Long-Term Evolution of Rainfall and Its Consequences on Water Resources: Application to the Watershed of the Kara River (Northern Togo)
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Data Used
3.2. Spatiotemporal Variability of Rainfall
3.2.1. Standardized Precipitation Index (SPI)
3.2.2. Hanning’s Low-Pass Filter
3.2.3. Geographical Precipitation Analysis
3.2.4. Break in Precipitation
3.2.5. Long-Term Trends of Rainfall
- The temporal data series is subdivided into two parts (the first and the second half of the record) and the rainfall levels are ranged in increasing or decreasing order.
- The arranged rainfall data are then placed in a dispersion diagram (rainfall levels of one half of the series versus rainfall levels of the other half of the series) with equal vertical and horizontal scales. The curves thus obtained are then compared with the line curve: y = x.
3.2.6. Water Balance
3.2.7. Recession Coefficient and Water Volume Mobilized by the Aquifers
4. Results and Discussion
4.1. Spatiotemporal Variation of Precipitation
4.2. Detection of Climatic Breaks
- The more normal the series, the less probable the break; the non-observation of a break means normal behavior of the series and good autocorrelation.
4.3. Long-Term Tendencies of Precipitation
4.4. Consequences of the Climatic Variability on the Watershed’s Water Resources
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, A.; Mansour, M.; Ward, R.; Kieboom, N.; Allen, S.; Seccombe, D.; Charlton, M.; Prudhomme, C. The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. J. Hydrol. 2021, 598, 126336. [Google Scholar] [CrossRef]
- Raposo, J.R.; Dafonte, J.; Molinero, J. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain. Hydrogeol. J. 2013, 21, 459–479. [Google Scholar] [CrossRef]
- Urama, K.C.; Ozor, N. Impacts of climate change on water resources in Africa: The Role of Adaptation. Climate change and water ressources in Africa. Afr. Technol. Policy Stud. Netw. 2010, 29, 1–29. [Google Scholar]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Nicholson, S.E. Recent rainfull fluctuation in Africa and their relationship to past conditions over the continent. Holocene 1994, 4, 121–131. [Google Scholar] [CrossRef]
- Paturel, J.E.; Servat, E.; Kouame, B.; Boyer, J.F.; Lubes, H.; Masson, J.M. Manifestations de la sécheresse en Afrique de l’Ouest non sahélienne. Cas de la Côte d’Ivoire, du Togo et du Bénin. Sécheresse 1995, 6, 95–102. [Google Scholar]
- Servat, E.; Paturel, J.-E.; Lubès-Niel, H. La sécheresse gagne l’Afrique tropicale. La Rech. 1996, 290, 24–25. [Google Scholar]
- Servat, E.; Paturel, J.E.; Kouame, B.; Travaglio, M.; Ouédraogo, M.; Boyer, O.; Lubes-Niel, H.; Fritsch, J.-M.; Masson, J.-M.; Marieu, B. Identification, Caractérisation et Conséquences D’une Variabilité Hydrologique en Afrique de l’Ouest et Centrale. In Water Ressources Variability in Africa during the XXth Century; International Association of Hydrological Sciences: Abidjan, Côte d’Ivoire, 1998; pp. 323–337. [Google Scholar]
- Ouédraogo, M.; Servat, E.; Lubes-Niel, H.; Masson, J.M. Caractérisation d’une modification éventuelle de la relation pluie-débit autour des années 1970 en Afrique de l’Ouest et centrale non sahélienne. In Water Ressources Variability in Africa during the XXth Century; International Association of Hydrological Sciences: Abidjan, Côte d’Ivoire, 1998; Volume 252, pp. 315–332. [Google Scholar]
