Assessment of Ammonium–N and Nitrate–N Contamination of Shallow Groundwater in a Complex Agricultural Region, Central Western Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrogeological Conditions and Monitoring Wells of the Study Area
2.2. Cropping Patterns
- (i)
- Double rice cropping: farms in which rice crops are grown and harvested twice a year.
- (ii)
- Single rice cropping: farms in which rice crops are grown and harvested the first or second rice crop in a year.
- (iii)
- Rotational cropping: farms in which rice crops are grown and harvested every two years (type I). Other farms grow and harvest either a single season or twice the paddy rice crop at an interval of three years (type II and type III).
- (iv)
- Sugarcane: farms that mainly grow and harvest sugarcanes all year.
2.3. Data Analysis
2.4. MK Test and Slope Estimation
2.5. Significant Change Point and Recent Trends
3. Results
3.1. Groundwater Quality Standards and Current Status of Nitrogen Pollution
3.2. Influence of Cropping Patterns on Nitrogen Pollution
3.3. MK Test for the Entire Period of the Data Set
3.4. Recent Trend of Nitrogen Pollution
3.5. Threshold Value of DO and Redox State
3.6. Relationship between Groundwater DO and Cropping Pattern
4. Discussion
4.1. Nitrogen Pollution Level and Effectiveness of Rational Fertilization Promotion
4.2. Effects of Cropping Patterns, Redox Conditions, and Hydrogeological Conditions on Nitrogen Pollution
4.3. Other Factors Inducing High Level Ammonium-N Contamination
4.4. Tracing of Nitrogen Sources and Monitoring Network in Study Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Ge, Y. Excessive application of fertilizer, agricultural non-point source pollution, and farmers’ policy choice. Sustainability 2019, 11, 1165. [Google Scholar] [CrossRef] [Green Version]
- Chowdary, V.M.; Rao, N.H.; Sarma, P.B.S. A coupled soil water and nitrogen balance model for flooded rice fields in India. Agriculture. Ecosyst. Environ. 2004, 103, 425–441. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Yan, X.Y.; Ti, C.P.; Vitousek, P.; Chen, D.; Leip, A.; Cai, Z.C.; Zhu, Z.L. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environ. Res. Lett. 2014, 9, 095002. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Birkinshaw, S.J.; Ewen, J. Modelling nitrate transport in the Slapton Wood catchment using SHETRAN. J. Hydrol. 2000, 230, 18–33. [Google Scholar] [CrossRef]
- Fan, A.M.; Willhite, C.C.; Book, S.A. Evaluation of the nitrate drinking water standard with reference to infant methemoglobinemia and potential reproductive toxicity. Regul. Toxicol. Pharmacol. 1987, 7, 135–148. [Google Scholar] [CrossRef]
- Yang, C.Y.; Cheng, M.F.; Tsai, S.S.; Hsieh, Y.L. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Jpn. J. Cancer Res. 1998, 89, 124–130. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, R.C.; Seth, A.K. Methaemoglobinaemia in areas with high nitrate concentration in drinking water. Natl. Med. J. India 2000, 13, 58–61. [Google Scholar]
- Wolfe, A.H.; Patz, J.A. Reactive nitrogen and human health: Acute and long-term implications. Ambio 2002, 31, 120–125. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Hii, B.; Liebscher, H.; Chipperfield, K.; Paul, J.W.; Grove, G.; Szeto, S.Y. Agricultural land use practices and nitrate contamination in the Abbotsford Aquifer, British Columbia Canada. Agric. Ecosyst. Environ. 1998, 69, 99–112. [Google Scholar] [CrossRef]
- Kumazawa, K. Nitrogen fertilization and nitrate pollution in groundwater in Japan: Present status and measures for sustainable agriculture. Nutr. Cycl. Agroecosystems 2002, 63, 129–137. [Google Scholar] [CrossRef]
- Dunn, S.M.; Vinten, A.J.A.; Lilly, A.; DeGroote, J.; McGechan, M. Modelling nitrate losses from agricultural activities on a national scale. Water Sci. Technol. 2005, 51, 319–327. [Google Scholar] [CrossRef]
- Chandna, P.; Khurana, M.L.; Ladha, J.K.; Punia, M.; Mehla, R.S.; Gupta, R. Spatial and seasonal distribution of nitrate-N in groundwater beneath the rice-wheat cropping system of India: A geospatial analysis. Environ. Monit. Assess. 2011, 178, 545–562. [Google Scholar] [CrossRef]
