Appraisal of Socio-Technical Water Loss Control Strategies Using Cost-Benefit Analysis in a Water Supply Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Methodologies
2.2. Research Instrumentation Setup
2.3. Process Flows: Stages 1–3
- i.
- Social Capital Investment Intervention Strategy (SCIIS)
- ii.
- Total Cost Method
- iii.
- Total Maintenance Capital Cost Method
- iv.
- The Capital Expenditure (CAPEX) Investment Method
2.4. Process Flow Stage 4
3. Results and Discussion
3.1. Transient Flow and Measurement Indexes
3.2. Water Balance Results
3.3. Customer-Centric Results
3.3.1. Socio-Domestic Background Leakages
3.3.2. Customer Consumption Trends before and after SCIIS Implementation
3.4. Total Water Leakage Method Results
3.4.1. Infrastructure Linear Leakage Repair
3.4.2. Total Cost Method Results
3.5. Cost–Benefit Analysis (CBA) Results
3.5.1. Overview
3.5.2. Capital Investment on Water Loss Reduction and Marginal Cost of Capital
3.5.3. Integrated Total Cost of Water Loss Trends
3.5.4. Sensitivity Analysis Investment Cost for the Total Leakage Flowrate
3.5.5. Social Capital Investment Intervention Strategy and Marginal Cost of Capital
3.5.6. Socio-Technical Sensitivity Analysis of Capital Net Risk
3.6. Socio-Technical Integrated Capital Net Risk Analysis Results
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Sustainable Development Goal 6: Synthesis Report on Water and Sanitation; UN-Water: New York, NY, USA, 2018. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Walker, A. The Independent Review of Charging for Household Water and Sewerage Services; Interim Report; Department for Environment, Food and Rural Affairs: London, UK, 2009.
- Mutikanga, H.E.; Sharma, S.; Vairavamoorthy, K. Water Loss Management in Developing Countries: Challenges and Prospects. J. Am. Water Works Assoc. 2009, 101, 57–68. [Google Scholar] [CrossRef]
- Dighade, R.R.; Kadu, M.S.; Pande, A.M. Challenges in Water Loss Management of Water Distribution Systems in Developing Countries. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 13838–13846. [Google Scholar]
- Colombo, A.F.; Karney, B.W. Energy and Costs of Leaky Pipes: Toward Comprehensive Picture. J. Water Resour. Plan. Manag. 2002, 128, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Mathye, R.P.; Scholz, M.; Nyende-Byakika, S. Analysis of Domestic Consumption and Background Leakage Trends for Alexandra Township, South Africa. Int. J. Emerg. Technol. 2022, 13, 1–9. [Google Scholar]
- Makaya, E.; Hensel, O. The Contribution of leakage water to total water loss in Harare, Zimbabwe. Int. Res. J. 2014, 3, 55–63. [Google Scholar]
- Kanakoudis, V.K.; Gonelas, K. Applying pressure management to reduce water losses in two Greek cities’ WDSs: Expectations, problems, results and revisions. Procedia Eng. 2014, 1, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Karadirek, I.E.; Kara, S.; Yilmaz, G.; Muhammetoglu, A.; Muhammetoglu, H. Implementation of Hydraulic Modelling for Water-loss Reduction through Pressure Management; Springer Science Business Media B.V: Berlin, Germany, 2011. [Google Scholar]
- McKenzie, R.S. Guidelines for Reducing Water Losses in South African Municipalities; Water Research Commission: Pretoria, South Africa, 2014. [Google Scholar]
- Mathye, R.P.; Scholz, M.; Nyende-Byakika, S. Optimal Pressure Management in Water Distribution Systems: Efficiency Indexes for Volumetric Cost Performance, Consumption and Linear Leakage Measurements. Water 2022, 14, 805. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Gonelas, K. The Optimal Balance Point between NRW Reduction Measures, Full Water Costing and Water Pricing in Water Distribution Systems. Alternative Scenarios Forecasting the Kozani’s WDS Optimal Balance Point. Procedia Eng. 2015, 119, 1278–1287. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, G. CBA—Leakage reduction by rehabilitating old water pipelines: Case study of Oslo (Norway). Urban Water J. 2012, 9, 277–286. [Google Scholar] [CrossRef]
- Malm, A.; Moberg, F.; Roseén, L.; Pettersson, T.J.R. CBA and Uncertainty Analysis of Water Loss Reduction Measures: Case Study of the Gothenburg Drinking Water Distribution System. Water Resour. Manag. 2015, 29, 5451–5468. [Google Scholar] [CrossRef]