- Paturel, J.E.; Servat, E.; Delattre, M.O.; Lubes-Niel, H. Analyse de séries pluviométriques de longue durée en Afrique de l’Ouest et Centrale non sahélienne dans un contexte de variabilité climatique. Hydrol. Sci. J. 1998, 43, 937–946. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Bruneau, P.; Rassam, J.-C. Application of à Bayesian model to detect shifts in the mean of a series. Hydrol. Sci. J. 1983, 28, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Hubert, P.; Servat, E.; Bendjoudi, H.; Lubes-Niel, H. La Procédure de Segmentation, Dix ans Après. In Water Ressources Variabilty in Africa during the XXth Century; IAHS: Abidjan, Côte d’Ivoire, 1998; pp. 267–273. [Google Scholar]
- Bouba, L.; Sauvagnargues, S.; Gonne, B.; Ayral, P.-A.; Ombolo, A. Trends in rainfall and flood hazard in the Far North region of Cameroon. Geo-Eco-Trop 2017, 41, 339–358. [Google Scholar]
- Zarenistanak, M.; Dhorde, A.G.; Kripalani, R.H. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. J. Earth Syst. Sci. 2014, 123, 281–295. [Google Scholar] [CrossRef]
- Khosravi, H.; Sajedi-Hosseni, F.; Nasrollahi, M.; Gharechaei, H.R. Trend analysis and detection of precipitation fluctuations in arid and semi-arid regions. Desert 2017, 22, 77–84. [Google Scholar]
- Lawin, E.A.; Hounguè, N.R.; Biaou, C.A.; Badou, D.F. Statistical Analysis of Recent and Future Rainfall and Temperature Variability in the Mono River Watershed (Benin, Togo). Climate 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Nouaceur, Z.; Murarescu, O. Rainfall variability and trend analysis in west africa (Senegal, Mauritanie, Burkina). Water 2020, 12, 1754. [Google Scholar] [CrossRef]
- Getahun, Y.S.; Li, M.-H.; Pun, I.-F. Trend and change-point detection analyses of rainfall and temperature over the Awash River basin of Ethiopia. Heliyon 2021, 7, e08024. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Kumar, S. Non-Parametric and Parametric Analysis of Runoff in Satluj River Basin, Himachal Pradesh, India. Int. Lett. Chem. Phys. Astron. 2015, 54, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Some’e, B.; Ezani, A.; Tabari, H. Spatiotemporal trends of aridity index in arid and semi-arid regions of Iran. Theor. Appl. Climatol. 2013, 111, 149–160. [Google Scholar] [CrossRef]
- Khatiwada, K.R.; Panthi, J.; Shrestha, M.L.; Nepal, S. Hydro-Climatic Variability in the Karnali River Basin of Nepal Himalaya. Climate 2016, 4, 17. [Google Scholar] [CrossRef]
- Koudahe, K.; Kayode, A.J.; Samson, A.O.; Adebola, A.A.; Djaman, K. Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmos. Clim. Sci. 2017, 7, 401–423. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Sayama, T.; Try, S.; Takara, K.; Tanaka, K. Trend Analysis of Hydroclimatic Variables in the Kamo River Basin, Japan. Water 2019, 11, 1782. [Google Scholar] [CrossRef] [Green Version]
- Daba, M.; Ayele, G.T.; You, S. Long-Term Homogeneity and Trends of Hydroclimatic Variables in Upper Awash River Basin, Ethiopia. Adv. Meteorol. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Braimah, M.; Asante, V.A.; Ahiataku, M.; Ansah, S.O.; Otu-Larbi, F.; Yahaya, B.; Ayabila, J.B. Seasonal Rainfall Variability over Southern Ghana. Preprints 2021, 202108. [Google Scholar] [CrossRef]
