Arsenic Exposure via Contaminated Water and Food Sources
Abstract
:1. Introduction
2. Origin of Arsenic Contamination
3. Hazards and Limits in Food and Water
4. Global Status of Arsenic Contamination
4.1. Asia
Country | Drinking Water (µg/L) | Groundwater (µg/L) | Surface Water (µg/L) | Highly Contaminated Region | Ref. |
---|---|---|---|---|---|
China | <10 | 21–2611 | 0.46–19.5 | Shanxi, Anhui | [43,44] |
Republic of Korea | <10 | 0.02 | - | - | [72] |
Taiwan | - | 10–1800 | - | Lanyang Plain | [16] |
Japan | - | 0.2–7.1 | 0.2–38.3 | - | [73,74] |
Bangladesh | >50 (~1700 samples) | <10–4730 | - | South Bangladesh | [31,75] |
India | 0.01–9.4 | <10–390 | - | Bihar, Manipur, Jharkhand | [76] |
Pakistan | - | <10–2580 | - | Punjab, Sindh | [33,56] |
Nepal | - | 0–50 | - | Nawalparasi | [20] |
Sri Lanka | - | 0–7 | - | - | [77] |
Vietnam | 7–82 | 1–3050 | - | Red River Delta | [78] |
Indonesia | 0–60 | 0.8–167 | - | Kamal | [64,79] |
Thailand | - | 1–5100 | 165–985 | Nakorn Si Thammarat | [66] |
Cambodia | - | 0.1–1300 | - | Preak Russey | [34] |
Country | Product | As Concentration (mg/Kg) | Ref. |
---|---|---|---|
China | Rice Fish Shellfish | mean 0.05 0.11 3.6 | [44,45] |
Hongkong | Shark fins | max. 0.07 | [46] |
Republic of Korea | Rice | 0.03–0.77 | [47] |
Taiwan | Rice | 0.23 | [25] |
Japan | Rice Fish and shellfish | 0.1–0.16 0.2–8.3 | [25,82] |
Bangladesh | Vegetables Rice Fish | <0.005–0.54 0.03–1.84 0.097–1.318 | [48] |
India | Rice Wheat grain Potato | 0.015–0.23 <0.235 0.005–0.176 | [6] |
Pakistan | Fish | 0.19–1.77 | [57] |
Sri Lanka | Rice Fish Vegetables | 0.002–0.58 <0.002–66 0.001–0.025 | [60] |
Vietnam | Rice | 0.14 | [63] |
Indonesia | Rice Fish | 0.00–0.31 0.64–5.78 | [83,84] |
Philippines | Fish | 0.058–0.33 | [85] |
Thailand | Rice Fish Scrimp | 0.084–0.49 0–2.73 0.97–7.28 | [67,86] |
Cambodia | Rice Fish Vegetables | 0.088–0.578 0.144–0.222 0.01–0.141 | [87] |
4.2. Europe
4.3. America
4.4. Australia
4.5. Africa
5. Main Effects of Arsenic Contamination on Human Health
6. Control, Prevention and Treatment of As in Water Sources
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upadhyay, M.K.; Shukla, A.; Yadav, P.; Srivastava, S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019, 276, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Medunić, G.; Fiket, Ž.; Ivanić, M. Arsenic Contamination Status in Europe, Australia, and Other Parts of the World. In Arsenic in Drinking Water and Food; Srivastava, S., Ed.; Springer: Singapore, 2020; Volume 1, pp. 183–233. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 10 March 2022).
- Shahid, M.; Dumat, C.; Khan Niazi, N.; Khalid, S.; Natasha, N. Global scale arsenic pollution: Increase the scientific knowledge to reduce human exposure. VertigO 2018, 31, 21331. [Google Scholar] [CrossRef]
- Ishiguro, S. Industries using arsenic and arsenic compounds. Appl. Organomet. Chem. 1992, 6, 323–331. [Google Scholar] [CrossRef]
- Mondal, D.; Rahman, M.M.; Suman, S.; Sharma, P.; Siddique, A.B.; Rahman, M.A.; Bari, A.S.M.F.; Kumar, R.; Bose, N.; Singh, S.K.; et al. Arsenic exposure from food exceeds that from drinking water in endemic area of Bihar, India. Sci. Total Environ. 2021, 754, 142082. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Singh, A.; Giri, K. Effect of arsenate substitution on phosphate repository of cell: A computational study. R. Soc. Open Sci. 2018, 5, 181565. [Google Scholar] [CrossRef] [Green Version]
- Sowers, T.D.; Nelson, C.M.; Blackmon, M.D.; Jerden, M.L.; Kirby, A.M.; Diamond, G.L.; Bradham, K.D. Interconnected soil iron and arsenic speciation effects on arsenic bioaccessibility and bioavailability: A scoping review. J. Toxicol. Environ. Health Part B Crit. Rev. 2022, 25, 1–22. [Google Scholar] [CrossRef]
- Almeida, C.C.; Fontes, M.P.F.; Dias, A.C.; Pereira, T.T.C.; Ker, J.C. Adsorption and desorption of arsenic and its immobilization in soils. Sci. Agric. 2020, 78, 1–11. [Google Scholar] [CrossRef]
- Kumarathilaka, P.; Seneweera, S.; Meharg, A.; Bundschuh, J. Arsenic speciation dynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors—A review. Water Res. 2018, 140, 403–414. [Google Scholar] [CrossRef]
- Gao, P.; Huang, J.; Wang, Y.; Li, L.; Sun, Y.; Zhang, T.; Peng, F. Effects of nearly four decades of long-term fertilization on the availability, fraction and environmental risk of cadmium and arsenic in red soils. J. Environ. Manag. 2021, 295, 113097. [Google Scholar] [CrossRef]
- Harvey, P.J.; Handley, H.K.; Taylor, M.P. Widespread copper and lead contamination of household drinking water, New South Wales, Australia. Environ. Res. 2016, 151, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Han, C.; Hong, S.B.; Jun, S.J.; Han, Y.; Xiao, C.; Du, Z.; Hur, S.D.; Lee, J.I.; Boutron, C.F.; et al. A 300-Year High-Resolution Greenland Ice Record of Large-Scale Atmospheric Pollution by Arsenic in the Northern Hemisphere. Environ. Sci. Technol. 2019, 53, 12999–13008. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, Y.K.; Tiwari, S.; Mohan, D.; Singh, R.S. A review on health impacts, monitoring and mitigation strategies of arsenic compounds present in air. Clean. Eng. Technol. 2021, 3, 100115. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef]
- Hussain, M.M.; Wang, J.; Bibi, I.; Shahid, M.; Niazi, N.K.; Iqbal, J.; Mian, I.A.; Shaheen, S.M.; Bashir, S.; Shah, N.S.; et al. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. J. Hazard. Mater. 2021, 403, 124027. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Mitrakas, M.; Zouboulis, A.I. Arsenic occurrence in Europe: Emphasis in Greece and description of the applied full-scale treatment plants. Desalin. Water Treat. 2015, 54, 2100–2107. [Google Scholar] [CrossRef]
- Thakur, J.K.; Thakur, R.K.; Ramanathan, A.L.; Kumar, M.; Singh, S.K. Arsenic contamination of groundwater in Nepal—An overview. Water 2011, 3, 1. [Google Scholar] [CrossRef]
- Ventura-Lima, J.; Bogo, M.R.; Monserrat, J.M. Arsenic toxicity in mammals and aquatic animals: A comparative biochemical approach. Ecotoxicol. Environ. Saf. 2011, 74, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Katsoyiannis, I.A.; Zouboulis, A.I. Use of iron- and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Qual. Res. J. Can. 2006, 41, 117–129. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Arsenic in Drinking Water; Fact Sheet No. 210; WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Appendix E. Regulation of Arsenic: A Brief Survey and Bibliography. In Arsenic; Henke, K., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 545–557. [Google Scholar] [CrossRef] [Green Version]
- Abedi, T.; Mojiri, A. Arsenic uptake and accumulation mechanisms in rice species. Plants 2020, 9, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization (FAO). Codex Alimentarius Commission—Geneva 14–18 July 2014. Available online: https://www.fao.org/news/story/en/item/%20238558/icode/ (accessed on 14 March 2022).
