabe, J.; Stigter, T.Y. Hydrogeochemical aquifer characterization and its implication for groundwater development in the Maputo district, Mozambique. Quat. Int. 2019, 547, 113–126. [Google Scholar] [CrossRef]
- Bernardo, B.; Candeias, C.; Rocha, F. Characterization of the dynamics of leachate contamination plumes in the surroundings of the Hulene-B waste dump in Maputo, Mozambique. Environments 2022, 9, 19. [Google Scholar] [CrossRef]
- Muchimbane, A.B.D. Estudo dos Indicadores da Contaminação das Aguas Subterrâneas por Sistemas de Saneamento in Situ–Distrito Urbano 4, Cidade de Maputo, Moçambique. Master’s Thesis, University of São Paulo, Instituto de Geociências, São Paulo, Brasil, 2010. [Google Scholar] [CrossRef]
- Serra, C. Da Problemática Ambiental à Mudança: Rumo à Um Mundo Melhor; Editora Escolar: Maputo, Mozambique, 2012; ISBN 9789896700300. [Google Scholar]
- INE (Instituto Nacional de Estatistica). Boletim de Estatísticas Demográficas e Sociais, Maputo Cidade 2019. Available online: http://www.ine.gov.mz/estatisticas/estatisticas-demograficas-e-indicadores-sociais/boletim-de-indicadores-demograficos-22-de-julho-de-2020.pdf/at_download/file (accessed on 10 January 2022).
- VOA. Desabamento de Lixeira Deixa 17 Mortos em Maputo. Voice of America News. Available online: https://www.voaportugues.com/a/desabamento-lixeira-17-mortos-maputo/4260624.html (accessed on 30 September 2021).
- Ferrão, D.A.G. Evaluation of Removal and Disposal of Solid Waste in Maputo City, Mozambique. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2006. Available online: http://hdl.handle.net/11427/4851 (accessed on 10 August 2021).
- Sarmento, L.; Tokai, A.; Hanashima, A. Analyzing the structure of barriers to municipal solid waste management policy planning in Maputo city, Mozambique. Environ. Dev. 2015, 16, 76–89. [Google Scholar] [CrossRef]
- Matsinhe, F.O.; Paulo, M. Estudo etnográfico sobre os catadores de lixo da lixeira de hulene (Maputo). Cad. Afr. Contemp. 2020, 3. [Google Scholar]
- Palalane, J.; Segala, I.; Opressa, I. Urbanização e Desenvolvimento Municipal em Moçambique: Gestão de Resíduos Sólidos; Instituto Brasileiro de Administração Municipal, Área de Desenvolvimento Urbano e Meio Ambiente: Rio de Janeiro, RJ, Brazil, 2008; p. 12. Available online: https://www.scribd.com/document/419123335/Gestao-de-Residuos-Solidos-Em-Mocambique (accessed on 7 August 2021).
- Vicente, E.M. Aspects of the Enginering Geologic of Maputo City. Ph.D. Thesis, School of Agricultural, Earth and Environmental Sciences, Pietermaritzburg. Soth Africa, 2011; pp. 22–38. Available online: http://hdl.handle.net/10413/8078 (accessed on 10 January 2022).
- Vicente, E.M.; Jermy, C.A.; Schreiner, H.D. Urban geology of Maputo, Mocambique. Geol. Soc. 2006, 338, 1–13. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.7220&rep=rep1&type=pdf (accessed on 3 January 2022).