- Harka, A.E.; Jilo, N.B.; Behulu, F. Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. J. Hydrol. Reg. Stud. 2021, 37, 100915. [Google Scholar] [CrossRef]
- Navatha, N.; Sreenivas, G.; Umareddy, R. Rainfall and Temperature Trends in Jagtial District of Telangana State. Int. J. Environ. Clim. Change 2021, 11, 47–59. [Google Scholar] [CrossRef]
- Sarkar, A.; Saha, S.; Sarkar, D.; Mondal, P. Variability and trend analysis of the rainfall of the past 119 (1901-2019) years using statistical techniques: A case study of Uttar Dinajpur, India. J. Clim. Change 2021, 7, 49–61. [Google Scholar] [CrossRef]
- Tirkey, N.; Parhi, P.K.; Lohani, A.K.; Chandniha, S.K. Analysis of precipitation variability over Satluj Basin, Himachal Pradesh, India: 1901-2013. J. Water Clim. Change 2021, 12, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975; ISBN 9780852641996. [Google Scholar]
- Sen, K.P. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2015, 127, 939–947. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- Thapa, S.; Li, B.; Fu, D.-L.; Shi, X.; Tang, B.; Qi, H.; Wang, K. Trend analysis of climatic variables and their relation to snow cover and water availability in the Central Himalayas: A case study of Langtang Basin, Nepal. Theor. Appl. Climatol. 2020, 140, 3–4. [Google Scholar] [CrossRef]
- Girma, A.; Qin, T.; Wang, H.; Yan, D.; Gedefaw, M.; Abiyu, A.; Batsuren, D. Study on recent trends of climate variability using innovative trend analysis: The Case of the upper Huai River Basin. Pol. J. Environ. Stud. 2020, 29, 2199–2210. [Google Scholar] [CrossRef]
- Besma, B.; Şen, Z.; Hamouda, B. Climate change impact on rainfall in north-eastern Algeria using innovative trend analyses (ITA). Arab. J. Geosci. 2021, 14, 511. [Google Scholar] [CrossRef]
- Al-Gamal, S.A.; Sokona, Y.; Dodo, A.-K. Climatic changes and groundwater resources in Africa. Int. J. Clim. Change Strateg. Manag. 2009, 1, 133–145. [Google Scholar] [CrossRef]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef] [Green Version]
- Tirogo, J.; Jost, A.; Biaou, A.; Valdes-Lao, D.; Koussoubé, Y.; Ribstein, P. Climate variability and groundwater response: A case study in Burkina Faso (West Africa). Water 2016, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Agoh, C.F.; Lekadou, T.T.; Saley, M.B.; Gala, B.T.J.; Danumah, J.H.; Coffi, P.-M.J.; Koffi, Z.E.B.; Goula, B.T.A. Impact of Climate Variability on Water Resources: The Case of Marc Delorme-Cnra Station, Southeast of Ivory Coast. J. Water Resour. Prot. 2021, 13, 726–749. [Google Scholar] [CrossRef]
- Badjana, M.H.; Wala, K.; Batawila, K.; Akpagana, K.; Edjaména, K.S. Analyse de la variabilité temporelle et spatiale des séries climatiques du nord du Togo entre 1960 et 2010. Eur. Sci. J. 2014, 10, 257–275. [Google Scholar]
- Affaton, P. Le Bassin des Volta (Afrique de l’Ouest): Une Marge Passive, D’âge Protérozoique Supérieur, Tectonisée au Panafricain (600 (+ ou−) 50 Ma). Ph.D. Thesis, Université d’Aix-Marseille III, Marseille, France, 1987; 496p. [Google Scholar]
- Gadédjisso-Tossou, A.; Adjegan, K.I.; Kablan, A.K.M. Rainfall and Temperature Trend Analysis by Mann–Kendall Test and Significance for Rainfed Cereal Yields in Northern Togo. Science 2021, 3, 17. [Google Scholar] [CrossRef]
