Optimal Water Resources Allocation in the Yinma River Basin in Jilin Province, China, Using Fuzzy Programming
Abstract
:1. Introduction
2. Study Area
3. Model Development
3.1. Interval Fuzzy Two-Stage Model
3.2. Water Allocation Model Based on the IFTSP Approach
- (1)
- Constraints on the maximization of water resource income:
- (2)
- Constraint on available water resources [61]:
- (3)
- Constraints on sectoral water demand:
- (4)
- Constraints on sewage treatment capacity [61]:
- (5)
- Constraints on reuse water treating capacity [61]:
- (6)
- Constraints on total pollutant control [61]:
- (7)
- Constraints on sewage carrying capacity of the basin [61]
- (8)
- Non-negative constraints [61]:
3.3. Model Solving
4. Results and Discussion
4.1. Change Analysis of the YRB Water Resources Allocation Based on the IFTSP Method
4.1.1. Water Resources Allocation Scheme in the YRB Based on the IFTSP Method
4.1.2. Analysis of Water Reuse by Different Sectors in the YRB Based on the IFTSP Method
4.1.3. Analysis of Water Shortage Variation in the YRB Based on the IFTSP Method
4.2. Economic Efficiency and Pollutant Emissions before and after Using Fuzzy Approaches with IFTSP Models
4.2.1. Analysis of the Effect of Basin Water Allocation on the System’s Economic Efficiency
4.2.2. Analysis of Changes in COD Levels from the YRB during the First Planning Period
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. J. Hydrol. 2021, 601, 126658. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Jung, M.; Arnell, A.; de Lamo, X.; Garcia-Rangel, S.; Lewis, M.; Mark, J.; Merow, C.; Miles, L.; Ondo, I.; Pironon, S.; et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 2021, 5, 1499–1509. [Google Scholar] [CrossRef]
- Westall, F.; Brack, A. The Importance of Water for Life. Space Sci. Rev. 2018, 214, 50. [Google Scholar] [CrossRef]
- Li, P.; Qian, H. Water resources research to support a sustainable China. Int. J. Water Resour. Dev. 2018, 34, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Gupta, A.B.; Gupta, A.; Pandey, A. Introduction to Water Remediation: Importance and Methods. In Water Remediation; Springer: Singapore, 2018; pp. 3–8. [Google Scholar] [CrossRef]
- Ma, S.; Luo, W. Comparison of nonclassicality between photon-added and photon-subtracted squeezed vacuum states. Chin. Phys. B 2012, 21, 024203. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, G.; Wu, Y.; Wu, Q.; Shi, Q.; Ngo, H.H.; Vargas Saucedo, O.A.; Hu, H.-Y. Water Eco-Nexus Cycle System (WaterEcoNet) as a key solution for water shortage and water environment problems in urban areas. Water Cycle 2020, 1, 71–77. [Google Scholar] [CrossRef]
- Gohari, A.; Eslamian, S.; Mirchi, A.; Abedi-Koupaei, J.; Massah Bavani, A.; Madani, K. Water transfer as a solution to water shortage: A fix that can Backfire. J. Hydrol. 2013, 491, 23–39. [Google Scholar] [CrossRef]
- Petersen, L.; Heynen, M.; Pellicciotti, F. Freshwater Resources: Past, Present, Future. In International Encyclopedia of Geography; Wiley: Hobiken, NJ, USA, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Sabater, S.; Bregoli, F.; Acuna, V.; Barcelo, D.; Elosegi, A.; Ginebreda, A.; Marce, R.; Munoz, I.; Sabater-Liesa, L.; Ferreira, V. Effects of human-driven water stress on river ecosystems: A meta-analysis. Sci. Rep. 2018, 8, 11462. [Google Scholar] [CrossRef]
- Mustapha, A.; Aris, A.Z.; Juahir, H.; Ramli, M.F.; Kura, N.U. River water quality assessment using environmentric techniques: Case study of Jakara River Basin. Env. Sci. Pollut. Res. Int. 2013, 20, 5630–5644. [Google Scholar] [CrossRef]