- Gurdak, J.J.; Qi, S.L. Vulnerability of recently recharged groundwater in principle aquifers of the United States to nitrate contamination. Environ. Sci. Technol. 2012, 46, 6004–6012. [Google Scholar] [CrossRef]
- Zhou, M.; Butterbach-Bahl, K. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat crop-ping systems. Plant Soil 2014, 374, 977–991. [Google Scholar] [CrossRef]
- Mititelu-Ionuș, O.; Simulescu, D.; Popescu, S.M. Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: A regional case study (SouthWestern Romania). Environ. Monit. Assess. 2019, 191, 501. [Google Scholar] [CrossRef]
- Koh, E.H.; Hyun, B.S.; Lee, E.; Kim, M.C.; Kang, B.R.; Park, W.B.; Jun, S.C. Crop Field Level Estimation of Nitrogen Input from Fertilizer Use in Jeju Island, South Korea: Management Methods to Prevent Groundwater NO3-N Contamination. Water 2021, 13, 2715. [Google Scholar] [CrossRef]
- Böhlke, J.K.; Smith, R.L.; Miller, D.N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies. Water Resour. Res. 2006, 42, W05411. [Google Scholar] [CrossRef]
- Umezawa, Y.; Hosono, T.; Onodera, S.; Siringan, F.; Buapeng, S.; Delinom, R.; Yoshimizu, C.; Tayasu, I.; Nagata, T.; Taniguchi, M. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci. Total Environ. 2008, 404, 361–376. [Google Scholar] [CrossRef]
- Norrman, J.; Sparrenbom, C.J.; Berg, M.; Nhan, D.D.; Jacks, G.; Harms-Ringdahl, P.; Nhan, P.Q.; Rosqvist, H. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Appl. Geochem. 2015, 61, 248–258. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environ. Sci. Processes Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef]
- Du, X.; Feng, J.; Fang, M.; Ye, X. Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China. Water 2020, 12, 3292. [Google Scholar] [CrossRef]
- Rusydi, A.F.; Onodera, S.-I.; Saito, M.; Hyodo, F.; Maeda, M.; Sugianti, K.; Wibawa, S. Potential sources of ammonium-nitrogen in the coastal groundwater determined from a combined analysis of nitrogen isotope, biological and geological parameters, and land use. Water 2021, 13, 25. [Google Scholar] [CrossRef]
- Nakasone, H.; Kuroda, H.; Kato, T.; Tabuchi, T. Nitrogen removal from water containing high nitrate nitrogen in paddy field (wetland). Water Sci. Technol. 2003, 48, 209–216. [Google Scholar] [CrossRef]
- Jang, C.S.; Chen, S.K. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. J. Hydrol. 2015, 523, 441–451. [Google Scholar] [CrossRef]
- Yoon, K.S.; Choi, J.; Son, J.G.; Cho, J.Y. Concentration profile of nitrogen and phosphorus in leachate of a paddy plot during the rice cultivation period in southern Korea. Commun. Soil Sci. Plant Anal. 2006, 37, 1957–1972. [Google Scholar] [CrossRef]
- Zhou, S.; Nishiyama, K.; Watanabe, Y.; Hosomi, M. Nitrogen budget and ammonia volatilization in paddy fields fertilized with liquid cattle waste. Water Air Soil Pollut. 2009, 201, 135–147. [Google Scholar] [CrossRef]
- Zhu, J.G.; Liu, G.; Han, Y.; Zhang, Y.L.; Xing, G.X. Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere 2003, 50, 725–732. [Google Scholar] [CrossRef]
- Tian, Y.H.; Yin, B.; Yang, L.Z.; Yin, S.X.; Zhu, Z.L. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China. Pedosphere 2007, 17, 445–456. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, Y.X.; Xiong, Z.Q.; Yan, X.Y.; Xing, G.X.; Zhu, Z.L. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu Lake region, China. Plant Soil 2009, 319, 225–234. [Google Scholar] [CrossRef]
- Zhang, J.H.; Liu, J.L.; Zhang, J.B.; Cheng, Y.N.; Wang, W.P. Nitrate-nitrogen dynamics and nitrogen budgets in rice-wheat rotations in Taihu Lake region, China. Pedosphere 2013, 23, 59–69. [Google Scholar] [CrossRef]
- Pathak, B.K.; Kazama, F.; Toshiaki, I. Monitoring of nitrogen leaching from a tropical paddy in Thailand. CIGR J. 2004, 6, 1–11. [Google Scholar]
- Peng, S.Z.; Yang, S.H.; Xu, J.Z.; Luo, Y.F.; Hou, H.J. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–249. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Cailas, M.D.; Cavadias, G.; Gehr, R. Application of a nonparametric approach for monitoring and detecting trends in water quality data of the St. Lawrence River. Can. Water Poll. Res. J. 1986, 21, 153–167. [Google Scholar]