- Tairou, M.S. La Tectonique Tangentielle Panafricaine au Nord-Togo. Doctoral Dissertation, Université de Lomé, Lomé, Togo, 2006. [Google Scholar]
- Lachassagne, P.; Wyns, R.; Dewandel, B. The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes: Weathering and permeability of Hard Rock Aquifers. Terra Nova 2011, 23, 145–161. [Google Scholar] [CrossRef]
- Musy, A.; Higy, C. Hydrologie: Une Science de la Nature; Presses Polytechniques et Universitaires Romandes: Vaud, Switzerland, 2004; p. 314. [Google Scholar]
- Nicholson, S.E.; Kim, J.; Hoopingarner, J. Atlas of African Rainfall and Its Interannual Variability; Department of Meteorology, Florida State University Tallahassee: Floride, FL, USA, 1988; p. 237. [Google Scholar]
- Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G. Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Glob. Planet. Change 2017, 155, 121–132. [Google Scholar] [CrossRef]
- Assani, A.A. Analyse de la variabilité temporelle des précipitations (1916–1996) à Lubumbashi (Congo-Kinshasa) en relation avec certains indicateurs de la circulation atmosphérique (oscillation australe) et océanique (El Niño/La Niña). Sci. Changements Planétaires/Sécheresse 1999, 10, 245–252. [Google Scholar]
- Lamb, P.J. Persistence of subsaharan drought. Nature 1982, 299, 46–47. [Google Scholar] [CrossRef]
- Lubes-Niel, H.; Masson, J.M.; Paturel, J.E.; Servat, E. Climatic variability and statistics. A similation approch for estimating power and robustness of tests of stationarity. J. Water Sci. 1998, 11, 383–408. [Google Scholar] [CrossRef] [Green Version]
- Khronostat, version 1.0; Logiciel D’analyse Statistique de Séries Chronologiques, Développé Par l’Orstom UR 2-21; l’Ecole des Mines de Paris et l’UMR GBE de l’Université de Montpellier II: Montpellier, France, 1998; Available online: http://www.hydrosciences.org/index.php/2020/09/04/khronostat/ (accessed on 4 September 2020).
- Machiwal, D.; Jha, M.K. Hydrological Times Series Analysis: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 315. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, S. Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrol. Sci. J. 2004, 49, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Oguntunde, P.G.; Friesen, J.; van de Giesen, N.; Savenije, H.H.G. Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Phys. Chem. Earth 2006, 31, 1180–1188. [Google Scholar] [CrossRef]
- Djaman, K.; Koudahe, K.; Ganyo, K.K. Trend Analysis in Annual and Monthly Pan Evaporation and Pan Coefficient in the Context of Climate Change in Togo. J. Geosci. Environ. Prot. 2017, 5, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Eshetu, M. Hydro-climatic Variability and Trend Analysis of Modjo River Watershed, Awash River Basin of Ethiopia. J. Environ. Earth Sci. 2021, 11, 38–48. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Turc, L. Evaluation des Besoins en Eau Irrigation, Evaporation Potentielle; Annales Agronomiques: Paris, France, 1961; pp. 13–49. [Google Scholar]
- Assémian, A.E.; Kouame, K.F.; Djagoua, V.E.; Affian, K.; Jourda, J.P.J.; Adja, M.; Lasm, T.; Biemi, J. Impact of climatic variabilty on water ressources in a humid tropical climate. J. Water Sci. 2013, 26, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H. Multiple recharge processes to heterogeneous Mediterranean coastal aquifers and implications on recharge rates evolution in time. J. Hydrol. 2018, 559, 669–683. [Google Scholar] [CrossRef]
