Quality of Bottom Sediments of Sołtmany Lake (Masurian Lake District, Poland) in the Light of Geochemical and Ecotoxicological Criteria—Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Lake Name | Catchment Area | Total Catchment Area (km2) | Water Table Area (ha) | Length (m) | Width (m) | Depth | Volume (Thousand m3) | |
---|---|---|---|---|---|---|---|---|
Max | Min | |||||||
Sołtmany | Węgorapa-Pręgoła | 36.3 | 181 | 2600 | 1040 | 12.5 | 5.5 | 9946 |
2.2. Bottom Sediment Sampling and Chemical Analysis
2.3. Assessment of Sediment Contamination
2.4. Statistical Analysis
3. Results
3.1. Granulometric Composition
3.2. Physicochemical Properties of Bottom Sediments
3.3. Spatial Distributions of the Studied Sediment Characteristics
3.4. Statistics
3.5. Assessment of Sediment Contamination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bojakowska, I.; Sokołowska, G. Geochemiczne klasy czystości osadów wodnych [Geochemical sediments quality classes]. Przegląd Geol./Geol. Rev. 1998, 46, 49–54. [Google Scholar]
- Kasperek, R.; Wiatkowski, M. Bottom studies of Mściwojów reservoir. Sci. Rev. Eng. Environ. Sci. 2008, 17, 194–201. [Google Scholar]
- Palma, P.; Ledo, L.; Alvarenga, P. Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). Catena 2015, 128, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Świercz, A.; Smorzewska, E. Assessment of the long-term anthropogenic impact on the degree of heavy metal contamination of organic alluvia deposited in the area of the Białogoński pond. Carpathian J. Earth Environ. Sci. 2015, 10, 49–56. [Google Scholar]
- Baran, A.; Tarnawski, M.; Koniarz, T. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environ. Sci. Pollut. Res. 2016, 23, 17255–17268. [Google Scholar] [CrossRef] [Green Version]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A.; Glińska-Lewczuk, K.; Cymes, I. Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland. Water 2016, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.K.; Kang, M.J.; Yu, S.; Ko, K.S.; Ha, K.; Shin, S.C.; Park, J.H. Enrichment and geochemical mobility of heavy metals in bottom sediment of the Hoedong reservoir, Korea and their source apportionment. Chemosphere 2017, 184, 74–85. [Google Scholar] [CrossRef]
- Barut, I.F.; Ergin, M.; Meriç, E.; Avs¸ar, N.; Nazik, A.; Suner, F. Contribution of natural and anthropogenic effects in the Iznik Lake bottom sediment: Geochemical and microfauna assemblages evidence. Quat. Int. 2018, 486, 129–142. [Google Scholar] [CrossRef]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef]
- Kalicki, T.; Kozłowski, R.; Przepióra, P.; Szwed, M. The geochemical diversity of lacustrine sediments of the Suchedniów water reservoir (Świętokrzyskie voivodeship, Poland)-preliminary results. Acta Geobalcanica 2021, 7, 159–165. [Google Scholar] [CrossRef]
- Tomczyk-Wydrych, I.; Świercz, A. Methods of management of bottom sediments from selected water reservoirs: A literature review. Geologos 2021, 27, 127–134. [Google Scholar] [CrossRef]
- Kaniecki, A. Hydrologia Obszarów Lądowych; Wydawnictwo Naukowe UAM: Poznań, Poland, 2018. [Google Scholar]