- Huang, F.; Wang, X.; Lou, L.; Zhou, Z.; Wu, J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res. 2010, 44, 1562–1572. [Google Scholar] [CrossRef]
- Fan, L.; Liu, G.; Wang, F.; Geissen, V.; Ritsema, C.J. Factors affecting domestic water consumption in rural households upon access to improved water supply: Insights from the Wei River Basin, China. PLoS ONE 2013, 8, e71977. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Del Vasto-Terrientes, L.; Valls, A.; Schuhmacher, M. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method. Sci. Total Environ. 2016, 540, 344–357. [Google Scholar] [CrossRef]
- Li, H.; Xu, C.-Y.; Beldring, S.; Tallaksen, L.M.; Jain, S.K. Water Resources Under Climate Change in Himalayan Basins. Water Resour. Manag. 2015, 30, 843–859. [Google Scholar] [CrossRef]
- Vaidya, R.A. Governance and management of local water storage in the Hindu Kush Himalayas. Int. J. Water Resour. Dev. 2015, 31, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Jasrotia, A.S.; Majhi, A.; Singh, S. Water Balance Approach for Rainwater Harvesting using Remote Sensing and GIS Techniques, Jammu Himalaya, India. Water Resour. Manag. 2009, 23, 3035–3055. [Google Scholar] [CrossRef]
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Ashraf, S.; AghaKouchak, A.; Nazemi, A.; Mirchi, A.; Sadegh, M.; Moftakhari, H.R.; Hassanzadeh, E.; Miao, C.-Y.; Madani, K.; Mousavi Baygi, M.; et al. Compounding effects of human activities and climatic changes on surface water availability in Iran. Clim. Chang. 2018, 152, 379–391. [Google Scholar] [CrossRef]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Wheida, E.; Verhoeven, R. An alternative solution of the water shortage problem in Libya. Water Resour. Manag. 2006, 21, 961–982. [Google Scholar] [CrossRef]
- Nabi, G.; Ali, M.; Khan, S.; Kumar, S. The crisis of water shortage and pollution in Pakistan: Risk to public health, biodiversity, and ecosystem. Env. Sci. Pollut. Res. Int. 2019, 26, 10443–10445. [Google Scholar] [CrossRef] [Green Version]
- Derbile, E.K.; Bonye, S.Z.; Yiridomoh, G.Y. Mapping vulnerability of smallholder agriculture in Africa: Vulnerability assessment of food crop farming and climate change adaptation in Ghana. Environ. Chall. 2022, 8, 100537. [Google Scholar] [CrossRef]
- Nkhonjera, G.K. Understanding the impact of climate change on the dwindling water resources of South Africa, focusing mainly on Olifants River basin: A review. Environ. Sci. Policy 2017, 71, 19–29. [Google Scholar] [CrossRef]
- Yomo, M.; Mourad, K.A.; Gnazou, M.D.T. Examining Water Security in the Challenging Environment in Togo, West Africa. Water 2019, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.A.; Guerrero Florez, M.; Karanis, P. The impact of water crises and climate changes on the transmission of protozoan parasites in Africa. Pathog. Glob. Health 2018, 112, 281–293. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Ololade, O.O.; Mazinyo, S.P.; Kalumba, A.M.; Ekundayo, O.Y.; Busayo, E.T.; Akinsanola, A.A.; Nel, W. Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon 2019, 5, e02148. [Google Scholar] [CrossRef] [Green Version]
- Bindi, M.; Olesen, J.E. The responses of agriculture in Europe to climate change. Reg. Environ. Chang. 2010, 11, 151–158. [Google Scholar] [CrossRef]
- Jonsdottir, H.; Eliasson, J.; Madsen, H. Assessment of serious water shortage in the Icelandic water resource system. Phys. Chem. Earth Parts A/B/C 2005, 30, 420–425. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Deng, X.-P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Wang, X.C.; Jin, P.K. Water shortage and needs for wastewater re-use in the north China. Water Sci. Technol. 2006, 53, 35–44. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, H.; Ouyang, T.; Deng, Q.; Kuang, Y.; Huang, N. Water shortage: A serious problem in sustainable development of China. Int. J. Sustain. Dev. World Ecol. 2009, 8, 233–237. [Google Scholar] [CrossRef]