- Kawoun, A.G.; Ahamide, B.; Chabi, A.; Ayena, A.; Adanddedji, F.; Vissin, E. Rainfall Variability and Impacts on Surface Water in the lower Ouémé Valley in South-East Bénin. Int. J. Progress. Sci. Technol. 2020, 23, 52–65. [Google Scholar]
- Akpataku, K.V. Apports de L’hydrogéochimie et de L’hydrologie Isotopique à la Compréhension du Fonctionnement des Aquifères en Zones de Socle Dans la Région des Plateaux au Togo. Ph.D. Thesis, Université de Lomé, Lomé, Togo, 2018; 259p. [Google Scholar]
- Faye, C.; Mendy, A. Climatic variability and hydrological impacts in case of the Gambiawatershed (Senegal). Environ. Water Sci. Public Health Tertitorial Intellignece J. 2018, 2, 54–66. [Google Scholar]
- Lang, C.; Gille, E. A recession analysis method for low flow forecasting. Norois 2006, 201, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Maillet, E. La vidange des réserve de réservés. Ann. Des Ponts Et Chaussées Mémoires Et Doc. 1906, 21, 218. [Google Scholar]
- Castany, G. Courbes de tarissement et calcul des réserves régulatrices. Gen. Assem. Berkeley Int. Assoc. Sci. Hydrol. 1964, 63, 319–328. [Google Scholar]
- Savané, I.; Coulibaly, K.M.; Gioan, P. Etude comparative de trois méthodes de calcul du coefficient de tarissement des cours d’eau. Secheresse 2003, 14, 37–42. [Google Scholar]
- Goula, B.T.A.; Savane, I.; Konan, B.; Fadika, V.; Kouadio, G.B. Impact de la variabilité climatique sur les ressources hydriques des bassins de N’Zo et N’Zi en Côte d’Ivoire (Afrique tropicale humide). VertigO 2006, 7, 1–12. [Google Scholar] [CrossRef]
- Kouassi, A.M.; Kouamé, K.F.; Saley, M.B.; Biémi, J. Application du modèle de maillet à l’étude des impacts des changements climatiques sur les ressources en eau en Afrique de l’Ouest: Cas du bassin versant du N’zi-Bandama (Côte d’Ivoire). J. Asian Sci. Res. 2013, 3, 214–228. [Google Scholar]
- Berhail, S. The impact of climate change on groundwater resources in northwestern Algeria. Arab. J. Geosci. 2019, 12, 770. [Google Scholar] [CrossRef]
- Badjana, H.M.; Renard, B.; Helmschrot, J.; Edjamé, K.S.; Afouda, A.; Wala, K. Bayesian trend analysis in annual rainfall total, duration and maximum in the Kara River basin (West Africa). J. Hydrol. Reg. Stud. 2017, 13, 255–273. [Google Scholar] [CrossRef]
- Pilabina, S.; Yabi, I.; Kola, E. Changements Climatiques et Sensibilité des Ressources en eau Dans le Bassin Versant de la Kara au Nord du Togo. Conference Paper. In Proceedings of the XXXII ème Colloque International de l’AIC: The Climatic Change Variability and Climatic Risks, Thessaloniki, Grèce, 29–31 May 2019; pp. 107–112. [Google Scholar]
- Adéwi, E.; Badameli, K.M.S.; Dubreuil, V. Evolution des saisons des pluies potentiellement utiles au Togo de 1950 à 2000. Climatologie 2010, 7, 89–107. [Google Scholar] [CrossRef]
- Adjoussi, P. Analyse des extremes climatiques dans le bassin de l’Oti au nord Togo. J. De La Rech. Sci. De L’université De Lomé 2021, 23, 115–133. [Google Scholar]
- Owusu, K. Rainfall changes in the savannah zone of northern Ghana 1961–2010. Weather 2018, 73, 46–50. [Google Scholar] [CrossRef]
- Doumouya, I.; Kamagaté, B.; Bamba, A.; Ouedraogo, M.; Ouattara, I.; Savané, I.; Goula, B.T.A.; Biémi, J. Impact de la variabilité climatique sur les ressources en eau et végétation du bassin versant du Bandama en milieu inetrtropical (Côte d’Ivoire). Rev. Ivoir. Des Sci. Et Technol. 2009, 14, 203–215. [Google Scholar]