- Biswas, J.K.; Warke, M.; Datta, R.; Sarkar, D. Is Arsenic in Rice a Major Human Health Concern? Curr. Pollut. Rep. 2020, 6, 37–42. [Google Scholar] [CrossRef]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A.; et al. Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Bhattacharya, P. Arsenic in Drinking Water: Is 10 μg/L a Safe Limit? Curr. Pollut. Rep. 2019, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Chakraborti, D.; Rahman, M.M.; Mukherjee, A.; Alauddin, M.; Hassan, M.; Dutta, R.N.; Pati, S.; Mukherjee, S.C.; Roy, S.; Quamruzzman, Q.; et al. Groundwater arsenic contamination in Bangladesh-21 Years of research. J. Trace Elem. Med. Biol. 2015, 31, 237–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Guo, Z.; Han, J.; Li, H.; Jin, L.; Chen, F.; Xiong, Y. Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J. Environ. Manag. 2019, 237, 163–169. [Google Scholar] [CrossRef]
- Ali, W.; Rasool, A.; Junaid, M.; Zhang, H. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: A global perspective with prominence of Pakistan scenario. Environ. Geochem. Health 2019, 41, 737–760. [Google Scholar] [CrossRef]
- Murphy, T.; Phan, K.; Yumvihoze, E.; Irvine, K.; Wilson, K.; Lean, D.; Ty, B.; Poulain, A.; Laird, B.; Chan, L.H.M. Groundwater irrigation and arsenic speciation in rice in Cambodia. J. Health Pollut. 2018, 8, 180911. [Google Scholar] [CrossRef] [Green Version]
- Mayer, J.E.; Goldman, R.H. Arsenic and skin cancer in the USA: The current evidence regarding arsenic-contaminated drinking water. Int. J. Dermatol. 2016, 55, 585–591. [Google Scholar] [CrossRef]
- Budianta, W. The use of natural zeolites from Gunungkidul, Indonesia for preventing arsenic pollution of soils and plants. IOP Conf. Ser. Earth Environ. Sci. 2021, 686, 012021. [Google Scholar] [CrossRef]
- Miller, C.B.; Parsons, M.B.; Jamieson, H.E.; Swindles, G.T.; Nasser, N.A.; Galloway, J.M. Lake-specific controls on the long-term stability of mining-related, legacy arsenic contamination and geochemical baselines in a changing northern environment, Tundra Mine, Northwest Territories, Canada. Appl. Geochem. 2019, 109, 104403. [Google Scholar] [CrossRef]
- Leonardi, G.; Vahter, M.; Clemens, F.; Goessler, W.; Gurzau, E.; Hemminki, K.; Hough, R.; Koppova, K.; Kumar, R.; Rudnai, P.; et al. Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ. Health Perspect. 2012, 120, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-Huerta, E.A.; de la Garza Varela, A.; Gómez-Bernal, J.M.; Castillo, F.; Avalos-Borja, M.; SenGupta, B.; Martínez-Villegas, N. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico. J. Hazard. Mater. 2017, 339, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Smith, L.S.; Shrestha, S.; Maden, N. Efficacy of arsenic filtration by Kanchan Arsenic Filter in Nepal. J. Water Health 2014, 12, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Sahu, S. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India. Environ. Geochem. Health 2016, 38, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Rodriǵuez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef]
- Sanjrani, M.A.; Zhou, B.; Zhao, H.; Bhutto, S.A.; Muneer, A.S.; Xia, S.B. Arsenic contaminated groundwater in China and its treatment options, a review. Appl. Ecol. Environ. Res. 2019, 17, 1655–1683. [Google Scholar] [CrossRef]
- Luo, C.; Routh, J.; Luo, D.; Wei, L.; Liu, Y. Arsenic in the Pearl River Delta and its related waterbody, South China: Occurrence and sources, a review. Geosci. Lett. 2021, 8, 12. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.X.; Williams, P.N.; Nunes, L.; Zhu, Y.G. Inorganic arsenic in Chinese food and its cancer risk. Environ. Int. 2011, 37, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Garcia Barcia, L.; Argiro, J.; Babcock, E.A.; Cai, Y.; Shea, S.K.H.; Chapman, D.D. Mercury and arsenic in processed fins from nine of the most traded shark species in the Hong Kong and China dried seafood markets: The potential health risks of shark fin soup. Mar. Pollut. Bull. 2020, 157, 111281. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.T.P.; Prinpreecha, N.; Kim, K.W. Influence of mining activities on arsenic concentration in rice in asia: A review. Minerals 2021, 11, 472. [Google Scholar] [CrossRef]
- Adeloju, S.B.; Khan, S.; Patti, A.F. Arsenic contamination of groundwater and its implications for drinking water quality and human health in under- developed countries and remote communities—A review. Appl. Sci. 2021, 11, 1926. [Google Scholar] [CrossRef]
- Haque, M.M.; Niloy, N.M.; Khirul, M.A.; Alam, M.F.; Tareq, S.M. Appraisal of probabilistic human health risks of heavy metals in vegetables from industrial, non-industrial and arsenic contaminated areas of Bangladesh. Heliyon 2021, 7, 06309. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alauddin, M.; Alauddin, S.T.; Siddique, A.B.; Islam, M.R.; Agosta, G.; Mondal, D.; Naidu, R. Bioaccessibility and speciation of arsenic in children’s diets and health risk assessment of an endemic area in Bangladesh. J. Hazard. Mater. 2021, 403, 124064. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Wangchuk, K.; Muttil, N. A critical review of water resources and their management in Bhutan. Hydrology 2021, 8, 31. [Google Scholar] [CrossRef]
- Ayers, J.C.; Goodbred, S.; Dietrich, M. Arsenic Contamination in South and Southeast Asia. In Environmental Science; Wohl, E., Ed.; Oxford University Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Kumar, A.; Ali, M.; Kumar, R.; Kumar, M.; Sagar, P.; Pandey, R.K.; Akhouri, V.; Kumar, V.; Anand, G.; Niraj, P.K.; et al. Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Sci. Rep. 2021, 11, 2376. [Google Scholar] [CrossRef]
- Das, A.; Mondal, S. Geomorphic controls on shallow groundwater arsenic contamination in Bengal basin, India. Environ. Sci. Pollut. Res. 2021, 28, 42177–42195. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sarkar, S.; Chakraborty, M.; Duttagupta, S.; Bhattacharya, A.; Saha, D.; Bhattacharya, P.; Mitra, A.; Gupta, S. Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. Sci. Total Environ. 2020, 759, 143511. [Google Scholar] [CrossRef]
- Rasool, A.; Xiao, T.; Farooqi, A.; Shafeeque, M.; Liu, Y.; Kamran, M.A.; Katsoyiannis, I.A.; Eqani, S.A.M.A.S. Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environ. Geochem. Health 2017, 39, 847–863. [Google Scholar] [CrossRef]
- Alamdar, A.; Eqani, S.A.M.A.S.; Hanif, N.; Ali, S.M.; Fasola, M.; Bokhari, H.; Katsoyiannis, I.A.; Shen, H. Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 2017, 168, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Sanjrani, M.; Mek, T.; Sanjrani, N.; Leghari, S.; Moryani, H.; Shabnam, A. Current Situation of Aqueous Arsenic Contamination in Pakistan, Focused on Sindh and Punjab Province, Pakistan: A Review. J. Pollut. Eff. Control 2017, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Timalsina, H.; Mainali, B.; Angove, M.J.; Komai, T.; Paudel, S.R. Potential modification of groundwater arsenic removal filter commonly used in Nepal: A review. Groundw. Sustain. Dev. 2021, 12, 100549. [Google Scholar] [CrossRef]