- Przybylska, J.; Kaleta, J.; Kozłowski, R. Impact of Cedzyna Reservoir on Selected Physicochemical Parameters of River Water Quality (Swietokrzyskie Mountains, Poland). Chem.-Didact.-Ecol.-Metrol. 2019, 24, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Kulbat, E.; Sokołowska, A. Methods of Assessment of Metal Contamination in Bottom Sediments (Case Study: Straszyn Lake, Poland). Arch. Environ. Contam. Toxicol. 2019, 77, 605–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Cabral, J.B.P.; Nogueira, P.F.; Becegato, V.A.; Becegato, V.R.; Paulino, A.T. Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reser-voir in the Brazilian Cerrado. Water 2021, 13, 1044. [Google Scholar] [CrossRef]
- Skordas, K.; Kelepertzis, E.; Kosmidis, D.; Panagiotaki, P.; Vafidis, D. Assessment of nutrients and heavy metals in the surface sediments of the artificially lake water reservoir Karla, Thessaly, Greece. Environ. Earth Sci. 2015, 73, 4483–4493. [Google Scholar] [CrossRef]
- Liu, P.; Zheng, C.; Wen, M.; Luo, X.; Wu, Z.; Liu, Y.; Chai, S.; Huang, L. Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China. Water 2021, 13, 894. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Liu, D.; Li, B.; Xiao, H.; Cheng, W.; Li, A.; Chong, J. Spatial distribution, ecological risk assessment and source identification for nutrients and heavy metals in surface sediments from Tangxun Lake, Wuhan, Central China. Nat. Environ. Pollut. Technol. 2016, 15, 1417–1425. [Google Scholar]
- Bojakowska, I. Criteria for evaluation of water sediments pollution. Pol. Geol. Rev. 2001, 49, 213–219. [Google Scholar]
- Gałuszka, A.; Migaszewski, D.M.; Zalasiewicz, J. Assessing the An-thropocene with geochemical methods. Geol. Soc. Spec. Publ. 2014, 395, 221–238. [Google Scholar] [CrossRef]
- MacDonald, D.; Ingersoll, C.; Berger, T. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Choiński, A.; Jezior Polski, K. Część Druga–Pojezierze Mazurskie; UAM: Poznań, Poland, 1991. [Google Scholar]
- Inspekcja Ochrony Środowiska. Wojewódzki Inspektorat Ochrony Środowiska w Olsztynie, Raport o Stanie Środowiska Województwa Warmińsko-Mazurskiego w 2015 Roku; Biblioteka Monitoringu Środowiska: Olsztyn, Poland, 2016.
- Aniszczyk, M. Objaśnienia do Mapy Hydrogeologicznej Polski w Skali 1:50,000, Arkusz Orłowo 0105; Państwowy Instytut Geologiczny Państwowy Instytut Badawczy: Warszawa, Poland, 2004.
- Kondracki, J. Geografia Regionalna Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2002. [Google Scholar]
- Pochocka-Szwarc, K.; Lisicki, S. Objaśnienia do Szczegółowej Mapy Geologicznej Polski, Arkusz Orłowo 105; Państwowy Instytut Geologiczny Państwowy Instytut Badawczy: Warszawa, Poland, 2015. (In Polish)
- Majewski, M.; Kostrzewski, A. Stan Geoekosystemów Polski w 2020 Roku na Podstawie Badań Zintegrowanego Monitoringu Środowiska Przyrodniczego; Zintegrowany Monitoring Środowiska Przyrodniczego: Poznań, Poland, 2021. (In Polish) [Google Scholar]
- PN-ISO 11261:2002; Jakość Gleby–Oznaczenie Azotu Ogólnego–Zmodyfikowana Metoda Kjeldahla. Polski Komitet Normalizacyjny: Warsaw, Poland. Available online: https://sklep.pkn.pl/pn-iso-11261-2002p.html (accessed on 20 June 2022).
- Karczewska, A.; Kabała, C. Metodyka Analiz Laboratoryjnych Gleb i Roślin; Uniwersytet Przyrodniczy we Wrocławiu: Wrocław, Poland, 2008. [Google Scholar]
- Kocel, K. Osady denne stawów jako wskaźnik zmian zaistniałych w środowisku przyrodniczym doliny Rudy. Scr. Rudensia 1997, 7, 75–84. (In Polish) [Google Scholar]
- Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soil. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef]