- Cheng, B.; Li, H.; Yue, S.; Huang, K. A conceptual decision-making for the ecological base flow of rivers considering the economic value of ecosystem services of rivers in water shortage area of Northwest China. J. Hydrol. 2019, 578, 124126. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, R.; Hong, M.; Wang, H.; Yang, L. A new multiple integral model for water shortage risk assessment and its application in Beijing, China. Nat. Hazards 2015, 80, 43–67. [Google Scholar] [CrossRef]
- Geng, S.; Zhou, Y.; Zhang, M.; Smallwood, K.S. A Sustainable Agro-ecological Solution to Water Shortage in the North China Plain (Huabei Plain). J. Environ. Plan. Manag. 2001, 44, 345–355. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Mathews, R.; Harrison, D.L.; Wigington, R. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. [Google Scholar] [CrossRef]
- Schlüter, M.; Savitsky, A.G.; McKinney, D.C.; Lieth, H. Optimizing long-term water allocation in the Amudarya River delta: A water management model for ecological impact assessment. Environ. Model. Softw. 2005, 20, 529–545. [Google Scholar] [CrossRef]
- Sadati, S.; Speelman, S.; Sabouhi, M.; Gitizadeh, M.; Ghahraman, B. Optimal Irrigation Water Allocation Using a Genetic Algorithm under Various Weather Conditions. Water 2014, 6, 3068–3084. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Lei, X.; Kang, A.; Wang, M.; Liao, W.; Wang, H.; Ma, Y. A two-stage water allocation strategy for developing regional economic-environment sustainability. J. Env. Manag. 2019, 244, 189–198. [Google Scholar] [CrossRef]
- Jodar-Abellan, A.; Fernández-Aracil, P.; Melgarejo-Moreno, J. Assessing Water Shortage through a Balance Model among Transfers, Groundwater, Desalination, Wastewater Reuse, and Water Demands (SE Spain). Water 2019, 11, 1009. [Google Scholar] [CrossRef] [Green Version]
- Degefu, D.M.; He, W.; Yuan, L.; Zhao, J.H. Water Allocation in Transboundary River Basins under Water Scarcity: A Cooperative Bargaining Approach. Water Resour. Manag. 2016, 30, 4451–4466. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, G.; Yu, Y. Review of River Basin Water Resource Management in China. Water 2018, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Zhang, W.; Hubacek, K.; Feng, K.; Li, Z.; Liu, Y.; Liu, Y. Drivers of virtual water flows on regional water scarcity in China. J. Clean. Prod. 2019, 207, 1112–1122. [Google Scholar] [CrossRef]
- Yao, L.; Xu, Z.; Chen, X. Sustainable water allocation strategies under various climate scenarios: A case study in China. J. Hydrol. 2019, 574, 529–543. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Zhou, Q.; Wu, F. Optimal water allocation scheme based on trade-offs between economic and ecological water demands in the Heihe River Basin of Northwest China. Sci. Total Environ. 2020, 703, 134958. [Google Scholar] [CrossRef]
- Yang, Z.; Cui, B.; Chen, H. A holistic approach for evaluating ecological water allocation in the Yellow River basin of China. Front. Environ. Sci. Eng. China 2007, 1, 99–106. [Google Scholar] [CrossRef]
- Agarwal, S.; Patil, J.P.; Goyal, V.C.; Singh, A. Assessment of Water Supply–Demand Using Water Evaluation and Planning (WEAP) Model for Ur River Watershed, Madhya Pradesh, India. J. Inst. Eng. Ser. A 2018, 100, 21–32. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Shi, C.; Sha, J.; Wang, Z.-L.; Wang, Y. Application of Water Evaluation and Planning (WEAP) model for water resources management strategy estimation in coastal Binhai New Area, China. Ocean Coast. Manag. 2015, 106, 97–109. [Google Scholar] [CrossRef]