- Momade, J.T.; Ferrara, F.J.; Oliveira, M. Notícia Explicativa da Carta Geológica 2532 Maputo; Escala: Maputo, Mozambique, 1996. (In Portuguese) [Google Scholar]
- CIAT. Climate-Smart Agriculture in Mozambique; International Center for Tropical Agriculture: Cali, Colombia, 2017; pp. 1–25. [Google Scholar]
- Dos Muchangos, A. Paisagens e Regiões Naturais, Maputo; Editora Escolar: Lisboa, Maputo, 1999; pp. 5–163. (In Portuguese) [Google Scholar]
- Koda, E.; Tkaczyk, A.; Lech, M.; Osiński, P. Application of electrical resistivity data sets for the evaluation of the pollution concentration level within landfill subsoil. Appl. Sci. 2017, 7, 262. [Google Scholar] [CrossRef]
- Lau, A.M.P.; Ferreira, F.J.F.; Stevanato, R.; da Rosa Filho, E.F. Geophysical and physicochemical investigations of an area contaminated by tannery waste: A case study from southern Brazil. Environ. Earth Sci. 2019, 78, 517. [Google Scholar] [CrossRef]
- Akhtar, J.; Sana, A.; Tauseef, S.M.; Chellaiah, G.; Kaliyaperumal, P.; Sarkar, H.; Ayyamperumal, R. Evaluating the groundwater potential of Wadi Al-Jizi, Sultanate of Oman, by integrating remote sensing and GIS techniques. Environ. Sci. Pollut. Res. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, B.; Candeias, C.; Rocha, F. Application of geophysics in geo-environmental diagnosis on the surroundings of the hulene-b waste dump, Maputo, Mozambique. J. Afr. Earth Sci. 2022, 185, 104415. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Geophysical methods and their applications in dam safety monitoring. J. Earth Sci. Geotech. Eng. 2020, 11, 291–345. [Google Scholar] [CrossRef]
- Geotomo. RES2DINV ver. 3.59—Rapid 2-D Resistivity & IP Inversion using the Least-Squares Method Wenner, Dipole-Dipole, Inline Pole-Pole, Pole-Dipole, Equatorial Dipole-Dipole, Offset Pole-Dipole, Wenner-Schlumberger, Gradient and Non-Conventional Arrays, 2010, 1–148. Available online: http://epsc.wustl.edu/~epsc454/instruction-sheets/Res2dinv03.59.pdf (accessed on 10 January 2022).
- Asfaw, D.; Mengistu, D. Modeling megech watershed aquifer vulnerability to pollution using modified DRASTIC model for sustainable groundwater management, Northwestern Ethiopia. Groundw. Sustain. Dev. 2020, 11, 100375. [Google Scholar] [CrossRef]
- Anshumala, K.; Shukla, J.P.; Patel, S.S.; Singh, A. Assessment of groundwater vulnerability zone in mandideep industrial area using DRASTIC model. J. Geol. Soc. India 2021, 97, 1080–1086. [Google Scholar] [CrossRef]
- Hosseini, M.; Saremi, A. Assessment and estimating groundwater vulnerability to pollution using a modified DRASTIC and GODS models (Case study: Malayer plain of Iran). Civ. Eng. J. 2018, 4, 433. [Google Scholar] [CrossRef]
- Kozłowski, M.; Sojka, M. Applying a modified DRASTIC model to assess groundwater vulnerability to pollution: A case study in Central Poland. Pol. J. Environ. Stud. 2019, 28, 1223–1231. [Google Scholar] [CrossRef]
- Hasan, M.A.; Ahmad, S.; Mohammed, T. Groundwater contamination by hazardous wastes. Arab. J. Sci. Eng. 2021, 46, 4191–4212. [Google Scholar] [CrossRef]
- Ersoy, A.; Gültekin, F. DRASTIC-based methodology for assessing groundwater vulnerability in the Gümüşhacıköy and Merzifon basin (Amasya, Turkey). Earth Sci. Res. J. 2013, 17, 33–40. Available online: https://www.scielo.org.co/scielo.php?pid=S1794-61902013000100006&script=sci_arttext&tlng=en (accessed on 15 January 2022).