- Martins, R.; Coelho, F.; Fortunato, A. Water losses and hydrographical regions influence on the cost structure of the Portuguese water industry. J. Prod. Anal. 2012, 38, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Molinos-Senante, M.; Mocholí-Arce, M.; Sala-Garrido, R. Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Sci. Total Environ. 2016, 568, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ahopelto, S.; Vahala, R. Cost–Benefit Analysis of Leakage Reduction Methods in Water Supply Networks. Water 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Lasher, W.R. Practical Financial Management, 8th ed.; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Drury, C. Management Accounting for Business Management, 6th ed.; Cengage Learning EMEA: Boston, MA, USA, 2016. [Google Scholar]
- Heryanto, T.; Sharma, S.K.; Daniel, D.; Kennedy, M. Estimating the Economic Level of Water Losses (ELWL) in the Water Distribution System of the City of Malang, Indonesia. Sustainability 2021, 13, 6604. [Google Scholar] [CrossRef]
- Lim, E.; Savic, D.; Kapelan, Z. Development of a Leakage Target Setting Approach for South Korea Based on Economic Level of Leakage. Procedia Eng. 2015, 119, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.; Fantozzi, M. Recent advances in calculating economic intervention frequency for active leakage control, and implications for calculation of economic leakage levels. Water Supply 2005, 5, 263–271. [Google Scholar] [CrossRef]
- Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K. Methods and Tools for Managing Losses in Water Distribution Systems. J. Water Resour. Plan. Manag. 2013, 139, 166–174. [Google Scholar] [CrossRef]
- Makaya, E. Water Loss Management Strategies for Developing Countries: Understanding the Dynamics of Water Leakages. Ph.D. Thesis, Universität Kassel/Witzenhausen, Harare, Zimbabwe, 2015. [Google Scholar]
- Mutikanga, H.E. Water Loss Management: Tools and Methods for Developing Countries. Ph.D. Thesis, Delft University of Technology, Leiden, The Netherlands, 2012. [Google Scholar]
- Ross, S.A. Uses, Abuses, and Alternatives to the Net-Present-Value Rule. Financ. Manag. 1995, 24, 96. [Google Scholar] [CrossRef]
- Mbabazise, P.M.; Daniel, T. Capital Budgeting Practices in Developing Countries: A case of Rwanda. Res. J. Financ. 2014, 2, 1–19. [Google Scholar]
- Banovec, P.; Domadenik, P. Defining Economic Level of Losses in Shadow: Identification of Parameters and Optimization Framework. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 599. [Google Scholar] [CrossRef] [Green Version]
- Da, Z.; Guo, R.-J.; Jagannathan, R. CAPM for estimating the cost of equity capital: Interpreting the empirical evidence. J. Financ. Econ. 2012, 103, 204–220. [Google Scholar] [CrossRef]
- Schlegel, D. Background: Cost-of-capital in the finance literature. In Cost-of-Capital in Managerial Finance; Springer: Cham, Switzerland, 2015; pp. 9–70. [Google Scholar] [CrossRef]
- Albert, A.; Zhang, L. A novel definition of the multivariate coefficient of variation. Biom. J. 2010, 52, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M. Participatory Gender-Oriented Information and Learning Needs Assessment of the Youth of Alexandra; Background Report for UNESCO Developing Open Learning Communities for Gender Equity with the Support of ICTs; University of the Witwatersrand: Johannesburg, South Africa, 2002. [Google Scholar]
- Matowanyika, W. Impact of Alexandra Township on the Water Quality of the Jukskei River; A research report submitted to the Faculty of Science, University of the Witwatersrand; University of the Witwatersrand, Johannesburg, in partial fulfillment: Johannesburg, South Africa, 2010. [Google Scholar]
- WCWDM. Revised Water Conservation and Water Demand Management Strategy: Internal Report: Johannesburg Water: City of Johannesburg Metropolitan Municipality. WikiWater #227869. 2016. Available online: www.johannesburgwater.co.za (accessed on 20 April 2022).
- Wegelin, W.A. Guideline for a Robust Assessment of the Potential Savings from Water Conservation and Water Demand Management. Master’s Thesis, Faculty of Engineering at Stellenbosch University, Stellenbosch, South Africa, 2015. Available online: https://scholar.sun.ac.za (accessed on 20 April 2022).