- Yu, Y.S.; Zou, S.; Whittemore, D. Non-parametric trend analysis of water quality data of rivers in Kansas. J. Hydrol. 1993, 150, 61–80. [Google Scholar] [CrossRef]
- Broers, H.P.; Van Der Grift, B. Regional monitoring of temporal changes in groundwater quality. J. Hydrol. 2004, 296, 192–220. [Google Scholar] [CrossRef]
- Luterbacher, J.; Dietrich, D.; Xoplaki, E.; Grosjean, M.; Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 2004, 303, 1499–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naddeo, V.; Zarra, T.; Belgiorno, V. Optimization of sampling frequency for river water quality assessment according to Italian implementation of the EU Water Framework Directive. Environ. Sci. Policy 2007, 10, 243–249. [Google Scholar] [CrossRef]
- Stuart, M.E.; Chilton, P.J.; Kiniiburgh, D.G.; Cooper, D.M. Screening for long term trends in groundwater nitrate monitoring data. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 361–376. [Google Scholar] [CrossRef]
- Groppo, J.D.; Marcos de Moraes, J.; Beduschi, C.E.; Genovez, A.M.; Martinelli, L.A. Trend analysis of water quality in some rivers with different degrees of development within the São Paulo State, Brazil. River Res. Appl. 2008, 24, 1056–1067. [Google Scholar] [CrossRef]
- Mendizabal, I.; Baggelaar, P.K.; Stuyfzand, P.J. Hydrochemical trends for public supply well fields in The Netherlands (1898–2008), natural backgrounds and upscaling to groundwater bodies. J. Hydrol. 2012, 450, 279–292. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Dutta, D. Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environ. Monit. Assess. 2014, 186, 4719–4742. [Google Scholar] [CrossRef]
- Lopez, B.; Baran, N.; Bourgine, B. An innovative procedure to assess multi-scale temporal trends in groundwater quality: Example of the nitrate in the Seine–Normandy basin, France. J. Hydrol. 2015, 522, 1–10. [Google Scholar] [CrossRef]
- Pettit, A.N. A non-parametric approach to the change point problem. J. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process 2015, 2, 729–749. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. On a class of aligned rank order tests in two-way layouts. Ann. Math. Statist. 1968, 39, 1115–1124. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water-quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.F.; Liu, T.K. Dissolved oxygen and nitrate of groundwater in Choushui Fan-Delta, western Taiwan. Environ. Earth Sci. 2003, 44, 731–737. [Google Scholar]
- Taiwan Central Weather Bureau. Internet Application of Climate Data; Central Weather Bureau, Ministry of Transportation and Communications, Executive Yuan: Taipei, Taiwan, 2021. [Google Scholar]
- Taiwan Central Geological Survey (CGS). Project of Groundwater Monitoring Network in Taiwan during First Stage: Research Report of Choushui River Alluvial Fan; Water Resources Bureau: Taipei, Taiwan, 1999; p. 383. [Google Scholar]
- Taiwan Environmental Protection Administration (Taiwan EPA). Operating Principles for Setting up Groundwater Quality Monitoring Wells. Environmental Protection Administration, Executive Yuan, Taipei, Taiwan. 2013. Available online: https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL006777 (accessed on 1 October 2021).
- Taiwan Irrigation Agency. History of Irrigation in Taiwan. Irrigation Agency, Council of Agriculture, Executive Yuan, Taipei, Taiwan. 2021. Available online: https://www.ia.gov.tw/en/history/part4 (accessed on 1 October 2021).
- Taiwan Environmental Protection Administration (Taiwan EPA). Environmental Water Quality Monitoring: Groundwater. Environmental Protection Administration, Executive Yuan, Taipei, Taiwan. 2021. Available online: https://wq.epa.gov.tw/EWQP/en/EnvWaterMonitoring/Groundwater.aspx (accessed on 1 October 2021).
- Taiwan Environmental Protection Administration (Taiwan EPA). Environmental Analysis Laboratory. Environmental Protection Administration, Executive Yuan, Taipei, Taiwan. 2022. Available online: https://www.epa.gov.tw/niea-en/33ADB229981BAE03 (accessed on 1 October 2021).