- Arifjanova, A.; Samiev, L.; Akmalov, S. Dependence of fractional structure of river sediments on chemical composition. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 2646–2649. [Google Scholar] [CrossRef]
- Kaletova, T.; Arifjanov, A.; Samiev, L.; Babajanov, F. Importance of river sediments in soil fertility. J. Water Land Dev. 2022, 52, 21–26. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe. Geoderma 2014, 228–229, 142–159. [Google Scholar] [CrossRef]
- Bąk, Ł.; Górski, J.; Sałata, A.; Gawdzik, J.; Muszyńska, J.; Górska, K. Ecological risk assessment and spatial distribution of heavy metals in surface sediments. A case study of two small storage reservoirs, SE Poland. Desalination Water Treat. 2020, 186, 206–215. [Google Scholar] [CrossRef]
- Tarnawski, M.; Baran, A. Use of Chemical Indicators and Bioassays in Bottom Sediment Ecological Risk Assessment. Arch. Environ. Contam. Toxicol. 2018, 74, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Sałata, A.; Bąk, Ł.; Chmielowski, K.; Rabajczyk, A. Metal pollution of sediments in small water reservoirs in the Kielce Highland (South Eastern Poland). Arch. Environ. Prot. 2019, 45, 12–21. [Google Scholar]
- Zieliński, A.; Choiński, A.; Machula, S.; Ławniczak, A.; Strzelczak, A. Chemistry of Bottom Sediments from Selected Karst Lakes in the Vicinity of Staszów (Nida Basin). Limnol. Rev. 2020, 20, 81–87. [Google Scholar] [CrossRef]
- Podlasińska, J.; Szydłowski, K. Charakterystyka stężeń wybranych metali ciężkich w osadach dennych jeziora Byszyno oraz określenie ich potencjalnego zagrożenia środowiskowego. Water Environ. Rural Areas 2017, 17, 85–99. [Google Scholar]
- Wang, Y.; Yang, L.; Kong, L.; Liu, E.; Wang, L.; Zhu, J. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Górski, J.; Bąk, Ł.; Szeląg, B. Jakość wody i osadów dennych zbiornika wodnego Lubianka w Starachowicach. Proc. ECOpole 2016, 10, 635–643. [Google Scholar] [CrossRef]
- Ośrodek Badań i Kontroli Środowiska. Monitoring Osadów Dennych Rzek i Jezior w Latach 2018–2019 Raport pt. In Stan Zanieczyszczenia Osadów Dennych Rzek i Jezior w 2018 Roku; Ośrodek Badań i Kontroli Środowiska: Katowice, Poland, 2019. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Inspekcja Ochrony Środowiska. Wojewódzki Inspektorat Ochrony Środowiska w Olsztynie, Raport o Stanie Środowiska Województwa Warmińsko-Mazurskiego w 2008 roku; Biblioteka Monitoringu Środowiska: Olsztyn, Poland, 2009.
Element | Measured Value (mg·kg−1) ± SD | Certified Value (mg·kg−1) ± SD | Recovery (%) |
---|---|---|---|
Cd | 0.90 ± 0.20 | 1.0 ± 0.15 | 99 |
Cr | 0.61 ± 0.40 | 0.70 ± 0.30 | 102 |
Cu | 8.20 ± 0.40 | 8.90 ± 0.20 | 105 |
Ni | 6.20 ± 0.50 | 7.40 ± 0.15 | 108 |
Pb | 10.60 ± 0.90 | 9.90 ± 0.40 | 115 |
Zn | 42.23 ± 0.70 | 40.41 ± 0.30 | 98 |
Igeo Value | Class | Pollution Degree |
---|---|---|
<0 | 0 | Unpolluted |
0–1 | 1 | Unpolluted to moderately polluted |
1–2 | 2 | Moderately polluted |
2–3 | 3 | Moderately to highly polluted |
3–4 | 4 | Highly polluted |
4–5 | 5 | Highly to very highly polluted |
>5 | 6 | Very highly polluted |
Parameters | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|
Geochemical quality classes (mg·kg−1d.w.) | ||||||
Class I | 0.7 | 50 | 20 | 16 | 30 | 125 |
Class II | 3.5 | 100 | 100 | 40 | 100 | 300 |
Class III | 6 | 400 | 300 | 50 | 200 | 1000 |
Class IV | >6 | >400 | >300 | >50 | >200 | >1000 |
Parameters | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|
TEC | 0.99 | 43.3 | 31.6 | 22.7 | 35.8 | 121 |
PEC | 4.98 | 111 | 149 | 48.6 | 128 | 459 |