- Jinadasa, B.K.K.K.; Fowler, S.W. A critical review of arsenic contamination in Sri Lankan Foods. J. Food Qual. Hazards Control 2019, 6, 134–145. [Google Scholar] [CrossRef]
- Ramanathan, A.; Johnston, S.; Mukherjee, A.; Nath, B. Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain, 1st ed.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Jawadi, H.A.; Malistani, H.A.; Moheghy, M.A.; Sagin, J. Essential trace elements and arsenic in thermal springs, Afghanistan. Water 2021, 13, 134. [Google Scholar] [CrossRef]
- Chu, H.T.T.; Vu, T.V.; Nguyen, T.K.B.; Nguyen, H.T.H. Accumulation of arsenic and heavy metals in native and cultivated plant species in a lead recycling area in Vietnam. Minerals 2019, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Suryono, C.A. The Toxic Metal Arsenic Contamination of the Coastal Aquifers in the North Coast of Java, Indonesia. J. Kelaut. Trop. 2016, 18, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Solis, K.L.B.; Macasieb, R.Q.; Parangat, R.C.; Resurreccion, A.C.; Ocon, J.D. Spatiotemporal variation of groundwater arsenic in Pampanga, Philippines. Water 2020, 12, 2366. [Google Scholar] [CrossRef]
- Jones, H.; Visoottiviseth, P.; Bux, M.K.; Földényi, R.; Kováts, N.; Borbély, G.; Galbács, Z. Case reports: Arsenic pollution in Thailand, Bangladesh, and Hungary. Rev. Environ. Contam. Toxicol. 2008, 197, 163–187. [Google Scholar] [CrossRef]
- Pradit, S.; Noppradit, P.; Goh, B.P.; Sornplang, K.; Ong, M.C.; Towatana, P. Occurrence of microplastics and trace metals in fish and shrimp from Songkhla lake, Thailand during the COVID-19 pandemic. Appl. Ecol. Environ. Res. 2021, 19, 1085–1106. [Google Scholar] [CrossRef]
- Ab Razak, N.H.; Praveena, S.M.; Aris, A.Z.; Hashim, Z. Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). J. Epidemiol. Glob. Health 2015, 5, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.F.; Lim, C.K.; Mokhtar, M.B.; Khirotdin, R.P.K. Predicting arsenic (As) exposure on human health for better management of drinking water sources. Int. J. Environ. Res. Public Health 2021, 18, 7997. [Google Scholar] [CrossRef] [PubMed]
- Alina, M.; Azrina, A.; Mohd Yunus, A.S.; Mohd Zakiuddin, S.; Mohd Izuan Effendi, H.; Muhammad Rizal, R. Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int. Food Res. J. 2012, 19, 135–140. [Google Scholar]
- Zulkafflee, N.S.; Mohd Redzuan, N.A.; Nematbakhsh, S.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Yee Lee, S.; Abdull Razis, A.F. Heavy Metal Contamination in Oryza sativa L. at the Eastern Region of Malaysia and Its Risk Assessment. Int. J. Environ. Res. Public Health 2022, 19, 739. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Cha, J.; Raza, M. Groundwater development, use, and its quality in Korea: Tasks for sustainable use. Water Policy 2021, 23, 1375. [Google Scholar] [CrossRef]
- Even, E.; Masuda, H.; Shibata, T.; Nojima, A.; Sakamoto, Y.; Murasaki, Y.; Chiba, H. Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan. J. Hydrol. Reg. Stud. 2017, 9, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Thuyet, D.Q.; Saito, H.; Saito, T.; Moritani, S.; Kohgo, Y.; Komatsu, T. Multivariate analysis of trace elements in shallow groundwater in Fuchu in western Tokyo Metropolis, Japan. Environ. Earth Sci. 2016, 75, 559. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.A.; Khan, M.H.; Haque, M. Arsenic contamination in groundwater in bangladesh: Implications and challenges for healthcare policy. Risk Manag. Healthc. Policy 2018, 11, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, A.K. Arsenic Contamination of India’s Groundwater: A Review and Critical Analysis. In Arsenic Water Resources Contamination. Advances in Water Security, 1st ed.; Fares, A., Singh, S., Eds.; Springer: Cham, Switzerland, 2020; Volume 8, pp. 177–205. [Google Scholar] [CrossRef]
- Ayala Herath, H.M.S.; Kawakami, T.; Nagasawa, S.; Serikawa, Y.; Motoyama, A.; Tushara Chaminda, G.G.; Weragoda, S.K.; Yatigammana, S.K.; Amarasooriya, A.A.G.D. Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology. J. Water Health 2018, 16, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Le Luu, T. Remarks on the current quality of groundwater in Vietnam. Environ. Sci. Pollut. Res. 2019, 26, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Irnawati, I.; Idroes, R.; Zulfiani, U.; Akmal, M.; Suhartono, E.; Idroes, G.M.; Muslem, M.; Lala, A.; Yusuf, M.; Saiful, S.; et al. Assessment of arsenic levels in water, sediment, and human hair around Ie Seu’um geothermal manifestation area, Aceh, Indonesia. Water 2021, 13, 2343. [Google Scholar] [CrossRef]
- Ratha, P.; Nandalal, K.D.W.; Pitawala, H.M.T.G.A.; Dharmagunawardhane, H.A.; Weerakoon, S.B. Arsenic Contamination in Cambodia: A Status Review. In Proceedings of the 2nd International Symposium on Conservation and Management of Tropical Lakes, Siem Reap, Cambodia, 24–26 August 2017. [Google Scholar]
- Soulivongsa, L.; Tengjaroenkul, B.; Neeratanaphan, L. Effects of contamination by heavy metals and metalloids on chromosomes, serum biochemistry and histopathology of the bonylip barb fish near sepon gold-copper mine, lao pdr. Int. J. Environ. Res. Public Health 2020, 17, 9492. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto-Tanibuchi, E.; Sugimoto, T.; Kawaguchi, T.; Sakakibara, N.; Yamashita, M. Determination of inorganic arsenic in seaweed and seafood by LC-ICP-MS: Method validation. J. AOAC Int. 2019, 102, 612–618. [Google Scholar] [CrossRef]
- Bentley, K.; Soebandrio, A. Dietary exposure assessment for arsenic and mercury following submarine tailings placement in Ratatotok Sub-district, North Sulawesi, Indonesia. Environ. Pollut. 2017, 227, 552–559. [Google Scholar] [CrossRef]
- Jansen, S.; Dera, R.T.S.; Margarethruth, M.S.; Nanda, S.I.; Silalahi Yosy, C.E. Analysis of arsenic in raw and cooked rice by atomic absorption spectrophotometer. IOP Conf. Ser. Earth Environ. Sci. 2018, 205, 012040. [Google Scholar] [CrossRef]
- Jalova, M.C.; Lomantong, A.D.; Calibo, L.G.; Camarin, M.A.M. Assessment of heavy metals found in commonly consumed fishes from lake Lanao, Philippines. Isr. J. Aquac. Bamidgeh 2021, 75, 1426167. [Google Scholar] [CrossRef]
- Hensawang, S.; Chanpiwat, P. Health impact assessment of arsenic and cadmium intake via rice consumption in Bangkok, Thailand. Environ. Monit. Assess. 2017, 189, 599. [Google Scholar] [CrossRef]
- Phan, K.; Sthiannopkao, S.; Heng, S.; Phan, S.; Huoy, L.; Wong, M.H.; Kim, K.W. Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia. J. Hazard. Mater. 2013, 262, 1064–1071. [Google Scholar] [CrossRef]
- Mukhametov, A.; Yerbulekova, M.; Dautkanova, D.; Tuyakova, G.; Aitkhozhayeva, G. Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment. Int. J. Agric. Biol. 2020, 14, 163–167. [Google Scholar]
- World Health Organization (WHO); UNICEF. Rapid Assessment of Drinking-Water Quality in the Republic of Tajikistan; World Health Organization, WHO Press: Geneva, Switzerland, 2010; Available online: https://washdata.org/report/who-unicef-radwq-tajikistan-report (accessed on 21 March 2022).