- Jofre, M.B.; Karasov, W.H. Direct effect of ammonia on three species of North American anuran amphibians. Environ. Toxicol. Chem. 1999, 18, 1806–1812. [Google Scholar] [CrossRef]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thurston, R.V. Aqueous ammonia equilibrium calculations: Effect of pH and Temperature. J. Fish. Board Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Theil, H. A Rank Invariant Method of Linear and Polynomial Regression Analysis, I. Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen. Ser. A Math. Sci. 1950, 53, 386–392. [Google Scholar]
- Taiwan Environmental Protection Administration (Taiwan EPA). Groundwater Pollution Monitoring Standards (2013.12.18 version). Environmental Protection Administration, Executive Yuan, Taipei, Taiwan. 2022. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=O0110013 (accessed on 1 October 2021).
- Taiwan Environmental Protection Administration (Taiwan EPA). Drinking Water Quality Standards (2017.01.10 Version). Environmental Protection Administration, Executive Yuan, Taipei, Taiwan. 2022. Available online: https://oaout.epa.gov.tw/law/EngLawContent.aspx?lan=E&id=171 (accessed on 1 October 2021).
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum, 4th ed; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization (WHO). Drinking Water Parameter Cooperation Project. Support to the Revision of Annex I Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption (Drinking Water Directive) Recommendations; World Health Organization: Geneva, Switzerland, 2017; pp. 1–240. [Google Scholar]
- Jang, C.S.; Liu, C.W. Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan. J. Contam. Hydrol. 2005, 79, 135–155. [Google Scholar] [CrossRef]
- McMahon, P.B.; Chapelle, F.H. Redox processes and water quality of selected principal aquifer systems. Ground Water 2008, 46, 259–271. [Google Scholar] [CrossRef]
- Taiwan Council of Agriculture (Taiwan COA). Rational Fertilization of Farmland, Sustainable Management of Agriculture. Statistics and Publications, Issue 280 (October, 2015). Council of Agriculture, Executive Yuan, Taipei, Taiwan. 2015. Available online: https://www.coa.gov.tw/ws.php?id=2503584 (accessed on 15 February 2022).
- Matsuno, Y.; Nakamura, K.; Masumoto, T.; Matsui, H.; Kato, T.; Sato, Y. Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy Water Environ. 2006, 4, 189–197. [Google Scholar] [CrossRef]
- Kim, T.C.; Gim, U.S.; Kim, J.S.; Kim, D.S. The multi-functionality of paddy farming in Korea. Paddy Water Environ. 2006, 4, 169–179. [Google Scholar] [CrossRef]
- Liu, C.W.; Zhang, S.W.; Lin, K.H.; Lin, W.T. Comparative analysis of temporal changes of multifunctionality benefit of two major rice paddy plains in Taiwan. Paddy Water Environ. 2010, 8, 199–205. [Google Scholar] [CrossRef]
- Cassman, K.G.; Peng, S.; Olk, D.C.; Ladha, J.K.; Reichardt, W.; Doberman, A.; Singh, U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- Kao, Y.H.; Liu, C.W.; Jang, C.S.; Zanh, S.W.; Lin, K.H. Assessment of nitrogen contamination of groundwater in paddy and upland fields. Paddy Water Environ. 2011, 9, 301–307. [Google Scholar] [CrossRef]
- Patil, M.D.; Das, B.S.; Bhadoria, P.B.S. A simple bund plugging technique for improving water productivity in wetland rice. Soil Tillage Res. 2011, 112, 66–75. [Google Scholar] [CrossRef]
- Huang, H.C.; Liu, C.W.; Chen, S.K.; Chen, J.S. Analysis of percolation and seepage through paddy bunds. J. Hydrol. 2003, 284, 13–25. [Google Scholar] [CrossRef]
- Janssen, M.; Lennartz, B. Water losses through paddy bunds: Methods, experimental data, and simulation studies. J. Hydrol. 2009, 369, 142–153. [Google Scholar] [CrossRef]
- McMahon, P.B.; Bo¨hlke, J.K.; Christenson, S.C. Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the Central High Plains Aquifer, southwestern Kansas, USA. Appl. Geochem. 2004, 19, 1655–1686. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Singh, B. Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutr. Cycl. Agroecosystems 1997, 47, 197–212. [Google Scholar] [CrossRef]
- Yang, R.; Tong, J.; Hu, B.X.; Li, J.Y.; Wei, W.S. Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model. Environ. Sci. Pollut. Res. 2017, 24, 15089–15106. [Google Scholar] [CrossRef]
- Ağca, N.; Karanlık, S.; Ödemiş, B. Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik Plain, southern Turkey. Environ. Monit. Assess. 2014, 186, 5921–5934. [Google Scholar] [CrossRef]
- Buss, S.R.; Herbert, A.W.; Morgan, P.; Thornton, S.F. Review of ammonium attenuation in soil and groundwater. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 347–359. [Google Scholar] [CrossRef]
- Yang, J.R. Impact of Agricultural Nonpoint Source Pollution on Groundwater Quality–Case Study of Paddy Fields in Changhua and Yunlin Area. Master’s Thesis, National Taipei University of Technology, Taipei, Taiwan, 2017. (In Chinese). [Google Scholar]
- Chen, S.K.; Jang, C.S.; Chen, S.M.; Chen, K.H. Effect of N-fertilizer application on return flow water quality from a terraced paddy field in Northern Taiwan. Paddy Water Environ. 2013, 11, 123–133. [Google Scholar] [CrossRef]
- Taiwan Council of Agriculture (Taiwan COA). Agricultural Statistics: Livestock and Poultry Statistical Survey Results. Council of Agriculture, Executive Yuan, Taipei, Taiwan. 2022. Available online: https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx (accessed on 1 February 2022).