- Irié, G.R.; Soro, G.E.; Goula, B.T.A. Recent variations in space-time of rainfall settings and their impact on flow river Marahoué (Ivoiry Coast). Larhyss J. 2016, 25, 241–258. [Google Scholar]
- Assémian, E.A.; Kanga, K.H.M.; Kouassi, K.; Yao, K.J.-J.; Koffi, B.E. Analyse des variations de la recharge des eaux souterraines du socle de Dimbokro, Zone tropicale humide du Centre-Est de la Côte d’Ivoire, face au changement climatique. Rev. Ivoir. Des Sci. Et Technol. 2018, 31, 84–107. [Google Scholar]
- Gnamba, F.M.; Kpan, O.J.G.; Yapi, A.F.; Oga, M.S.Y. Rainfall variability from Kotiala region in the North of Côte d’Ivoire (West Africa). Eur. Sci. J. 2020, 16, 169–188. [Google Scholar] [CrossRef]
- Darko, D.; Adjei, K.A.; Odai, S.N.; Obuobie, E.; Asmah, R.; Trolle, D. Recent climate trends for the Volta Basin in West Africa. Weather 2019, 74, S13–S22. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, U.F. Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Soro, T.D.; Soro, N.; Oga, Y.M.-S.; Lasm, T.; Soro, G.; Ahoussi, K.E.; Biémi, J. La variabilité climatique et son impact sur les ressources en eau dans le degré carré de Grand-Lahou (Sud-Ouest de la Côte d’Ivoire). Physio-Géo. Géographie Phys. Et Environ. 2011, 5, 55–73. [Google Scholar] [CrossRef]
- Kamagaté, A.; Koffi, Y.B.; Kouassi, A.M.; Kouakou, B.D.; Seydou, D. Impact des évolutions climatiques sur les ressources en eau des pétits bassins en Afrique Sub-Saharienne: Application au bassin versant du Bandama à Tortiya (Nord Côte d’Ivoire). Eur. Sci. J. 2019, 15, 84–105. [Google Scholar] [CrossRef] [Green Version]
- Amoussou, E.; Camberlin, P.; Mahé, G. Impact de la variabilité climatique et du barrage Nangbéto sur l’hydrologie du système Mono-Couffo (Afrique de l’Ouest). Hydrol. Sci. J. 2012, 57, 805–817. [Google Scholar] [CrossRef]
- Kouakou, E.; Koné, B.; N’Go, A.; Cissé, G.; Speranza, C.I.; Savané, I. Groundwater sensitivity to climate variability in the white Bandama basin, Ivory Coast. SpringerPlus 2014, 3, 226. [Google Scholar] [CrossRef] [Green Version]
Station Type | Localities | Geographical Coordinates | Measured Data | Obs. Period | Time Step Used | Average Rainfall/Flow (mm)/(m3/h) | Var. Coef. (%) | |
---|---|---|---|---|---|---|---|---|
Long. E | Lat. N | |||||||
Meteo. | Kara | 1.203 | 9.628 | Temperature + Precipitation | 1961–2020 | Monthly | 1303 ± 202 | 16 |
Niamtougou | 1.083 | 9.773 | Temperature + Precipitation | 1961–2020 | Monthly | 1386 ± 211 | 15 | |
Pagouda | 1.323 | 9.741 | Temperature + Precipitation | 1961–2020 | Monthly | 1308 ± 243 | 19 | |
Alédjo-Kpéwa | 1.233 | 9.287 | Temperature + Precipitation | 1961–2020 | Monthly | 1445 ± 255 | 18 | |
Guérin-Kouka | 0.611 | 9.608 | Temperature + Precipitation | 1961–2020 | Monthly | 1238 ± 184 | 15 | |
Takpamba | 0.5746 | 9.969 | Temperature + Precipitation | 1961–2020 | Monthly | 1177 ± 234 | 20 | |
Hydro. | Kpéssidè | 0.9555 | 9.617 | Flow | 1962–1992 | Daily | 29 ±10.9 | 38 |
Kara | 1.2833 | 9.533 | Flow | 1954–1990 | Daily | 20 ± 9.4 | 47 |
Stations | Periodic Trend within the Series | Breaks | ||||
---|---|---|---|---|---|---|
Wet Period | Normal Period | Dry Period | Pettitt | Lee and Heghinian | Hubert | |