- Li, M.; Guo, P.; Singh, V.P. An efficient irrigation water allocation model under uncertainty. Agric. Syst. 2016, 144, 46–57. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, P.; Huo, Z. Irrigation water resources management under uncertainty: An interval nonlinear double-sided fuzzy chance-constrained programming approach. Agric. Water Manag. 2021, 245, 106658. [Google Scholar] [CrossRef]
- Babel, M.S.; Gupta, A.D.; Nayak, D.K. A Model for Optimal Allocation of Water to Competing Demands. Water Resour. Manag. 2005, 19, 693–712. [Google Scholar] [CrossRef]
- Hu, C.; Xia, J.; She, D.; Xu, C.; Zhang, L.; Song, Z.; Zhao, L. A modified regional L-moment method for regional extreme precipitation frequency analysis in the Songliao River Basin of China. Atmos. Res. 2019, 230, 104629. [Google Scholar] [CrossRef]
- Mu, X.; Li, Y.; Gao, P.; Shao, H.; Wang, F. The Runoff Declining Process and Water Quality in Songhuajiang River Catchment, China under Global Climatic Change. CLEAN-Soil Air Water 2012, 40, 394–401. [Google Scholar] [CrossRef]
- Meng, C.; Wang, X.; Li, Y. An Optimization Model for Water Management Based on Water Resources and Environmental Carrying Capacities: A Case Study of the Yinma River Basin, Northeast China. Water 2018, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.G.; Huang, G.H.; Bass, B.; Qin, X.S. IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty. Energy Policy 2009, 37, 868–878. [Google Scholar] [CrossRef]
- Liao, X.; Meng, C.; Cai, B.; Zhao, W. Interval-Parameter Two-Stage Stochastic Programming (IPTSP) Model of Ecological Water Replenishment Scheme in the National Nature Reserve for Improved Suitable Habitat for Rare and Endangered Migrant Birds. Water 2020, 12, 1520. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H. A two-stage mixed-integer fuzzy programming with interval-valued membership functions approach for flood-diversion planning. J. Environ. Manag. 2013, 117, 208–218. [Google Scholar] [CrossRef]
- Khosrojerdi, T.; Moosavirad, S.H.; Ariafar, S.; Ghaeini-Hessaroeyeh, M. Optimal Allocation of Water Resources Using a Two-Stage Stochastic Programming Method with Interval and Fuzzy Parameters. Nat. Resour. Res. 2018, 28, 1107–1124. [Google Scholar] [CrossRef]
- Khalifa, H.A. On two-stage fuzzy random programming for water resources management. Afr. J. Math. Comput. Sci. Res. 2015, 8, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Meng, C.; Ren, Z.; Zhao, W. Optimization of Ecological Water Supplement Scheme for Improved Suitable Habitat Area for Rare Migratory Birds in Nature Reserves Using Interval-Parameter Fuzzy Two-Stage Stochastic Programming Model. Int. J. Environ. Res. Public Health 2020, 17, 7562. [Google Scholar] [CrossRef]
- Li, M.; Guo, P.; Fang, S.Q.; Zhang, L.D. An inexact fuzzy parameter two-stage stochastic programming model for irrigation water allocation under uncertainty. Stoch. Environ. Res. Risk Assess. 2013, 27, 1441–1452. [Google Scholar] [CrossRef]
- Shen, D.; Speed, R. Water Resources Allocation in the People’s Republic of China. Int. J. Water Resour. Dev. 2009, 25, 209–225. [Google Scholar] [CrossRef]
- Wade Miller, G. Integrated concepts in water reuse: Managing global water needs. Desalination 2006, 187, 65–75. [Google Scholar] [CrossRef]