- Hsieh, W.L. Study of Chemical Characteristics of Groundwater Following Manure Application. Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2011. (In Chinese). [Google Scholar]
- Chang, T.; Wang, K.; Wang, S.; Hsu, C.; Hsu, C. Evaluation of the Groundwater and Irrigation Quality in the Zhuoshui River Alluvial Fan between Wet and Dry Seasons. Water 2022, 14, 14. [Google Scholar] [CrossRef]
Concentration (mg/L) | Double Rice Cropping | Rotational Cropping II | Rotational Cropping III | Others | Total |
---|---|---|---|---|---|
<0.05 | S4, S7 | S5 | S11, S17 | - | 5 |
0.05–0.1 | - | - | S18 | - | 1 |
0.1–0.25 | N6, N9, N13, S6, S12 | - | S9 | N3, N14, N20 | 9 |
0.25–1.5 | N1, N5, N7, N10, N12, N15, N16, N18, N19, S3, S15 | S2, S13, S14 | S10 | - | 15 |
>1.5 | N2, N4, N11, N17 | S1, S8, S16 | - | N8 | 8 |
Total | 22 | 7 | 5 | 4 | 38 |
<0.5 | N1, N2, N4, N6, N7, N10, N11, N12, N13, N16, N17, N18, N19, S3, S15 | S1, S2, S8, S13, S14, S16 | S9, S10, S17, S18 | N3, N8, N14, N20 | 29 |
0.5–2.5 | N5, N9, N15, S12 | - | - | - | 4 |
2.5–5 | S4, S6 | - | - | - | 2 |
>5 | S7 | S5 | S11 | - | 3 |
Total | 22 | 7 | 5 | 4 | 38 |
Trend | Double Rice Cropping | Rotational Cropping II | Rotational Cropping III | Others | Total |
---|---|---|---|---|---|
Upward | N4, N10, N16, N17 | S8 | - | - | 5 |
No significant trend | N2, N5, N7, N11, N12, N13, N19, S3, S4, S15 | S1, S2, S5, S14 | - | N3, N8, N14, N20 | 18 |
Downward | N1, N6, N9, N15, N18, S6, S7, S12 | S13, S16 | S9, S10, S11, S17, S18 | - | 15 |
Total | 22 | 7 | 5 | 4 | 38 |
Upward | N9, N15, S6 | S5 | S11 | N14 | 6 |
No significant trend | N11, S4, S7, S12 | - | S9, S10 | N20 | 7 |
Downward | N1, N2, N4, N5, N6, N7, N10,N12, N13, N16, N17, N18, N19, S3, S15 | S1, S2, S8, S13, S14, S16 | S17, S18 | N3, N8 | 25 |
Total | 22 | 7 | 5 | 4 | 38 |
Well NO. | Total | ||
---|---|---|---|
Upward | Upward | -- | 0 |
Upward | Downward | N4, N10, N16, N17, S8 | 5 |
Upward | No significant trend | -- | 0 |
Downward | Upward | N9, N15, S6, S11 | 4 |
Downward | Downward | N1, N6, N18, S13, S16, S17, S18 | 7 |
Downward | No significant trend | S7, S9, S10, S12 | 4 |
No significant trend | Upward | N14, S5 | 2 |
No significant trend | Downward | N2, N3, N5, N7, N8, N12, N13, N19, S1, S2, S3, S14, S15 | 13 |
No significant trend | No significant trend | N11, N20, S4 | 3 |
Trend (mg/L/yr) | Double Rice Cropping | Rotational Cropping II | Rotational Cropping III | Others | Total |
---|---|---|---|---|---|
Upward (0.01 < Trend) | N4, N16, N17 | S8 | - | - | 4 |
Stable (−0.01 < Trend < 0.01) | N10, S6, S7 | - | S11, S17, S18 | - | 6 |