- Liu, W.; Ma, L.; Li, Y.; Abuduwaili, J.; Uulu, S.A. Heavy metals and related human health risk assessment for river waters in the Issyk−Kul basin, Kyrgyzstan, central asia. Int. J. Environ. Res. Public Health 2020, 17, 3506. [Google Scholar] [CrossRef]
- Ali, I.; Hasan, M.A.; Alharbi, O.M.L. Toxic metal ions contamination in the groundwater, Kingdom of Saudi Arabia. J. Taibah Univ. Sci. 2020, 14, 1571–1579. [Google Scholar] [CrossRef]
- Fakhri, Y.; Mohseni-Bandpei, A.; Oliveri Conti, G.; Ferrante, M.; Cristaldi, A.; Jeihooni, A.K.; Karimi Dehkordi, M.; Alinejad, A.; Rasoulzadeh, H.; Mohseni, S.M.; et al. Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian Gulf. Food Chem. Toxicol. 2018, 113, 278–286. [Google Scholar] [CrossRef]
- Rudnai, T.; Sándor, J.; Kádár, M.; Borsányi, M.; Béres, J.; Métneki, J.; Maráczi, G.; Rudnai, P. Arsenic in drinking water and congenital heart anomalies in Hungary. Int. J. Hyg. Environ. Health 2014, 217, 813–818. [Google Scholar] [CrossRef]
- Menon, M.; Sarkar, B.; Hufton, J.; Reynolds, C.; Reina, S.V.; Young, S. Do arsenic levels in rice pose a health risk to the UK population? Ecotoxicol. Environ. Saf. 2020, 197, 110601. [Google Scholar] [CrossRef] [PubMed]
- Hackethal, C.; Kopp, J.F.; Sarvan, I.; Schwerdtle, T.; Lindtner, O. Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study). Food Chem. 2021, 346, 128913. [Google Scholar] [CrossRef] [PubMed]
- Rowland, H.A.L.; Omoregie, E.O.; Millot, R.; Jimenez, C.; Mertens, J.; Baciu, C.; Hug, S.J.; Berg, M. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 2011, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, D.; Jakovljević, B.; Rašić-Milutinović, Z.; Paunović, K.; Peković, G.; Knezević, T. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia. Environ. Res. 2011, 111, 315–318. [Google Scholar] [CrossRef]
- Neamtiu, I.; Bloom, M.S.; Gati, G.; Goessler, W.; Surdu, S.; Pop, C.; Lupsa, I.R. Pregnant women in Timis County, Romania are exposed primarily to low-level (<10 μg/L) arsenic through residential drinking water consumption. Int. J. Hyg. Environ. Health 2015, 218, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Senila, M.; Levei, E.; Cadar, O.; Senila, L.R.; Roman, M.; Puskas, F.; Sima, M. Assessment of Availability and Human Health Risk Posed by Arsenic Contaminated Well Waters from Timis-Bega Area, Romania. J. Anal. Methods Chem. 2017, 2017, 3037651. [Google Scholar] [CrossRef] [Green Version]
- McGrory, E.R.; Brown, C.; Bargary, N.; Williams, N.H.; Mannix, A.; Zhang, C.; Henry, T.; Daly, E.; Nicholas, S.; Petrunic, B.M.; et al. Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk. Sci. Total Environ. 2017, 579, 1863–1875. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Hug, S.J.; Ammann, A.; Zikoudi, A.; Hatziliontos, C. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment. Sci. Total Environ. 2007, 383, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Ujević Bošnjak, M.; Capak, K.; Jazbec, A.; Casiot, C.; Sipos, L.; Poljak, V.; Dadić, Ž. Hydrochemical characterization of arsenic contaminated alluvial aquifers in Eastern Croatia using multivariate statistical techniques and arsenic risk assessment. Sci. Total Environ. 2012, 420, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Ćavar, S.; Klapec, T.; Grubešić, R.J.; Valek, M. High exposure to arsenic from drinking water at several localities in eastern Croatia. Sci. Total Environ. 2005, 339, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Carraro, A.; Fabbri, P.; Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F. Arsenic anomalies in shallow Venetian Plain (Northeast Italy) groundwater. Environ. Earth Sci. 2013, 70, 3067–3084. [Google Scholar] [CrossRef]
- Zuzolo, D.; Cicchella, D.; Demetriades, A.; Birke, M.; Albanese, S.; Dinelli, E.; Lima, A.; Valera, P.; De Vivo, B. Arsenic: Geochemical distribution and age-related health risk in Italy. Environ. Res. 2020, 182, 109076. [Google Scholar] [CrossRef] [PubMed]
- Şener, Ş.; Karakuş, M. Investigating water quality and arsenic contamination in drinking water resources in the Tavşanlı District (Kütahya, Western Turkey). Environ. Earth Sci. 2017, 76, 750. [Google Scholar] [CrossRef]
- Baba, A.; Uzelli, T.; Sozbilir, H. Distribution of geothermal arsenic in relation to geothermal play types: A global review and case study from the Anatolian plate (Turkey). J. Hazard. Mater. 2021, 414, 125510. [Google Scholar] [CrossRef]
- Drahota, P.; Rohovec, J.; Filippi, M.; Mihaljevič, M.; Rychlovský, P.; Červený, V.; Pertold, Z. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Sci. Total Environ. 2009, 407, 3372–3384. [Google Scholar] [CrossRef]
- Monrad, M.; Ersbøll, A.K.; Sørensen, M.; Baastrup, R.; Hansen, B.; Gammelmark, A.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Low-level arsenic in drinking water and risk of incident myocardial infarction: A cohort study. Environ. Res. 2017, 154, 318–324. [Google Scholar] [CrossRef]
- Pedretti, D.; Luoma, S.; Ruskeeniemi, T.; Backman, B. A geologically-based approach to map arsenic risk in crystalline aquifers: Analysis of the Tampere region, Finland. Geosci. Front. 2019, 10, 1731–1741. [Google Scholar] [CrossRef]
- Medrano, M.J.; Boix, R.; Pastor-Barriuso, R.; Palau, M.; Damián, J.; Ramis, R.; del Barrio, J.L.; Navas-Acien, A. Arsenic in public water supplies and cardiovascular mortality in Spain. Environ. Res. 2010, 110, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Al Rmalli, S.W.; Haris, P.I.; Harrington, C.F.; Ayub, M. A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci. Total Environ. 2005, 337, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Cubadda, F.; D’Amato, M.; Aureli, F.; Raggi, A.; Mantovani, A. Dietary exposure of the Italian population to inorganic arsenic: The 2012–2014 Total Diet Study. Food Chem. Toxicol. 2016, 98, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Golfinopoulos, S.K.; Varnavas, S.P.; Alexakis, D.E. The status of arsenic pollution in the Greek and Cyprus environment: An overview. Water 2021, 13, 224. [Google Scholar] [CrossRef]
- Kalantzi, I.; Mylona, K.; Sofoulaki, K.; Tsapakis, M.; Pergantis, S.A. Arsenic speciation in fish from Greek coastal areas. J. Environ. Sci. 2017, 56, 300–312. [Google Scholar] [CrossRef]
- Chekri, R.; Le Calvez, E.; Zinck, J.; Leblanc, J.C.; Sirot, V.; Hulin, M.; Noël, L.; Guérin, T. Trace element contents in foods from the first French total diet study on infants and toddlers. J. Food Compos. Anal. 2019, 78, 108–120. [Google Scholar] [CrossRef]
- Marín, S.; Pardo, O.; Sánchez, A.; Sanchis, Y.; Vélez, D.; Devesa, V.; Font, G.; Yusà, V. Assessment of metal levels in foodstuffs from the Region of Valencia (Spain). Toxicol. Rep. 2018, 5, 654–670. [Google Scholar] [CrossRef]
- Özden, Ö.; Erkan, N. Evaluation of Risk Characterization for Mercury, Cadmium, Lead and Arsenic Associated with Seafood Consumption in Turkey. Expo. Health 2016, 8, 43–52. [Google Scholar] [CrossRef]
- Ruttens, A.; Blanpain, A.C.; De Temmerman, L.; Waegeneers, N. Arsenic speciation in food in Belgium. Part 1: Fish, molluscs and crustaceans. J. Geochem. Explor. 2012, 121, 55–61. [Google Scholar] [CrossRef]
- Ruttens, A.; Cheyns, K.; Blanpain, A.C.; De Temmerman, L.; Waegeneers, N. Arsenic speciation in food in Belgium. Part 2: Cereals and cereal products. Food Chem. Toxicol. 2018, 118, 32–41. [Google Scholar] [CrossRef]