- Paul, S.; Surabhi, C. An investigation of groundwater vulnerability in the North 24 parganas district using DRASTIC and hybrid-DRASTIC models: A case study. Environ. Adv. 2021, 5, 100093. [Google Scholar] [CrossRef]
- Parvin, F.; Tareq, S.M. Impact of landfill leachate contamination on surface and groundwater of Bangladesh: A systematic review and possible public health risks assessment. Appl. Water Sci. 2021, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, M.E.; Zabielska-Adamska, K. Impact of Protective Barriers on Groundwater Quality. In Proceedings of the 10th International Conference: Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar] [CrossRef]
- Netto, L.G.; Filho, W.M.; Moreira, C.A.; di Donato, F.T.; Helene, L.P.I. Delineation of necroleachate pathways using electrical resistivity tomography (ERT): Case study on a cemetery in Brazil. Environ. Chall. 2021, 5, 100344. [Google Scholar] [CrossRef]
- Yap, C.K.; Chew, W.; Al-Mutairi, K.A.; Nulit, R.; Ibrahim, M.H.; Wong, K.W.; Bakhtiari, A.R.; Sharifinia, M.; Ismail, M.S.; Leong, W.J.; et al. Assessments of the ecological and health risks of potentially toxic metals in the topsoils of different land uses: A case study in Peninsular Malaysia. Biology 2022, 11, 2. [Google Scholar] [CrossRef]
- Chetri, J.K.; Reddy, K.R. Advancements in municipal solid waste landfill cover system: A review. J. Indian Inst. Sci. 2021, 1, 557–588. [Google Scholar] [CrossRef]
- Brahmi, S.; Baali, F.; Hadji, R.; Brahmi, S.; Hamad, A.; Rahal, O.; Zerrouki, H.; Saadali, B.; Hamed, Y. Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria. Arab. J. Geosci. 2021, 14, 249. [Google Scholar] [CrossRef]
- Ololade, O.O.; Mavimbela, S.; Oke, S.A.; Makhadi, R. Impact of leachate from northern landfill site in bloemfontein on water and soil quality: Implications for water and food security. Sustainability 2019, 11, 4238. [Google Scholar] [CrossRef] [Green Version]
- Marques, T.; Matias, M.S.; Silva, E.F.D.; Durães, N.; Patinha, C. Temporal and spatial groundwater contamination assessment using geophysical and hydrochemical methods: The industrial chemical complex of Estarreja (Portugal) case study. Appl. Sci. 2021, 11, 6732. [Google Scholar] [CrossRef]
- Feng, S.J.; Wu, S.J.; Fu, W.D.; Zheng, Q.T.; Zhang, X.L. Slope stability analysis of a landfill subjected to leachate recirculation and aeration considering bio-hydro coupled processes. Geoenvironment. Disasters 2021, 8, 29. [Google Scholar] [CrossRef]
- Udosen, N.I. Geo-electrical modeling of leachate contamination at a major waste disposal site in south-eastern Nigeria. Model Earth Syst. Environ. 2022, 8, 847–856. [Google Scholar] [CrossRef]
- Morita, A.K.M.; Ibelli-Biancoa, C.; Jamil, A.A.; Jaqueline, A.; Pelinson, C.N.; Nobrega, J.; Rosalema, L.M.P.; Leitea, C.M.C.; Niviadonski, L.M.; Manastella, C.; et al. Pollution threat to water and soil quality by dumpsites and non-sanitary landfills in Brazil: A review. Waste Manag. 2021, 131, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Oke, S.A. Regional aquifer vulnerability and pollution sensitivity analysis of drastic application to Dahomey basin of Nigeria. Int. J. Environ. Res. Public Health 2020, 17, 2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boumaiza, L.; Walter, J.; Chesnaux, R.; Brindha, K.; Elango, L. An operational methodology for determining relevant DRASTIC factors and their relative weights in the assessment of aquifer vulnerability to contamination. Environ. Earth Sci. 2021, 80, 281. [Google Scholar] [CrossRef]
- Nasri, G.; Hajji, S.; Aydi, W.; Boughariou, E.; Allouche, N.; Bouri, S. Water vulnerability of coastal aquifers using AHP and parametric models: Methodological overview and a case study assessment. Arab. J. Geosci. 2021, 14, 59. [Google Scholar] [CrossRef]
- Tan, M.; Wang, K.; Xu, Z.; Li, H.; Qu, J. Study on heavy metal contamination in high water table coal mining subsidence ponds that use different resource reutilization methods. Water 2020, 12, 3348. [Google Scholar] [CrossRef]