- Fu, Q.; Li, L.; Li, M.; Li, T.; Liu, D.; Hou, R.; Zhou, Z. An interval parameter conditional value-at-risk two-stage stochastic programming model for sustainable regional water allocation under different representative concentration pathways scenarios. J. Hydrol. 2018, 564, 115–124. [Google Scholar] [CrossRef]
- Mohr, M.; Dockhorn, T.; Drewes, J.E.; Karwat, S.; Lackner, S.; Lotz, B.; Nahrstedt, A.; Nocker, A.; Schramm, E.; Zimmermann, M. Assuring water quality along multi-barrier treatment systems for agricultural water reuse. J. Water Reuse Desalination 2020, 10, 332–346. [Google Scholar] [CrossRef]
- Bauer, S.; Dell, A.; Behnisch, J.; Linke, H.J.; Wagner, M. Sustainability requirements of implementing water-reuse concepts for new industrial park developments in water-stressed regions. J. Water Reuse Desalination 2020, 10, 490–499. [Google Scholar] [CrossRef]
- Amaris, G.; Dawson, R.; Gironas, J.; Hess, S.; Ortuzar, J.D. Understanding the preferences for different types of urban greywater uses and the impact of qualitative attributes. Water Res. 2020, 184, 116007. [Google Scholar] [CrossRef]
- Lefebvre, O. Beyond NEWater: An insight into Singapore’s water reuse prospects. Curr. Opin. Environ. Sci. Health 2018, 2, 26–31. [Google Scholar] [CrossRef]
- Sgroi, M.; Vagliasindi, F.G.A.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Wilcox, J.; Nasiri, F.; Bell, S.; Rahaman, M.S. Urban water reuse: A triple bottom line assessment framework and review. Sustain. Cities Soc. 2016, 27, 448–456. [Google Scholar] [CrossRef]
- Pandit, A.; Minné, E.A.; Li, F.; Brown, H.; Jeong, H.; James, J.-A.C.; Newell, J.P.; Weissburg, M.; Chang, M.E.; Xu, M.; et al. Infrastructure ecology: An evolving paradigm for sustainable urban development. J. Clean. Prod. 2017, 163, S19–S27. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Florke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present and future. Earths Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Damkjaer, S.; Taylor, R. The measurement of water scarcity: Defining a meaningful indicator. Ambio 2017, 46, 513–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; He, L.; Kang, S.; Wang, S.; Fang, Y. A novel approach to dynamically optimize the spatio-temporal distribution of crop water consumption. J. Clean. Prod. 2021, 310, 12743. [Google Scholar] [CrossRef]
- Wu, M.; Ge, W.; Wu, Z.; Guo, X.; Di, D.; Huang, S. Evaluation of the Benefits of Urban Water Resource Utilization Based on the Catastrophe and Emergy Methods. Water Resour. Manag. 2020, 34, 1843–1853. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Guo, S.; Zhang, F.; Guo, P. A risk-based fuzzy boundary interval two-stage stochastic water resources management programming approach under uncertainty. J. Hydrol. 2020, 582, 124553. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Guo, S.; Yue, Q.; Guo, P. A bi-level multi-objective linear fractional programming for water consumption structure optimization based on water shortage risk. J. Clean. Prod. 2019, 237, 117829. [Google Scholar] [CrossRef]
- Cheng, B.; Li, H. Impact of climate change and human activities on economic values produced by ecosystem service functions of rivers in water shortage area of Northwest China. Env. Sci. Pollut. Res. Int. 2020, 27, 26570–26578. [Google Scholar] [CrossRef]
- Bhat, R.A.; Singh, D.V.; Qadri, H.; Dar, G.H.; Dervash, M.A.; Bhat, S.A.; Unal, B.T.; Ozturk, M.; Hakeem, K.R.; Yousaf, B. Vulnerability of municipal solid waste: An emerging threat to aquatic ecosystems. Chemosphere 2022, 287, 132223. [Google Scholar] [CrossRef]
- Kumar, H.; Kumari, M. Experimental and theoretical investigation of 3,3′-diamino dipropyl amine: Highly efficient corrosion inhibitor for carbon steel in 2 N HCl at normal and elevated temperatures. J. Mol. Struct. 2021, 1229, 129598. [Google Scholar] [CrossRef]