- Kollander, B.; Sand, S.; Almerud, P.; Ankarberg, E.H.; Concha, G.; Barregård, L.; Darnerud, P.O. Inorganic arsenic in food products on the Swedish market and a risk-based intake assessment. Sci. Total Environ. 2019, 672, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Morales-Simfors, N.; Bundschuh, J.; Herath, I.; Inguaggiato, C.; Caselli, A.T.; Tapia, J.; Choquehuayta, F.E.A.; Armienta, M.A.; Ormachea, M.; Joseph, E.; et al. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Sci. Total Environ. 2020, 716, 135564. [Google Scholar] [CrossRef] [PubMed]
- Raju, N.J. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environ. Res. 2022, 203, 111782. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, C.F.; Hamula, C.L.A.; Huang, S.; Gabos, S.; Le, X.C. A review on arsenic concentrations in Canadian drinking water. Environ. Rev. 2010, 18, 291–307. [Google Scholar] [CrossRef]
- Saint-Jacques, N.; Brown, P.; Nauta, L.; Boxall, J.; Parker, L.; Dummer, T.J.B. Estimating the risk of bladder and kidney cancer from exposure to low-levels of arsenic in drinking water, Nova Scotia, Canada. Environ. Int. 2018, 110, 95–104. [Google Scholar] [CrossRef]
- Nigra, A.E.; Chen, Q.; Chillrud, S.N.; Wang, L.; Harvey, D.; Mailloux, B.; Factor-Litvak, P.; Navas-Acien, A. Inequalities in public water arsenic concentrations in counties and community water systems across the United States, 2006–2011. Environ. Health Perspect. 2020, 128, 127001. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef]
- Ortiz Letechipia, J.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Robles-Rovelo, C.O.; Contreras Rodríguez, A.R.; Dávila-Hernández, S. Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico. Water 2022, 14, 519. [Google Scholar] [CrossRef]
- Marcillo, C.E.; Prado, G.G.; Copeland, N.; Krometis, L.H. Drinking water quality and consumer perceptions at the point-of-use in san rafael las flores, guatemala. Water Pract. Technol. 2020, 15, 374–385. [Google Scholar] [CrossRef]
- Pérez Sabino, J.F.; Valladares, B.; Hernández, E.; Oliva, B.; Del Cid, M.; Jayes Reyes, P. Determinación de arsénico y mercurio en agua superficial del lago de Atitlán. Cienc. Tecnol. Y Salud 2015, 2, 127–134. [Google Scholar] [CrossRef]
- Bundschuh, J.; Armienta, M.A.; Morales-Simfors, N.; Alam, M.A.; López, D.L.; Delgado Quezada, V.; Dietrich, S.; Schneider, J.; Tapia, J.; Sracek, O.; et al. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010–2020. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1727–1865. [Google Scholar] [CrossRef]
- Bundschuh, J.; Litter, M.I.; Parvez, F.; Román-Ross, G.; Nicolli, H.B.; Jean, J.S.; Liu, C.W.; López, D.; Armienta, M.A.; Guilherme, L.R.G.; et al. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef] [PubMed]
- Delgado Quezada, V.; Altamirano Espinoza, M.; Bundschuh, J. Arsenic in geoenvironments of Nicaragua: Exposure, health effects, mitigation and future needs. Sci. Total Environ. 2020, 716, 136527. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.V.; Pineda, A.S.; Pérez, J.V.; Zachrisson, I.R. Heavy Metals in Water, Soils and Sediments of La Villa River Basin- Panama. Int. J. Plant Soil Sci. 2021, 33, 1–12. [Google Scholar] [CrossRef]
- Alonso, D.L.; Latorre, S.; Castillo, E.; Brandão, P.F.B. Environmental occurrence of arsenic in Colombia: A review. Environ. Pollut. 2014, 186, 272–281. [Google Scholar] [CrossRef]
- George, C.M.; Sima, L.; Arias, M.H.J.; Mihalic, J.; Cabrera, L.Z.; Danz, D.; Checkley, W.; Gilman, R.H. Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bull. World Health Organ. 2014, 92, 565–572. [Google Scholar] [CrossRef]
- Bolisetty, S.; Rahimi, A.; Mezzenga, R. Arsenic removal from Peruvian drinking water using milk protein nanofibril-carbon filters: A field study. Environ. Sci. Water Res. Technol. 2021, 7, 2223–2230. [Google Scholar] [CrossRef]
- Tapia, J.; Rodríguez, M.P.; Castillo, P.; Guerrero, N.; Rodríguez, C.; Valdés, A.; Townley, B.; Fuentes, G. Arsenic and Copper in Chile and the Development of Environmental Standards. In Chile Environmental History, Perspectives and Challenges; Alaniz, A.J., Ed.; Nova Science Publishers: New York, NY, USA, 2019; Volume 7, pp. 241–286. ISBN 9781536156669. [Google Scholar]
- Diaz, O.P.; Arcos, R.; Tapia, Y.; Pastene, R.; Velez, D.; Devesa, V.; Montoro, R.; Aguilera, V.; Becerra, M. Estimation of arsenic intake from drinking water and food (Raw and cooked) in a rural village of Northern Chile. urine as a biomarker of recent exposure. Int. J. Environ. Res. Public Health 2015, 12, 5614–5633. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, M.C.; Santos, A.C.; Fernandes, C.S.; Ng, J.C. Arsenic contamination assessment in Brazil—Past, present and future concerns: A historical and critical review. Sci. Total Environ. 2020, 730, 138217. [Google Scholar] [CrossRef]
- Richter, L.; Hernández, A.H.; Pessôa, G.S.; Arruda, M.A.Z.; Rezende-Filho, A.T.; de Almeida, R.B.; Menezes, H.A.; Valles, V.; Barbiero, L.; Fostier, A.H. Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands. Sci. Total Environ. 2019, 687, 917–928. [Google Scholar] [CrossRef]
- Mañay, N.; Pistón, M.; Cáceres, M.; Pizzorno, P.; Bühl, V. An overview of environmental arsenic issues and exposure risks in Uruguay. Sci. Total Environ. 2019, 686, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Litter, M.I.; Ingallinella, A.M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Farfán Torres, E.M.; Taylor, S.; Frangie, S.; Herkovits, J.; et al. Arsenic in Argentina: Occurrence, human health, legislation and determination. Sci. Total Environ. 2019, 676, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Tanamal, C.; Blais, J.M.; Yumvihoze, E.; Chan, H.M. Health risk assessment of inorganic arsenic exposure through fish consumption in Yellowknife, Northwest Territories, Canada. Hum. Ecol. Risk Assess. 2021, 27, 1072–1093. [Google Scholar] [CrossRef]
- Guaman, S.T.Z.; Ccahua, W.C.; Rafael, N.C.; Payano, I.U.; Suazo, J.M.A.; Gioda, A.; de la Cruz, A.R.H. Estimation of arsenic contents in rice purchased on Peruvian markets and estimation of dietary intake by Peruvians through rice consumption. Sci. Agropecu. 2021, 12, 185–191. [Google Scholar] [CrossRef]
- García-Rico, L.; Valenzuela-Rodríguez, M.P.; Meza-Montenegro, M.M.; Lopez-Duarte, A.L. Arsenic in rice and rice products in Northwestern Mexico and health risk assessment. Food Addit. Contam. Part B Surveill. 2020, 13, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Nevárez, M.; Moreno, M.V.; Sosa, M.; Bundschuh, J. Arsenic in freshwater fish in the Chihuahua County water reservoirs (Mexico). J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 1283–1287. [Google Scholar] [CrossRef]
- López-Barrera, E.A.; Barragán-Gonzalez, R.G. Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans. J. Toxicol. Environ. Health Part A Curr. Issues 2016, 79, 232–243. [Google Scholar] [CrossRef]
- Urango-Cárdenas, I.D.; Burgos-Núñez, S.; Ospina Herrera, L.Á.; Enamorado-Montes, G.; Marrugo-Negrete, J.L. Determination of arsenic chemical species in rice grains using high-performance liquid chromatography coupled to hydride generator with atomic fluorescence detector (HPLC-HG-AFS). MethodsX 2021, 8, 101281. [Google Scholar] [CrossRef]