- Blarasin, M.; Matiatos, I.; Cabrera, A.; Lutri, V.; Giacobone, D.; Quinodoz, F.B. Characterization of groundwater dynamics and contamination in an unconfined aquifer using isotope techniques to evaluate domestic supply in an urban area. J. S. Am. Earth Sci. 2021, 110, 103360. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- Akinbile, C.O.; Yusoff, M.S. Environmental impact of leachate pollution on groundwater supplies in Akure, Nigeria. Int. J. Environ. Sci. Dev. 2011, 2, 81–86. [Google Scholar] [CrossRef]
- Pan, S.; Dixon, K.L.; Nawaz, T.; Rahman, A.; Selvaratnam, T. Evaluation of galdieria sulphuraria for nitrogen removal and biomass production from raw landfill leachate. Algal Res 2021, 54, 102183. [Google Scholar] [CrossRef]
- Isiuku, B.O.; Enyoh, C.E. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environ. Adv. 2020, 2, 100018. [Google Scholar] [CrossRef]
Factor | Interval/Characteristics | Value (r) | Weight (w) |
---|---|---|---|
(D) Groundwater depth (m) | 0–1.5 | 10 | 5 |
1.5–4.6 | 9 | ||
4.6–9.3 | 7 | ||
9.3–15 | 5 | ||
15–23 | 3 | ||
23–30 | 2 | ||
>30 | 1 | ||
(R) Net recharge rate (mm/year) | 0–50 | 1 | 4 |
50–100 | 3 | ||
100–175 | 6 | ||
175–250 | 8 | ||
>250 | 9 | ||
(A) Aquifer media | Sand | 7 | 3 |
(S) Distance between the anomalous surface layer and groundwater | 0–1.5 | 10 | 2 |
1.5–4.6 | 9 | ||
4.6–9.3 | 7 | ||
9.3–15 | 5 | ||
15–23 | 3 | ||
23–30 | 2 | ||
>30 | 1 | ||
(T) Terrain slope (%) | 0–2 | 10 | 1 |
2–6 | 9 | ||
6–12 | 5 | ||
12–18 | 3 | ||
>18 | 1 | ||
(I) Vadose Zone | Sandstones | 4–8 | 5 |
Limestones, sandstones, and shales | 4–8 | ||
Sands and gravels with significant silt and clay content | 4–8 | ||
Sands | 8 | ||
(C) Hydraulic conductivity (m/day) | 1–4.1 | 1 | 3 |
4.1–12.2 | 2 | ||
12.2–28.5 | 4 | ||
28.5–40.7 | 6 | ||
40.7–81.5 | 8 | ||
>81.5 | 10 |
Characteristics of the Surroundings of the Waste Dump | P1 | P2 | P3 | P4 | P5 | P6 | Mean |
---|---|---|---|---|---|---|---|
Depth of groundwater level | 45 | 45 | 5 | 45 | 5 | 45 | 31.6 |
Recharge capacity | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
Sands | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
Distance of anomalous surface layer and groundwater | 20 | 20 | 2 | 20 | 2 | 20 | 14 |
Plan, soft dune and interdune depression | 10 | 5 | 10 | 10 | 5 | 10 | 8.3 |
Sands | 40 | 40 | 20 | 40 | 20 | 40 | 33.3 |
Hydraulic conductivity | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
DRASTIC index: | 174 | 169 | 96 | 174 | 91 | 174 | 146.3 |
ID | Min | Max | Mean | SD | Modified DRASTIC |
---|---|---|---|---|---|
P1 | 8.64 | 42.36 | 20.78 | 5.72 | 174 |
P2 | 5.37 | 119.1 | 20.22 | 9.31 | 169 |
P3 | 10.12 | 50.8 | 31.01 | 7.3 | 96 |
P4 | 6.98 | 41.19 | 18.1 | 4.64 | 174 |
P5 | 1.04 | 477.1 | 37.35 | 31.86 | 91 |
P6 | 3.06 | 207 | 49.2 | 32.78 | 174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, B.; Candeias, C.; Rocha, F. Integration of Electrical Resistivity and Modified DRASTIC Model to Assess Groundwater Vulnerability in the Surrounding Area of Hulene-B Waste Dump, Maputo, Mozambique. Water 2022, 14, 1746. https://doi.org/10.3390/w14111746
Bernardo B, Candeias C, Rocha F. Integration of Electrical Resistivity and Modified DRASTIC Model to Assess Groundwater Vulnerability in the Surrounding Area of Hulene-B Waste Dump, Maputo, Mozambique. Water. 2022; 14(11):1746. https://doi.org/10.3390/w14111746
Chicago/Turabian StyleBernardo, Bernardino, Carla Candeias, and Fernando Rocha. 2022. "Integration of Electrical Resistivity and Modified DRASTIC Model to Assess Groundwater Vulnerability in the Surrounding Area of Hulene-B Waste Dump, Maputo, Mozambique" Water 14, no. 11: 1746. https://doi.org/10.3390/w14111746
APA StyleBernardo, B., Candeias, C., & Rocha, F. (2022). Integration of Electrical Resistivity and Modified DRASTIC Model to Assess Groundwater Vulnerability in the Surrounding Area of Hulene-B Waste Dump, Maputo, Mozambique. Water, 14(11), 1746. https://doi.org/10.3390/w14111746