Percentage Content of Fraction of Ø Diameter in mm | |||
---|---|---|---|
Sample No | 0.5–0.05 Sand | 0.05–0.002 Silt | <0.002 Clay |
1 | 70 | 27 | 3 |
2 | 70 | 24 | 6 |
3 | 63 | 27 | 10 |
4 | 71 | 18 | 11 |
5 | 74 | 21 | 5 |
6 | 68 | 27 | 5 |
Sample No | Corg | Ntot | P2O5 | K2O | Mg | pH | Cd | Cr | Cu | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g·kg−1 | mg·100 g−1 | H2O | KCl | mg·kg−1 | |||||||||
1 | 2.7 | 0.4 | 17.5 | 15.2 | 22.2 | 6.9 | 6.8 | 0.7 | 5.2 | 6.9 | 5.1 | 9.7 | 32.2 |
2 | 4.3 | 0.4 | 20.6 | 24.1 | 28.4 | 6.7 | 6.5 | 1.1 | 8.7 | 9.5 | 7.7 | 10.8 | 45.9 |
3 | 3.4 | 1.0 | 34.1 | 20.5 | 32.1 | 7.1 | 6.9 | 0.7 | 7.8 | 10.9 | 6.9 | 9.0 | 52.3 |
4 | 5.2 | 1.3 | 34.7 | 29.1 | 35.1 | 6.9 | 6.7 | 0.9 | 5.8 | 7.9 | 6.2 | 12.9 | 43.2 |
5 | 6.1 | 1.4 | 40.2 | 31.2 | 24.1 | 7.1 | 7.0 | 0.8 | 4.9 | 6.1 | 6.0 | 11.6 | 42.9 |
6 | 3.5 | 0.9 | 16.4 | 12.9 | 13.9 | 6.9 | 6.7 | 0.6 | 4.0 | 6.8 | 5.3 | 10.5 | 36.9 |
Average | 4.2 | 0.9 | 27.3 | 22.2 | 26.0 | 6.9 | 6.8 | 0.8 | 6.1 | 8.0 | 6.2 | 10.8 | 42.2 |
Min | 2.7 | 0.4 | 16.4 | 12.9 | 13.9 | 6.7 | 6.5 | 0.6 | 4.0 | 6.1 | 5.1 | 9.0 | 32.2 |
Max | 6.1 | 1.4 | 40.2 | 31.2 | 35.1 | 7.1 | 7.0 | 1.1 | 8.7 | 10.9 | 7.7 | 12.9 | 52.3 |
SD | 1.3 | 0.4 | 10.3 | 7.4 | 7.6 | 0.2 | 0.2 | 0.2 | 1.8 | 1.8 | 1.0 | 1.4 | 7.0 |
Cd | Cr | Cu | Ni | Pb | Zn | Sa | Cl | Si | Corg | Norg | P2O5 | K2O | Mg | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 1.00 | 0.67 | 0.29 | 0.67 | 0.64 | 0.46 | 0.57 | −0.77 | 0.47 | 0.58 | 0.07 | 0.55 | 0.75 | 0.64 | −0.39 |
Cr | 1.00 | 0.89 | 0.83 | −0.09 | 0.77 | −0.17 | −0.15 | 0.58 | −0.09 | −0.29 | 0.20 | 0.26 | 0.71 | −0.31 | |
Cu | 1.00 | 0.71 | −0.37 | 0.77 | −0.55 | 0.15 | 0.64 | −0.37 | −0.32 | −0.03 | −0.09 | 0.66 | −0.19 | ||
Ni | 1.00 | 0.14 | 0.94 | −0.12 | −0.33 | 0.75 | 0.31 | 0.06 | 0.37 | 0.43 | 0.71 | −0.15 | |||
Pb | 1.00 | −0.03 | 0.84 | −0.94 | 0.32 | 0.89 | 0.49 | 0.54 | 0.71 | 0.31 | −0.22 | ||||
Zn | 1.00 | −0.26 | −0.21 | 0.81 | 0.20 | 0.20 | 0.43 | 0.37 | 0.77 | 0.12 | |||||
Sa | 1.00 | −0.83 | −0.06 | 0.75 | 0.47 | 0.64 | 0.78 | 0.14 | 0.00 | ||||||
Cl | 1.00 | −0.49 | −0.88 | −0.59 | −0.76 | −0.88 | −0.58 | 0.07 | |||||||
Si | 1.00 | 0.35 | 0.38 | 0.46 | 0.41 | 0.90 | 0.02 | ||||||||
Corg | 1.00 | 0.70 | 0.71 | 0.83 | 0.31 | 0.09 | |||||||||
Ntot | 1.00 | 0.81 | 0.67 | 0.38 | 0.72 | ||||||||||
P2O5 | 1.00 | 0.94 | 0.66 | 0.52 | |||||||||||
K2O | 1.00 | 0.60 | 0.25 | ||||||||||||
Mg | 1.00 | 0.09 | |||||||||||||
pH | 1.00 |
Study Area | Main Conclusion | References |
---|---|---|
Łajba Lake and Donica Lake, Świętokrzyskie Voivodeship, Poland | Concentrations of selected heavy metals in bottom sediments of Łajba Lake: 0.9 mg·kg−1 for Cd, 35.8 mg·kg−1 for Cr, 24.3 mg·kg−1 for Cu, 25.3 mg·kg−1 for Ni, 73.6 mg·kg−1 for Pb, 128.0 mg·kg−1 for Zn; and Donica Lake: 0.6 mg·kg−1 for Cd, 45.5 mg·kg−1 for Cr, 8.9 mg·kg−1 for Cu, 14.7 mg·kg−1 for Ni, 35.6 mg·kg−1 for Pb, 115 mg·kg−1 for Zn. | [40] |
Straszyn Lake, Pomeranian Voivodeship, Poland | The average concentrations of metals in sediments were: 0.72 µg/g for Cd, 148.2 µg/g for Cr, 17.08 µg/g for Cu, 15.56 µg/g for Ni, 21.73 µg/g for Pb, 55.19 µg/g for Zn. The mean concentrations of metals exceeding background levels were found to have the order: Cr > Ni > Cu > Pb > Cd > Zn. The values of Igeo for Zn and Cd in the sediments belonged to class 0 and 1; Igeo values for Cu, Pb and Ni were classified as levels 0–2; Igeo values for Cr were classified as level 5, except for the samples collected at the station S1 (Igeo = 0.87, level 1) | [14] |