- Atiaga-Franco, O.L.; Otero, X.L.; Gallego-Picó, A.; Escobar-Castañeda, L.A.; Bravo-Yagüe, J.C.; Carrera-Villacrés, D. Analysis of total arsenic content in purchased rice from Ecuador. Czech J. Food Sci. 2019, 37, 425–431. [Google Scholar] [CrossRef]
- Fão, N.; Nascimento, S.; de La Cruz, A.H.; Calderon, D.; Rocha, R.; Saint’Pierre, T.; Gioda, A.; Thiesen, F.V.; Brucker, N.; Emanuelli, T.; et al. Estimation of total arsenic contamination and exposure in Brazilian rice and infant cereals. Drug Chem. Toxicol. 2021, 44, 400–408. [Google Scholar] [CrossRef]
- Oteiza, J.M.; Barril, P.A.; Quintero, C.E.; Savio, M.; Befani, R.; Cirelli, A.F.; Echegaray, N.S.; Murad, C.; Buedo, A. Arsenic in Argentinean polished rice: Situation overview and regulatory framework. Food Control 2020, 109, 106909. [Google Scholar] [CrossRef]
- Avigliano, E.; Maichak de Carvalho, B.; Invernizzi, R.; Olmedo, M.; Jasan, R.; Volpedo, A.V. Arsenic, selenium, and metals in a commercial and vulnerable fish from southwestern Atlantic estuaries: Distribution in water and tissues and public health risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 7994–8006. [Google Scholar] [CrossRef] [PubMed]
- Ashmore, E.; Molyneux, S.; Watson, S.; Miles, G.; Pearson, A. Inorganic arsenic in rice and rice products in New Zealand and Australia. Food Addit. Contam. Part B Surveill. 2019, 12, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Arsenic speciation in australian-grown and imported rice on sale in Australia: Implications for human health risk. J. Agric. Food Chem. 2014, 62, 6016–6024. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shehzad, M.T.; Nayak, A.K.; Sharma, S.; Yeasmin, M.; Samanta, S.; Correll, R.; Naidu, R. Health risks from trace elements in muscles of some commonly available fish in Australia and India. Environ. Sci. Pollut. Res. 2020, 27, 21000–21012. [Google Scholar] [CrossRef]
- Maher, W.; Waring, J.; Krikowa, F.; Duncan, E.; Foster, S. Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs. Environ. Chem. 2018, 15, 46–57. [Google Scholar] [CrossRef]
- Irunde, R.; Ijumulana, J.; Ligate, F.; Maity, J.P.; Ahmad, A.; Mtamba, J.; Mtalo, F.; Bhattacharya, P. Arsenic in Africa: Potential sources, spatial variability, and the state of the art for arsenic removal using locally available materials. Groundw. Sustain. Dev. 2022, 18, 100746. [Google Scholar] [CrossRef]
- Koumolou, L.; Edorh, P.; Montcho, S.; Aklikokou, K.; Loko, F.; Boko, M.; Creppy, E.E. Health-risk market garden production linked to heavy metals in irrigation water in Benin. Comptes Rendus Biol. 2013, 336, 278–283. [Google Scholar] [CrossRef]
- Guedenon, P.; Edorh, A.P.; Kaki, C.; Yehouenou, A.P.E.; Gnandi, K.; Montcho, S.; Hounkpatin, A.; Koumolou, L.; Boko, M. Arsenic, cadmium, copper and lead accumulation in water, sediments and fish species of Oueme River in Bonou. Br. J. Pharmacol. Toxicol. 2012, 3, 13–20. [Google Scholar]
- Mladenov, N.; Wolski, P.; Hettiarachchi, G.M.; Murray-Hudson, M.; Enriquez, H.; Damaraju, S.; Galkaduwa, M.B.; McKnight, D.M.; Masamba, W. Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. J. Hydrol. 2014, 518, 326–341. [Google Scholar] [CrossRef]
- Nzihou, J.F.; Bouda, M.; Hamidou, S.; Diarra, J. Arsenic in Drinking Water Toxicological Risk Assessment in the North Region of Burkina Faso. J. Water Resour. Prot. 2013, 5, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Bretzler, A.; Lalanne, F.; Nikiema, J.; Podgorski, J.; Pfenninger, N.; Berg, M.; Schirmer, M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 2017, 584–585, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, O.; Amyot, M. Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci. Total Environ. 2013, 444, 243–254. [Google Scholar] [CrossRef]
- Muimba-Kankolongo, A.; Banza Lubaba Nkulu, C.; Mwitwa, J.; Kampemba, F.M.; Mulele Nabuyanda, M.; Haufroid, V.; Smolders, E.; Nemery, B. Contamination of water and food crops by trace elements in the African Copperbelt: A collaborative cross-border study in Zambia and the Democratic Republic of Congo. Environ. Adv. 2021, 6, 100103. [Google Scholar] [CrossRef]
- Ouattara, A.A.; Yao, K.M.; Soro, M.P.; Diaco, T.; Trokourey, A. Arsenic and Trace Metals in Three West African rivers: Concentrations, Partitioning, and Distribution in Particle-Size Fractions. Arch. Environ. Contam. Toxicol. 2018, 75, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Ahoulé, D.G.; Lalanne, F.; Mendret, J.; Brosillon, S.; Maïga, A.H. Arsenic in African Waters: A Review. Water. Air. Soil Pollut. 2015, 226, 302. [Google Scholar] [CrossRef]
- Bianchini, G.; Brombin, V.; Marchina, C.; Natali, C.; Godebo, T.R.; Rasini, A.; Salani, G.M. Origin of fluoride and arsenic in the main ethiopian rift waters. Minerals 2020, 10, 453. [Google Scholar] [CrossRef]
- Merola, R.B.; Kravchenko, J.; Rango, T.; Vengosh, A. Arsenic exposure of rural populations from the Rift Valley of Ethiopia as monitored by keratin in toenails. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.; Diarra, S.; Apambire, W.B.; Thomas, J.M.; Ayamsegna, J. Drinking Water from Hand-Pumps in Mali, Niger, and Ghana, West Africa: Review of Health Effects. J. Water Resour. Prot. 2013, 5, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Kiplangat, A.S.; Mwangi, H.; Swaleh, S.; Njue, W.M. Arsenic Contamination in Water from Selected Boreholes in Nairobi City County, Kenya. Eur. J. Adv. Chem. Res. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Githaiga, K.B.; Njuguna, S.M.; Gituru, R.W.; Yan, X. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya. J. Environ. Manag. 2021, 297, 113410. [Google Scholar] [CrossRef] [PubMed]
- Bokar, H.; Traoré, A.Z.; Mariko, A.; Diallo, T.; Traoré, A.; Sy, A.; Soumaré, O.; Dolo, A.; Bamba, F.; Sacko, M.; et al. Geogenic influence and impact of mining activities on water soil and plants in surrounding areas of Morila Mine, Mali. J. Geochem. Explor. 2020, 209, 106429. [Google Scholar] [CrossRef]
- Lotfi, S.; Chakit, M.; Belghyti, D. Groundwater quality and pollution index for heavy metals in Sais plain, Morocco. J. Health Pollut. 2020, 10, 200603. [Google Scholar] [CrossRef]
- Bouzekri, S.; El Hachimi, M.L.; Kara, K.; El Mahi, M.; Lotfi, E.M. Metal pollution assessment of surface water from the abandoned Pb mine Zaida, high Moulouya-Morocco. Geosyst. Eng. 2020, 23, 226–233. [Google Scholar] [CrossRef]
- Orosun, M.M. Assessment of arsenic and its associated health risks due to mining activities in parts of North-central Nigeria: Probabilistic approach using Monte Carlo. J. Hazard. Mater. 2021, 412, 125262. [Google Scholar] [CrossRef] [PubMed]
- Reksten, A.M.; Victor, A.M.J.C.; Neves, E.B.N.; Christiansen, S.M.; Ahern, M.; Uzomah, A.; Lundebye, A.K.; Kolding, J.; Kjellevold, M. Nutrient and chemical contaminant levels in five marine fish species from Angola-the EAF-nansen programme. Foods 2020, 9, 629. [Google Scholar] [CrossRef] [PubMed]
- Jitaru, P.; Ingenbleek, L.; Marchond, N.; Laurent, C.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.J.; Dembélé, Y.K.; et al. Occurrence of 30 trace elements in foods from a multi-centre Sub-Saharan Africa Total Diet Study: Focus on Al, As, Cd, Hg, and Pb. Environ. Int. 2019, 133, 105197. [Google Scholar] [CrossRef]