- Boubaker, F.; Ridha, B.C. Esparto paper industry wastewater treatment by adsorption onto powdered activated carbon. Int. J. Environ. Anal. Chem. 2020, 101, 2817–2834. [Google Scholar] [CrossRef]
- Anwar, R.Z.; Abdelghani, C.F.; Cherifa, A.; Zohra, G.F.; Bechlaghem, A. Analysis and reliability of a wastewater treatment plant: The contribution of operational safety at Tlemcen WWTP, Algeria. Euro-Mediterr. J. Environ. Integr. 2021, 6, 31. [Google Scholar] [CrossRef]
Region | Department | Planning Period | ||
---|---|---|---|---|
t = 1 | t = 2 | t = 3 | ||
Panshi | Industry | [573.60, 758.00] | [768.80, 1089] | [1047.37, 1047.37] |
Municipal | [1380.00, 1736.00] | [1387.20, 1754.00] | [1393.60, 1771.00] | |
Ecology | [396.00, 498.00] | [435.00, 572.40] | [479.00, 657.60] | |
Agriculture | [20,727.00, 21,945.00] | [20,748.00, 22,250.00] | [21,301.00, 23,461.00] | |
Yongji | Industry | [222.00, 222.00] | [311.00, 311.00] | [287.20, 427.00] |
Municipal | [1110.97, 1341.00] | [1062.40, 1362.00] | [1066.40, 1333.00] | |
Ecology | [304.00, 382.80] | [334.00, 439.20] | [368.00, 505.20] | |
Agriculture | [8939.00, 9465.00] | [8949.00, 9597.00] | [9187.00, 9609.27] | |
Shuangyang | Industry | [772.00, 772.00] | [1244.00, 1244.00] | [1961.00, 1961.00] |
Municipal | [641.60, 815.00] | [649.60, 836.00] | [658.40, 857.00] | |
Ecology | [182.00, 229.20] | [200.00, 264.00] | [221.00, 303.60] | |
Agriculture | [9116.00, 9487.00] | [9074.00, 9481.00] | [9430.00, 9980.00] | |
Jiutai | Industry | [1738.09, 1806.00] | [2551.82, 2654.00] | [3651.80, 3800.00] |
Municipal | [1121.60, 1416.00] | [1130.40, 1437.00] | [1138.40, 1459.00] | |
Ecology | [326.00, 410.40] | [366.00, 480.00] | [410.00, 561.60] | |
Agriculture | [26,298.00, 27,523.00] | [26,431.00, 27,905.00] | [27734.00, 29,801.00] | |
Dehui | Industry | [4475.00, 4732.00] | [6144.00, 6144.00] | [8432.00, 8432.00] |
Municipal | [1026.40, 1283.00] | [1032.00, 1290.00] | [1036.80, 1296.00] | |
Ecology | [300.00, 376.80] | [336.00, 440.40] | [376.00, 516.00] | |
Agriculture | [45,819.00, 45819.00] | [46,051.00, 46,051.00] | [48,321.00, 48,321.00] | |
Yitong | Industry | [538.00, 538.00] | [610.00, 610.00] | [689.00, 689.00] |
Municipal | [641.45, 553.00] | [440.80, 559.00] | [442.40, 564.00] | |
Ecology | [126.00, 157.20] | [138.00, 180.00] | [152.00, 204.00] | |
Agriculture | [12,696.00, 13,536.00] | [12,566.00, 13,921.00] | [12,792.00, 14,725.00] | |
Changchun | Industry | [11,248.14, 12,033.00] | [17,995.92, 18,062.16] | [24,922.75, 28,075.39] |
Municipal | [16,685.10, 18,539.00] | [16,894.80, 19,295.00] | [17,107.20, 19,782.00] | |
Ecology | [5081.05, 5523.60] | [5072.00, 6628.80] | [5833.00, 7953.60] | |
Agriculture | [11,272.00, 11,272.00] | [11,329.00, 11,961.00] | [11,887.00, 12,774.00] | |
Nong’an | Industry | [1172.73, 1291.00] | [1680.37, 1727.00] | [2269.00, 2200.93] |
Municipal | [1109.60, 1387.00] | [1128.80, 1451.00] | [1148.80, 1495.00] | |
Ecology | [319.00, 400.80] | [357.00, 469.20] | [400.00, 548.40] | |
Agriculture | [61,958.00, 61,958.00] | [62,271.00, 65,744.00] | [65,342.00, 70,211.00] |
Region | Department | Reused Water | ||
---|---|---|---|---|
t = 1 | t = 2 | t = 3 | ||
Panshi | Industrial | [0.00, 184.40] | [0.00, 320.20] | [481.64, 481.64] |
Municipal | [0.00, 168.70] | [0.00, 129.88] | [0.00, 170.36] | |
Ecological | [194.90, 407.58] | [214.19, 393.04] | [295.07, 527.05] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Yongji | Industrial | [0.00, 0.00] | [0.00, 0.00] | [0.00, 139.80] |