- McKenzie, R. Development of a Standardised Approach to Evaluate Burst and Background Losses in Water Distribution Systems in South Africa; WRC, Report TT 109/99; Water Research Commission: Pretoria, South Africa, 1999. [Google Scholar]
- McKenzie, R.; Lambert, A.; South Africa Water Research Commission. ECONOLEAK: Economic Model for Leakage Management for Water Suppliers in South Africa, Users Guide; WRC Report TT 169/02; Water Research Commission: Pretoria, South Africa, 2002. [Google Scholar]
- Wu, Z.Y.; Farley, M.; Turtle, D.; Kapelan, Z.; Boxall, J.; Mounce, S.; Dahasahasra, S.; Mulay, M.; Kleiner, Y. Water Loss Reduction; Bentley Institute Press: Exton, PA, USA, 2011. [Google Scholar]
Methodology | Mathematical Equation | References |
---|---|---|
Net Present Value (NPV) Ratio | is the period of compounding interest | [15,19,20,21,27,28,30,31] |
Marginal Cost Capital (MCC) | [15,19,20,22] | |
Weighted Average Cost of Capital (WCC) | is the compounding period in year, and CI is the value of NPV | [19,20,30,31,32] |
Coefficient of Variance (CV) | where Xi is the individual value, N is the total dataset or number of values, is the mean average of the dataset, and P is the position of population dataset in a series | [19,20,32] |
ID | Ave Flow (L/s) | Ave MNF (L/s) | Head (m) | SIV (m3/Year) | MNF (m3/Year) | % MNF/Ave Flow | % MNF/SIV |
---|---|---|---|---|---|---|---|
LP-1 | 70.1 | 56.40 | 180 | 2,209,412 | 296,438 | 81% | 13% |
LP-2 | 343.8 | 296.10 | 80 | 10,843,338 | 1,556,302 | 86% | 14% |
LP-3 | 248.5 | 202.10 | 90 | 7,836,696 | 1,062,238 | 81% | 14% |
LP-4.1 | 9.3 | 8.18 | 50 | 293,285 | 42,984 | 88% | 15% |
LP-4.2 | 2.7 | 1.34 | 51 | 85,147 | 6917 | 50% | 8% |
LP-4.3 | 158.7 | 136.30 | 49 | 5,004,700 | 716,393 | 86% | 14% |
26,272,579 | 3,681,271 | Ave:79% | Ave:14% |
System Input Volume (SIV) 26,272,578.53 m3/year. 100% | Authorized Consumption 17,676,052 m3/year. 67.28% | Billed Authorized Consumption 1,257,383.25 m3/year. 4.79% | Billed Metered Consumption 873,195.03 m3/year. 3.32% | Free Basic Water 337,902.5 m3/year. 1.29% |
Billed Unmetered Consumption 384,188 m3/year. 1.46% | Recovered Revenue Water 919,480.71 m3/year. 3.5% | |||
Unbilled Authorized Consumption 16,418,668.77 m3/year. 62.49% | Unbilled Metered Consumption No Historic Data 16,418,668.77 m3/year. 62.49% | Non-Revenue Water (NRW) 25,015,195.28 m3/year. 95.21% | ||
Water Losses 8,596,526.51 m3/year. 32.72% | Apparent Losses No Historic Data 0 m3/year 0.00% | Real Looses + Unauthorized Consumption 8,596,526.51 m3/year. 32.72% | ||
Real Losses 8,596,526.51 m3/year. 32.72% | Reservoir Overflows No Historic Data 0.00 m3/year 0.00% |
Description | Period | ||||||
---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
Reported Bursts (RB) | 1466 | 1517 | 1495 | 1403 | 1521 | 1567 | 1336 |
Unreported Bursts (URB) | 299 | 216 | 233 | 254 | 209 | 264 | 179 |
Burst Total (RB + URB) | 1765 | 1733 | 1728 | 1657 | 1730 | 1831 | 1515 |
Leaking Connections (LC) | 1245 | 1145 | 1244 | 1324 | 1165 | 1211 | 1156 |
Total (RB + URB + LC) | 3010 | 2878 | 2972 | 2981 | 2895 | 3042 | 2671 |