- Bati, K.; Mogobe, O.; Masamba, W.R.L. Concentrations of Some Trace Elements in Vegetables Sold at Maun Market, Botswana. J. Food Res. 2016, 6, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Bakary, T.; Flibert, G.; Bernadette, S.P.; Oumarou, Z.; François, T.; Cheikna, Z.; Maxime, D.K.; Yves, T.; Aly, S. Evaluation of heavy metals and pesticides contents in market-gardening products sold in some principal markets of Ouagadougou (Burkina Faso). J. Microbiol. Biotechnol. Food Sci. 2019, 8, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Squadrone, S.; Burioli, E.; Monaco, G.; Koya, M.K.; Prearo, M.; Gennero, S.; Dominici, A.; Abete, M.C. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo). Sci. Total Environ. 2016, 568, 679–684. [Google Scholar] [CrossRef]
- Ouattara, A.A.; Yao, K.M.; Kinimo, K.C.; Trokourey, A. Assessment and bioaccumulation of arsenic and trace metals in two commercial fish species collected from three rivers of Côte d’Ivoire and health risks. Microchem. J. 2020, 154, 104604. [Google Scholar] [CrossRef]
- Kinimo, K.C.; Yao, K.M.; Marcotte, S.; Kouassi, N.L.B.; Trokourey, A. Trace metal(loid)s contamination in paddy rice (Oryza sativa L.) from wetlands near two gold mines in Côte d’Ivoire and health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 22779–22788. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Abd-Elghany, S.M.; Mohammed, M.A. Heavy Metal Residues in Some Fishes from Manzala Lake, Egypt, and Their Health-Risk Assessment. J. Food Sci. 2019, 84, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Dsikowitzky, L.; Mengesha, M.; Dadebo, E.; De Carvalho, C.E.V.; Sindern, S. Assessment of heavy metals in water samples and tissues of edible fish species from Awassa and Koka Rift Valley Lakes, Ethiopia. Environ. Monit. Assess. 2013, 185, 3117–3131. [Google Scholar] [CrossRef]
- Gbogbo, F.; Otoo, S.D.; Asomaning, O.; Huago, R.Q. Contamination status of arsenic in fish and shellfish from three river basins in Ghana. Environ. Monit. Assess. 2017, 189, 400. [Google Scholar] [CrossRef]
- Makokha, A.O. Arsenic Levels in the Environment and Foods Around Kisumu, Kenya. Open Environ. Eng. J. 2012, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Ngure, V.; Lelo, F.; Obwanga, B. Heavy Metal Pollution from Migori Gold Mining Area, Kenya: Health Implications for Consumers of Fish and Water. J. Nat. Sci. Res. 2017, 7, 46–53. [Google Scholar]
- Bakkali, K.; Martos, N.R.; Souhail, B.; Ballesteros, E. Determination of Heavy Metal Content in Vegetables and Oils From Spain and Morocco by Inductively Coupled Plasma Mass Spectrometry. Anal. Lett. 2012, 45, 907–919. [Google Scholar] [CrossRef]
- Usese, A.; Chukwu, O.L.; Rahman, M.M.; Naidu, R.; Islam, S.; Oyewo, E.O. Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria: Health risk assessment. Environ. Technol. Innov. 2017, 8, 164–171. [Google Scholar] [CrossRef]
- Firth, D.C.; Salie, K.; O’Neill, B.; Hoffman, L.C. Monitoring of trace metal accumulation in two South African farmed mussel species, Mytilus galloprovincialis and Choromytilus meridionalis. Mar. Pollut. Bull. 2019, 141, 529–534. [Google Scholar] [CrossRef]
- Nel, L.; Strydom, N.A.; Bouwman, H. Preliminary assessment of contaminants in the sediment and organisms of the Swartkops Estuary, South Africa. Mar. Pollut. Bull. 2015, 101, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Mataba, G.R.; Verhaert, V.; Blust, R.; Bervoets, L. Distribution of trace elements in the aquatic ecosystem of the Thigithe river and the fish Labeo victorianus in Tanzania and possible risks for human consumption. Sci. Total Environ. 2016, 547, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Meck, M.L.; Mudimbu, D.; Davies, T.C. Accumulation of potentially harmful elements in edible parts of vegetables grown on two different geological substrates in Zimbabwe. J. Geochem. Explor. 2020, 208, 106392. [Google Scholar] [CrossRef]
- Kanda, A.; Ncube, F.; Mabote, R.R.; Mudzamiri, T.; Kunaka, K.; Dhliwayo, M. Trace elements in water, sediment and commonly consumed fish from a fish farm (NE Zimbabwe) and risk assessments. SN Appl. Sci. 2020, 2, 1502. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, A. Assessing potential mechanisms of arsenic-induced skin lesions and cancers: Human and in vitro evidence. Environ. Pollut. 2020, 260, 113919. [Google Scholar] [CrossRef]
- Palma-Lara, I.; Martínez-Castillo, M.; Quintana-Pérez, J.C.; Arellano-Mendoza, M.G.; Tamay-Cach, F.; Valenzuela-Limón, O.L.; García-Montalvo, E.A.; Hernández-Zavala, A. Arsenic exposure: A public health problem leading to several cancers. Regul. Toxicol. Pharmacol. 2020, 110, 104539. [Google Scholar] [CrossRef]
- Okechukwu, C.E. Exposure to a high level of arsenic in drinking water and the risk of bladder cancer in Taiwan. Cancer Res. Stat. Treat. 2021, 4, 149–151. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Tu, J.B.; Ran, R.T.; Zhang, W.X.; Tan, Q.; Tang, P.; Kuang, T.; Cheng, S.Q.; Chen, C.Z.; Jiang, X.J.; et al. Using the Metabolome to Understand the Mechanisms Linking Chronic Arsenic Exposure to Microglia Activation, and Learning and Memory Impairment. Neurotox. Res. 2021, 39, 720–739. [Google Scholar] [CrossRef]
- Weerasundara, L.; Ok, Y.S.; Bundschuh, J. Selective removal of arsenic in water: A critical review. Environ. Pollut. 2021, 268, 115668. [Google Scholar] [CrossRef]
- Das, S.; Mukherjee, S. Implementation of Biotechnological Techniques in Treatment of Groundwater Contaminated with Arsenic. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 993–1000. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Current trends of arsenic adsorption in continuous mode: Literature review and future perspectives. Sustainability 2021, 13, 1186. [Google Scholar] [CrossRef]
- Simeonidis, K.; Martinez-Boubeta, C.; Zamora-Pérez, P.; Rivera-Gil, P.; Kaprara, E.; Kokkinos, E.; Mitrakas, M. Implementing nanoparticles for competitive drinking water purification. Environ. Chem. Lett. 2019, 17, 705–719. [Google Scholar] [CrossRef]
- Uppal, J.S.; Zheng, Q.; Le, X.C. Arsenic in drinking water—Recent examples and updates from Southeast Asia. Curr. Opin. Environ. Sci. Health 2019, 7, 126–135. [Google Scholar] [CrossRef]
- Tresintsi, S.; Simeonidis, K.; Estradé, S.; Martinez-Boubeta, C.; Vourlias, G.; Pinakidou, F.; Katsikini, M.; Paloura, E.C.; Stavropoulos, G.; Mitrakas, M. Tetravalent manganese feroxyhyte: A novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water. Environ. Sci. Technol. 2013, 47, 9699–9705. [Google Scholar] [CrossRef]
- Kokkinos, E.; Soukakos, K.; Kostoglou, M.; Mitrakas, M. Cadmium, mercury, and nickel adsorption by tetravalent manganese feroxyhyte: Selectivity, kinetic modeling, and thermodynamic study. Environ. Sci. Pollut. Res. 2018, 25, 12263–12273. [Google Scholar] [CrossRef]
- Mueller, B.; Dangol, B.; Ngai, T.K.K.; Hug, S.J. Kanchan arsenic filters in the lowlands of Nepal: Mode of operation, arsenic removal, and future improvements. Environ. Geochem. Health 2021, 43, 375–389. [Google Scholar] [CrossRef]
- Bretzler, A.; Nikiema, J.; Lalanne, F.; Hoffmann, L.; Biswakarma, J.; Siebenaller, L.; Demange, D.; Schirmer, M.; Hug, S.J. Arsenic removal with zero-valent iron filters in Burkina Faso: Field and laboratory insights. Sci. Total Environ. 2020, 737, 139466. [Google Scholar] [CrossRef]