Municipal | [0.00, 76.82] | [0.00, 79.40] | [0.00, 130.36] | |
Ecological | [220.44, 335.60] | [132.77, 243.33] | [110.60, 424.11] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Shuangyang | Industrial | [0.00, 0.00] | [0.00, 102.18] | [0.00, 0.00] |
Municipal | [0.00, 78.43] | [0.00, 138.19] | [0.00, 80.49] | |
Ecological | [105.48, 208.17] | [231.05, 418.25] | [155.96, 274.24] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Jiutai | Industrial | [0.00, 67.91] | [0.00, 0.00] | [0.00, 148.20] |
Municipal | [0.00, 137.11] | [0.00, 126.16] | [0.00, 139.17] | |
Ecological | [184.39, 361.67] | [210.93, 375.47] | [269.65, 466.88] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Dehui | Industrial | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] |
Municipal | [0.00, 125.47] | [0.00, 126.16] | [0.00, 126.75] | |
Ecological | [168.74, 327.70] | [210.93, 375.47] | [245.59, 414.72] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Yitong | Industrial | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] |
Municipal | [0.00, 0.00] | [0.00, 53.89] | [0.00, 54.08] | |
Ecological | [124.09, 124.09] | [75.45, 146.15] | [92.08, 166.04] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Changcuhn | Industrial | [0.00, 784.86] | [0.00, 1317.84] | [404.96, 2243.61] |
Municipal | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Ecological | [4251.28, 4735.23] | [4954.918, 5672.73] | [5474.30, 6330.24] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | |
Nongan | Industrial | [0.00, 13.81] | [0.00, 46.63] | [0.00, 68.07] |
Municipal | [0.00, 135.65] | [0.00, 137.99] | [0.00, 140.44] | |
Ecological | [182.42, 354.27] | [234.44, 426.59] | [272.12, 478.40] | |
Agricultural | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] |
Regions | ITSP | IFTSP | ||||||
---|---|---|---|---|---|---|---|---|
Industrial | Municipal | Ecological | Agricultural | Industrial | Municipal | Ecological | Agricultural | |
Panshi | 289.96 | 447.59 | 0.00 | 9875.25 | 286.96 | 399.30 | 0.00 | 9534.32 |
Yongji | 408.48 | 330.52 | 0.00 | 4590.53 | 408.48 | 292.76 | 0.00 | 4469.50 |
Shuangyang | 56.47 | 197.79 | 0.00 | 7779.34 | 56.47 | 174.75 | 0.00 | 7748.60 |
Jiutai | 112.56 | 343.65 | 0.00 | 21,192.71 | 112.56 | 305.48 | 0.00 | 20,775.42 |
Dehui | 5198.25 | 311.37 | 0.00 | 20,847.65 | 4474.39 | 279.55 | 0.00 | 19252.10 |
Yitong | 985.71 | 144.02 | 0.00 | 3248.64 | 985.71 | 144.02 | 0.00 | 3135.91 |
Changchun | 7581.73 | 4499.27 | 0.00 | 6627.94 | 6941.50 | 4039.43 | 0.00 | 6125.25 |
Nongan | 694.12 | 336.61 | 0.00 | 18,649.36 | 599.53 | 302.21 | 0.00 | 17,225.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Yang, H.; He, W.; Yang, L.; Hao, N.; Sun, P.; Li, Y. Optimal Water Resources Allocation in the Yinma River Basin in Jilin Province, China, Using Fuzzy Programming. Water 2022, 14, 2119. https://doi.org/10.3390/w14132119
Li P, Yang H, He W, Yang L, Hao N, Sun P, Li Y. Optimal Water Resources Allocation in the Yinma River Basin in Jilin Province, China, Using Fuzzy Programming. Water. 2022; 14(13):2119. https://doi.org/10.3390/w14132119
Chicago/Turabian StyleLi, Pengyu, Hao Yang, Wei He, Luze Yang, Ning Hao, Peixuan Sun, and Yu Li. 2022. "Optimal Water Resources Allocation in the Yinma River Basin in Jilin Province, China, Using Fuzzy Programming" Water 14, no. 13: 2119. https://doi.org/10.3390/w14132119
APA StyleLi, P., Yang, H., He, W., Yang, L., Hao, N., Sun, P., & Li, Y. (2022). Optimal Water Resources Allocation in the Yinma River Basin in Jilin Province, China, Using Fuzzy Programming. Water, 14(13), 2119. https://doi.org/10.3390/w14132119