Pipe Length (m) | 94,700 | 95,654 | 96,235 | 96,900 | 98,321 | 98,435 | 98,345 |
Burst Frequency/km | 19 | 18 | 18 | 17 | 18 | 19 | 15 |
Average Pressure (m) | 71.3 | 75.2 | 75.6 | 81.3 | 83.7 | 86.2 | 76.7 |
Average Pipe Age (year) | 19.6 | 20.2 | 21.5 | 22.8 | 23.4 | 25.6 | 26 |
Reported Burst (RB) | Unreported Burst (URB) | Leaking Connection (LC) | Total Water Loss (TWL) USD/m3/Month | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | RB No | ALD (h) | TAVL (m3) | UR No | ALD (h) | TAVL (m3) | LC No | ALD (h) | TAVL (m3) | TLFR (m3) | Total Cost (RB) | Total Cost (URB) | Total Cost (LC) |
1 | 123 | 31.20 | 921,024 | 15 | 73.55 | 132,390 | 103 | 61.01 | 201,089 | 1,254,503 | 2,928,856 | 421,000 | 639,463 |
2 | 131 | 31.20 | 980,928 | 22 | 73.55 | 194,172 | 112 | 61.01 | 218,660 | 1,393,760 | 3,119,351 | 617,467 | 695,338 |
3 | 134 | 31.20 | 1,003,392 | 10 | 73.55 | 88,260 | 111 | 61.01 | 216,708 | 1,308,360 | 3,190,787 | 280,667 | 689,130 |
4 | 120 | 31.20 | 898,560 | 13 | 73.55 | 114,738 | 119 | 61.01 | 232,326 | 1,245,624 | 2,857,421 | 364,867 | 738,797 |
5 | 126 | 31.20 | 943,488 | 12 | 73.55 | 105,912 | 98 | 61.01 | 191,327 | 1,240,727 | 3,000,292 | 336,800 | 608,421 |
6 | 119 | 31.20 | 891,072 | 15 | 73.55 | 132,390 | 112 | 61.01 | 218,660 | 1,242,122 | 2,833,609 | 421,000 | 695,338 |
7 | 125 | 31.20 | 936,000 | 13 | 73.55 | 114,738 | 89 | 61.01 | 173,756 | 1,224,494 | 2,976,480 | 364,867 | 552,546 |
8 | 132 | 31.20 | 988,416 | 22 | 73.55 | 194,172 | 110 | 61.01 | 214,755 | 1,397,343 | 3,143,163 | 617,467 | 682,922 |
9 | 102 | 31.20 | 763,776 | 19 | 73.55 | 167,694 | 78 | 61.01 | 152,281 | 1,083,751 | 2,428,808 | 533,267 | 484,253 |
10 | 86 | 31.20 | 643,968 | 10 | 73.55 | 88,260 | 83 | 61.01 | 162,043 | 894,271 | 2,047,818 | 280,667 | 515,295 |
11 | 67 | 31.20 | 501,696 | 16 | 73.55 | 141,216 | 76 | 61.01 | 148,376 | 791,288 | 1,595,393 | 449,067 | 471,837 |
12 | 71 | 31.20 | 531,648 | 12 | 73.55 | 105,912 | 65 | 61.01 | 126,901 | 764,461 | 1,690,641 | 336,800 | 403,545 |
Total Cost/year | 31,812,618 | 5,023,936 | 7,176,885 |
(a) | ||||||||
Total Cost Method (USD) | Total WL Reduction Cost (USD) | |||||||
Period | Total WLNRW | Unit Cost/m3 | Cost of WL | SIV | Total Cost of Water | CAPEX | O&M | WL Reduction Cost |
2016/17 | 15.69 | 2.31 | 36.23 | 18.03 | 41.64 | 18.72 | 0 | 18.72 |
2017/18 | - | 2.46 | - | - | - | 20.83 | 0 | 20.83 |
2018/19 | - | 2.62 | - | - | - | 25.27 | 0 | 25.27 |
2019/20 | - | 2.79 | - | - | - | 27.78 | 0 | 27.78 |
2020/21 | - | 2.97 | - | - | - | 33.67 | 16.37 | 50.04 |
2021/22 | 25.02 | 3.18 | 79.55 | 26.27 | 83.55 | 35.53 | 18.50 | 54.03 |
SUM:(5 yrs.) | 40.70 | 16.33 | 115.78 | 44.30 | 125.19 | 161.80 | 34.87 | 196.67 |
Diff/yr. | 9.33 | - | 43.31 | 8.25 | 41.91 | - | 18.50 | 54,032 |
Av. Diff/yr. | 1.89 | 3.27 | 8.66 | 1.65 | 8.38 | 32.36 | - | - |
% Diff/yr. | 37.29 | 27.36 | 54.45 | 31.39 | 50.16 | 47.31 | 100 | 65.35 |
% Av./5 yr. | 7 | 5.5 | 10.89 | 6. 28 | 10.89 | 9.46 | - | 13.07 |
2016/17: WLNRW @ 87.02%; 2020 WLNRW @ 95.21%; Cost (USD and Volume (m3) in millions) | ||||||||
(b) | ||||||||
Description and Period | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | ||