- Yadav, M.K.; Saidulu, D.; Gupta, A.K.; Ghosal, P.S.; Mukherjee, A. Status and management of arsenic pollution in groundwater: A comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. J. Environ. Chem. Eng. 2021, 9, 105203. [Google Scholar] [CrossRef]
- Litter, M.I.; Ingallinella, A.M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Torres, E.M.F.; Taylor, S.; Frangie, S.; Herkovits, J.; et al. Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Sci. Total Environ. 2019, 690, 778–789. [Google Scholar] [CrossRef]
- Zhang, W.; Mossad, M.; Yazdi, J.S.; Zou, L. A statistical experimental investigation on arsenic removal using capacitive deionization. Desalin. Water Treat. 2016, 57, 3254–3260. [Google Scholar] [CrossRef]
Country | Drinking Water (µg/L) | Groundwater (µg/L) | Highly Contaminated Region | Ref. |
---|---|---|---|---|
Hungary | 0–220 | <0.5–208 | Pannonian Basin | [96] |
Serbia | 1–349 | - | Vojvodina | [97] |
Romania | <0.5–175 | 0.1–168 | Timis | [98,99] |
Ireland | <0.2–234 | - | Kerry | [100] |
Greece | 0–45 | 3–2000 | Macedonia | [19,101] |
Croatia | 0.14–612 | <1–491 | Eastern Croatia | [102,103] |
Italy | 0.02–27.2 | <0.4–431 | Cimino-Vico | [104,105] |
Turkey | 30–105 | 10–6300 | Kutahya, Cankiri | [106,107] |
Czech Republic | - | 1141 | Mokrsko-West | [108] |
Denmark | 0.03–25.3 | - | Aarhus | [109] |
Finland | - | <0.05–2230 | Tampere | [110] |
Spain | <1–118 | - | Babajoz, Caceres | [111] |
Country | Product | As Concentration (mg/Kg) | Ref. |
---|---|---|---|
United Kingdom | Rice (imported) Vegetables (imported) Fish (imported) | 0.018–0.372 <0.005–0.54 0.097–1.318 | [94,112] |
Italy | Rice Vegetables Fish and seafood | 0.011–0.0174 0.0001–0.0218 0.0005–0.0378 | [113] |
Germany | Vegetables Fish and seafood Grains | 0–2.500 0.01–6.150 0–0.13 | [95] |
Greece | Fish Coastal Fish | 1.7–14.81 11.8–62.6 | [114,115] |
France | Fish Rice Vegetables | 1.25–5.39 0.006–0.054 0.001–0.009 | [116] |
Spain | Fish Rice Vegetables and fruits | 0.329–18.313 0.116–0.233 0.001–0.112 | [117] |
Turkey | Fish and seafood | 0.002–0.960 | [118] |
Belgium | Fish and seafood Rice | 0.03–25.1 0.017–0.363 | [119,120] |
Sweden | Fish Rice | 0.859–2.01 0.03–0.177 | [121] |
Country | Drinking Water (µg/L) | Groundwater (µg/L) | Surface Water (µg/L) | Highly Contaminated Region | Ref. |
---|---|---|---|---|---|
Canada | 0–210 | 0–5340 | - | Nova Scotia | [124,125] |
USA | 0–35 | - | - | - | [126] |
Mexico | 0–39 | 0.1–251 | - | Durango, Zacatecas | [127,128] |
Guatemala | 0.88–17.9 | 0–49 | 6–107 | Cerro Alto, Atitlan | [129,130] |
El Salvador | 13–73 | 5–78 | 0.23–105 | San Salvador | [122,131] |
Honduras | - | <50–7100 | - | Platanares | [132] |
Nicaragua | 0–1320 | 0.1–1320 | 0.99–2650 | Pacific region | [133] |
Costa Rica | 1–186 | 10–29,100 | <5–18 | Guanacaste | [131] |
Panama | - | - | 8–16.4 | - | [134] |
Venezuela | <5 | <2–9 | <2–230 | - | [131] |
Colombia | 0–52 | 0–255 | 0–3.54 | Cundinamarca | [135] |
Ecuador | <10 | 1–5712 | 0–60 | Tambo River | [122,131] |
Peru | 0.1–10.1 | 0.1–1100 | 1.4–42.5 | Juliaca, Ticapampa | [136,137] |
Bolivia | <6–233 | 3–434 | 7–4600 | Poopó Lake basin | [122,131] |
Chile | <10–357 | 0.1–21,000 | 0.5–26,397 | North | [138,139] |
Brazil | <10 | 0–2980 | 0–3300 | Minas Gerais | [131,140] |
Paraguay | - | 3–120 | <2 | - | [131,141] |
Uruguay | 0–10.5 | 0–113 | - | Canelones | [142] |
Argentina | 0–350 | 11–14,969 | 0–780 | Chaco-Pampean plain | [143] |
Country | Product | As Concentration (mg/Kg) | Ref. |
---|---|---|---|
Canada | Fish (lake) | 0.4–6 | [144] |
USA | Rice | 0.03–0.66 | [145] |
Mexico | Rice Fish | 0.06–0.3 0–2 | [146,147] |
Colombia | Fish Rice | 0.01–0.17 0.038–0.272 | [148,149] |
Ecuador | Rice | 0.157–0.294 | [150] |
Peru | Rice | 0.16–0.61 | [145] |
Chile | Fish Rice Vegetables | 1.1–16 0.06–1.02 0.01–0.6 | [132,139] |
Brazil | Fish Rice | 0.0004–180 0.01–1.39 | [140,151] |
Uruguay | Rice | 0.14–0.28 | [146] |
Argentina | Fish Rice | 0.03–13.25 0.04–1.31 | [152,153] |
Source | Concentration | Highly Contaminated Region | Ref. | |
---|---|---|---|---|
Water | Drinking (µg/L) | <0.001–73 | Victoria | [2] |
Ground (µg/L) | 0.001–220,000 | Western | [2] | |
Surface (µg/L) | <0.001–5000 | Victoria | [2] | |
Food | Rice | <0.01–0.438 | - | [154,155] |
Fish | 0.29–29.5 | - | [156] | |
Molluscs | 1–97 | - | [157] |
Country | Drinking Water (µg/L) | Groundwater (µg/L) | Surface Water (µg/L) | Highly Contaminated Region | Ref. |
---|---|---|---|---|---|
Benin | - | - | 4.4–592.8 | Cotonou | [159,160] |
Botswana | - | 3.2–185 | <1–188 | Okavango Delta | [161] |
Burkina Faso | 1–87.8 | <0.2–421 | 0.3–0.74 | Yatenga | [162,163,164] |
Congo | 0.5–23.7 | - | - | Likasi | [165] |
Cote d’Ivoire | - | - | 1.39–13.9 | Comoé and Bia Rivers | [166] |
Egypt | - | - | 1.2–18.2 | - | [167] |
Ethiopia | 0.6–73.4 | <4–1019 | 0.2–566 | Rift valley | [168,169] |
Ghana | <0.01–122 | <0.003–28,950 | <0.003–10,400 | Ankobra river | [158,170] |
Kenya | - | 0–22.9 | 0–46 | - | [171,172] |
Mali | <0.01–5 | 0.8–139 | 1.2–5 | Sikasso | [170,173] |
Morocco | 0–1.9 | - | 20–86 | - | [174,175] |
Niger | <0.02–295 | - | - | - | [170] |
Nigeria | 0–2390 | 0.4–1100 | - | Ajaokuta | [158,176] |
South Africa | - | 0.8–1553 | 0.6–119 | Limpopo | [158] |
Tanzania | 5–70 | 0.5–123 | <1–82 | - | [158] |
Togo | - | - | 3000–6460 | Lomé coastal | [167] |
Zambia | 0.098–0.244 | - | - | - | [165] |
Zimbabwe | - | - | 1–96 | - | [158] |
Country | Product | As Concentration (mg/Kg) | Ref. |
---|---|---|---|
Angola | Fish | 0.56–2.26 | [177] |
Benin | Cereals Vegetables Fish | 0.002–0.019 171.6–358.7 0.15–30.05 | [159,160,178] |
Botswana | Vegetables | 0.08–45.5 | [179] |
Burkina Faso | Vegetables Fish | 0.012–1.885 0.039–0.42 | [164,180] |
Cameroon | Cereals Fish | 0.002–0.045 0.016–1.72 | [178] |
Congo | Vegetables Fish | 0.8–2.6 0.01–1.2 | [165,181] |
Cote d’Ivoire | Fish Rice | 0.004–0.427 0.1–5.8 | [182,183] |
Egypt | Fish Rice | 0.511–0.621 0.01–0.58 | [1,184] |
Ethiopia | Vegetables Fish | 1.93–5.73 0.03–0.57 | [158,185] |
Ghana | Fish and shellfish | 0.2–2.8 | [186] |
Kenya | Vegetables Fish | 0.024–0.075 0.031–11.7 | [187,188] |
Mali | Cereals Leaves and Fruits | 0.001–0.037 0.1–45.9 | [173,178] |
Morocco | Vegetables | 0.003–0.056 | [189] |
Nigeria | Cereals Fish and shellfish | 0.001–0.029 0–5.2 | [178,190] |
South Africa | Mussels Fish and shellfish | 0.82–3.4 0.5–4.5 | [191,192] |
Tanzania | Fish | 0–5 | [193] |
Zimbabwe | Vegetables Fish | 0.19–5.8 0.05–0.42 | [194,195] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosravi-Darani, K.; Rehman, Y.; Katsoyiannis, I.A.; Kokkinos, E.; Zouboulis, A.I. Arsenic Exposure via Contaminated Water and Food Sources. Water 2022, 14, 1884. https://doi.org/10.3390/w14121884
Khosravi-Darani K, Rehman Y, Katsoyiannis IA, Kokkinos E, Zouboulis AI. Arsenic Exposure via Contaminated Water and Food Sources. Water. 2022; 14(12):1884. https://doi.org/10.3390/w14121884
Chicago/Turabian StyleKhosravi-Darani, Kianoush, Yasir Rehman, Ioannis A. Katsoyiannis, Evgenios Kokkinos, and Anastasios I. Zouboulis. 2022. "Arsenic Exposure via Contaminated Water and Food Sources" Water 14, no. 12: 1884. https://doi.org/10.3390/w14121884
APA StyleKhosravi-Darani, K., Rehman, Y., Katsoyiannis, I. A., Kokkinos, E., & Zouboulis, A. I. (2022). Arsenic Exposure via Contaminated Water and Food Sources. Water, 14(12), 1884. https://doi.org/10.3390/w14121884