Byszyno Lake, West Pomeranian Voivodship, Poland | In terms of contents, the heavy metals in bottom sediments were ranked as follows: Fe > Mn > Zn > Pb > Ni > Cu > Cr > Cd. Medium enrichment of bottom sediments with heavy metals against the geochemical background decreased was as follows: Pb > Cr > Cu > Zn > Ni. | [41] |
Karla Lake, Greece | The average concentrations of metals in sediments were: 298.4 mg·kg−1 for Cr, 38.3 mg·kg−1 for Cu, 182.8 mg·kg−1 for Ni, 34.3 mg·kg−1 for Pb, 31.2 mg·kg−1 for Zn. The concentrations of Cr and Ni were well above the corresponding PEC values in 100% of the samples. For Cu and Pb, almost half of the sediment samples exhibited loadings higher than the TEC levels but they were always substantially lower than the PEC values. | [17] |
Chagan Lake, China | The mean values of Igeo in the surface sediment were arranged in descending order as follows: Hg > Cd > Ni > Zn > Cr > Pb > Cu > As. | [18] |
Tangxun Lake, Wuhan, China | The degree of enrichment of the heavy metals in sediments decreased in the order: Cd > As > Zn > Cu > Cr > Pb. The values of Igeo for Zn and Cu in the sediments belonged to class 0, 1 and 2; Igeo values for Cd were classified as levels 1–3; Igeo values for Cr and Pb were classified as levels 0 and 1. The degree of pollution exhibited the following order: Cd > As > Zn > Cu > Cr > Pb. | [19] |
Dongping Lake, Shandong Province, China | The enrichment degree of the studied metals decreased in the order of Cd > Hg > As > Pb > Cu > Cr > Zn, and the average concentrations of Cd, Hg and As were 3.70, 3.69 and 3.37 times their background values. | [42] |
Lake | Cd | Cr | Cu | Ni | Pb | Zn | Mn | Assessment of Sediment Contamination |
---|---|---|---|---|---|---|---|---|
According to Bojkowska and Sokołowska (2001) [20] | ||||||||
mg·kg−1d.w. | ||||||||
Sołtmany | 0.4 | 16.6 | 25.5 | 14.1 | 28.3 | 101.0 | 2200 | Class II |
Kruklin | 0.03 | 1.7 | 8.9 | 3.3 | 11.9 | 22.2 | 1500 | Class I |
Gołdapiwo | 0.4 | 9.8 | 12.8 | 8.7 | 30.0 | 71.8 | 1800 | Class III |
Jagodne | 0.8 | 15.2 | 9.4 | 11.4 | 37.2 | 83.7 | 920 | Class II |
Łękuk | 0.5 | 31.5 | 24.5 | 24.6 | 34.3 | 0.25 | 420 | Class II |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świercz, A.; Tomczyk-Wydrych, I.; Bąk, Ł. Quality of Bottom Sediments of Sołtmany Lake (Masurian Lake District, Poland) in the Light of Geochemical and Ecotoxicological Criteria—Case Study. Water 2022, 14, 2045. https://doi.org/10.3390/w14132045
Świercz A, Tomczyk-Wydrych I, Bąk Ł. Quality of Bottom Sediments of Sołtmany Lake (Masurian Lake District, Poland) in the Light of Geochemical and Ecotoxicological Criteria—Case Study. Water. 2022; 14(13):2045. https://doi.org/10.3390/w14132045
Chicago/Turabian StyleŚwiercz, Anna, Ilona Tomczyk-Wydrych, and Łukasz Bąk. 2022. "Quality of Bottom Sediments of Sołtmany Lake (Masurian Lake District, Poland) in the Light of Geochemical and Ecotoxicological Criteria—Case Study" Water 14, no. 13: 2045. https://doi.org/10.3390/w14132045
APA StyleŚwiercz, A., Tomczyk-Wydrych, I., & Bąk, Ł. (2022). Quality of Bottom Sediments of Sołtmany Lake (Masurian Lake District, Poland) in the Light of Geochemical and Ecotoxicological Criteria—Case Study. Water, 14(13), 2045. https://doi.org/10.3390/w14132045