WL Control Investment Cost (Million USD) | 50.04 | 54.03 | 61.10 | 69.08 | 78.11 | 88.32 | ||
Incremental WL Cost (Million USD) | - | 3.99 | 7.06 | 7.99 | 9.03 | 10.21 | ||
WL Component of Non-revenue Water (Million USD/m3) | 79.55 | 85.37 | 91.61 | 98.31 | 105.50 | 113.22 | ||
WL Reduction Cumulative Difference | 5.82 | 6.24 | 6.70 | 7.19 | 7.72 | |||
Marginal Cost of WL (Million USD/m3) | 0.686 | 1.131 | 1.192 | 1.256 | 1.323 | |||
Water Loss (m3/year) | 25.02 | 25.45 | 25.88 | 26.33 | 26.78 | 27.24 | ||
Net Present Value Ratio | 0.63 | 0.63 | 0.67 | 0.70 | 0.74 |
(a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total WL Investment Cost (USD) (A) | Capital Investment Weight (%) (B1; B2; B3) | Total WL Cost (USD) (C) | Weight of Capital/Total WL Cost (%) (D1; D2; D3) | WACC Value (%) (E1; E2; E3) | ||||||
Description | ||||||||||
WL Capital Expenditure (X) | 35,534,591 | 65.50 | 79,548,320 | 44.67 | 29.260 | |||||
Operations and Maintenance (Y) | 18,498,113 | 34.10 | 79,548,320 | 23.25 | 7.929 | |||||
Social Capital Investment (Z) | 217,917.30 | 0.40 | 79,548,320 | 0.27 | 0.001 | |||||
SUM (USD) | 54,250,621.70 | 100.00 | - | 68.20% | ||||||
Sum of Combined WACC = 37.19 | ||||||||||
Formulae: B1 = (X/SUM); B2 = (Y/SUM); B3 = (Z/SUM); D = (A/C) × 100; E = (B/100) × (100 × D): SUM: (B1 + B2 + B3) | ||||||||||
(b) | ||||||||||
Period | WL Sensitivity Analysis Index | |||||||||
Description | 2022 | 2023 | 2024 | 2025 | 2026 | Mean | Standard Deviation | CV | Net WACC | Capital Risk |
Capital Expenditure Index (USD mill) | 54,032 | 61,094 | 69,079 | 78,108 | 88,317 | 70,126 | 12,135 | 0.17 | 4.2% | 0.246 |
Operation and Maintenance Sensitivity Index (USD mill) | 20,347 | 21,272 | 22,197 | 24,047 | 24,972 | 22,567 | 1715 | 0.08 | 2% | 0.246 |
Social Capital Investment Intervention Strategy Sensitivity Index (USD mill) | 6881 | 9175 | 13,763 | 18,350 | 22,938 | 14,221 | 5875 | 0.41 | 10% | 0.246 |
Average Net WACC Risk = WACC Value × Sum CV e.g., (37.19% × 0.66 = 0.246) Net WACC = (Average Net WACC Risk × CV); e.g., (0.246 × 0.17) × 100 = 4.2% | Combined CV/Risk: 0.66 Net Capital Risk: 0.246 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathye, R.P.; Scholz, M.; Nyende-Byakika, S. Appraisal of Socio-Technical Water Loss Control Strategies Using Cost-Benefit Analysis in a Water Supply Network. Water 2022, 14, 1789. https://doi.org/10.3390/w14111789
Mathye RP, Scholz M, Nyende-Byakika S. Appraisal of Socio-Technical Water Loss Control Strategies Using Cost-Benefit Analysis in a Water Supply Network. Water. 2022; 14(11):1789. https://doi.org/10.3390/w14111789
Chicago/Turabian StyleMathye, Risimati Patrick, Miklas Scholz, and Stephen Nyende-Byakika. 2022. "Appraisal of Socio-Technical Water Loss Control Strategies Using Cost-Benefit Analysis in a Water Supply Network" Water 14, no. 11: 1789. https://doi.org/10.3390/w14111789
APA StyleMathye, R. P., Scholz, M., & Nyende-Byakika, S. (2022). Appraisal of Socio-Technical Water Loss Control Strategies Using Cost-Benefit Analysis in a Water Supply Network. Water, 14(11), 1789. https://doi.org/10.3390/w14111789