Kara | 1961–1980 | 1989–2012 | 1981–1988 | - | 1963 | - |
2013–2020 | ||||||
Niamtougou | 1961–1973 | 1993–2020 | 1974–1992 | - | 1972 | 1972 |
Pagouda | 1961–1976 | 2012–2020 | 1977–1993 | - | 1965 | 1965 |
1994–2011 | ||||||
Alédjo-Kpéwa | 1961–1982 | 1983–1999 | 2000–2020 | 2003 | 2003 | 1977; 1981; 2003 |
Guérin-Kouka | 1998–2020 | 1961–1972 | 1973–1997 | 1997 | 1997 | 1997 |
Takpamba | 1993–2020 | - | 1961–1992 | 1992 | 1992 | 1992 |
Parameters | Kara | Niamtougou | Pagouda | Alédjo-Kpéwa | Guérin-Kouka | Takpamba |
---|---|---|---|---|---|---|
Rate of Kendall | −0.052 | −0.13 | −0.022 | −0.30 | 0.11 | 0.31 |
S | −92 | −222 | −38 | −536 | 266 | 556 |
p-value | 0.56 | 0.16 | 0.81 | 0.6 × 10−3 | 0.092 | 0.2 × 10−3 |
Alpha | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Tendency | No | No | No | Yes | No | Yes |
Slope of Sen | −1.04 | −2.3 | −0.30 | −6.59 | 2.24 | 6.83 |
Water Balance Parameters | Kara | Niamtougou | Pagouda | Alédjo-Kpéwa | Guérin-Kouka | Takpamba | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Break = 1963 | Break = 1972 | Break = 1965 | Break = 1977 | Break = 1997 | Break = 1992 | |||||||
before | after | before | before | before | after | before | after | before | after | before | after | |
Rainfall (mm·y−1) | 1480 | 1294 | 1553 | 1607 | 1607 | 1277 | 1607 | 1385 | 1191 | 1334 | 1049 | 1335 |
PET (mm·y−1) | 1689 | 1862 | 1681 | 1764 | 1764 | 1751 | 1764 | 1563 | 1757 | 2007 | 2144 | 2532 |
ETa (mm·y−1) | 944 | 952 | 973 | 975 | 975 | 909 | 975 | 972 | 904 | 1031 | 869 | 1100 |
Excedent (R-ETa) (mm·y−1) | 536 | 342 | 580 | 632 | 632 | 368 | 632 | 413 | 287 | 303 | 180 | 235 |
Runoff (mm·y−1) | 379 | 208 | 442 | 445 | 445 | 226 | 445 | 363 | 182 | 196 | 84 | 124 |
Effective Infiltration (mm·y−1) | 157 | 134 | 138 | 187 | 187 | 142 | 187 | 50 | 105 | 107 | 96 | 111 |
Stations | Period | Recession Coefficient (day−1) | Rate of Increase (%) | Water Volume Mobilized (km3) | Rate of Decrease (%) | Recession Duration (day) |
---|---|---|---|---|---|---|
Kara | 1954–1974 | 2.8 × 10−2 | 25 | 0.32 | 22 | 36 |
1975–1990 | 3.5 × 10−2 | 0.25 | 29 | |||
Kpéssidè | 1962–1972 | 3.1 × 10−2 | 10 | 0.47 | 36 | 32 |
1973–1991 | 3.4 × 10−2 | 0.3 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ani, M.; Jaunat, J.; Marin, B.; Barel, M.; Gnandi, K. Long-Term Evolution of Rainfall and Its Consequences on Water Resources: Application to the Watershed of the Kara River (Northern Togo). Water 2022, 14, 1976. https://doi.org/10.3390/w14121976
Ani M, Jaunat J, Marin B, Barel M, Gnandi K. Long-Term Evolution of Rainfall and Its Consequences on Water Resources: Application to the Watershed of the Kara River (Northern Togo). Water. 2022; 14(12):1976. https://doi.org/10.3390/w14121976
Chicago/Turabian StyleAni, Mozimwè, Jessy Jaunat, Béatrice Marin, Marie Barel, and Kissao Gnandi. 2022. "Long-Term Evolution of Rainfall and Its Consequences on Water Resources: Application to the Watershed of the Kara River (Northern Togo)" Water 14, no. 12: 1976. https://doi.org/10.3390/w14121976
APA StyleAni, M., Jaunat, J., Marin, B., Barel, M., & Gnandi, K. (2022). Long-Term Evolution of Rainfall and Its Consequences on Water Resources: Application to the Watershed of the Kara River (Northern Togo). Water, 14(12), 1976. https://doi.org/10.3390/w14121976