Downward (Trend < −0.01) | N1, N6, N9, N15, N18, S12 | S13, S16 | S9, S10 | - | 10 |
No significant trend | N2, N5, N7, N11, N12, N13, N19, S3, S4, S15 | S1, S2, S5, S14 | - | N3, N8, N14, N20 | 18 |
Total | 22 | 7 | 5 | 4 | 38 |
Upward (0.1 < Trend) | N9, S6 | S5, | S11 | - | 4 |
Stable (−0.1 < Trend < 0.1) | N1, N2, N4, N5, N6, N7, N10, N12, N13, N15, N16, N17, N18, N19, S3, S15 | S1, S2, S8, S13, S14, S16 | S18 | N3, N8, N14 | 26 |
Downward (Trend < −0.1) | - | - | S17 | - | 1 |
No significant trend | N11, S4, S7, S12 | - | S9, S10 | N20 | 7 |
Total | 22 | 7 | 5 | 4 | 38 |
Trend | Double Rice Cropping | Rotational Cropping II | Rotational Cropping III | Others | Total |
---|---|---|---|---|---|
(mg/L/yr) | |||||
Upward (0.01 < Trend) | N1 | - | - | N8 | 2 |
Stable (−0.01 < Trend < 0.01) | N13, S6, S7, S12 | - | - | - | 4 |
Downward (Trend < −0.01) | N17 | S2, S13, S16 | - | - | 4 |
No significant trend | N2, N4, N5, N6, N7, N9, N10, N11, N12, N15, N16, N18, N19, S3, S4, S15 | S1, S5, S8, S14 | S9, S10, S11, S17, S18 | N3, N14, N20 | 28 |
Total | 22 | 7 | 5 | 4 | 38 |
Upward (0.1 < Trend) | S6 | - | - | - | 1 |
Stable (−0.1 < Trend < 0.1) | N2, N4, N7, S3 | S16 | S17 | N3, N14 | 8 |
Downward (Trend < −0.1) | - | - | - | - | 0 |
No significant trend | N1, N5, N6, N9, N10, N11, N12, N13, N15, N16, N17, N18, N19, S4, S7, S12, S15 | S1, S2, S5, S8, S13, S14 | S9, S10, S11, S18 | N8, N20 | 29 |
Total | 22 | 7 | 5 | 4 | 38 |
Concentration (mg/L) | Double Rice Cropping | Rotational Cropping II | Rotational Cropping III | Others | Total |
---|---|---|---|---|---|
<0.5 | N5 *, N7 *, N9, N10 *, N11 *, N12 *, N13, S3 *, S6, S12 | S1 *, S13 *, S14 *, S16 * | S9, S10 * | N8 *, N14, N20 | 19 (* 12) |
0.5–1.0 | N1 *, N2 *, N4 *, N16 *, N18 *, N19 *, S4 | S2 *, S8 * | - | N3 | 10 (* 8) |
1.0–2.0 | N6, N15 *, N17 *, S15 * | S5 | S11, S17 | - | 7(* 3) |
>2.0 | S7 | - | S18 | - | 2 (* 0) |
Total | 22 (* 15) | 7 (* 6) | 5 (* 1) | 4 (* 1) | 38 (* 23) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-K.; Lee, Y.-Y.; Liao, T.-L. Assessment of Ammonium–N and Nitrate–N Contamination of Shallow Groundwater in a Complex Agricultural Region, Central Western Taiwan. Water 2022, 14, 2130. https://doi.org/10.3390/w14132130
Chen S-K, Lee Y-Y, Liao T-L. Assessment of Ammonium–N and Nitrate–N Contamination of Shallow Groundwater in a Complex Agricultural Region, Central Western Taiwan. Water. 2022; 14(13):2130. https://doi.org/10.3390/w14132130
Chicago/Turabian StyleChen, Shih-Kai, Yuan-Yu Lee, and Tzu-Ling Liao. 2022. "Assessment of Ammonium–N and Nitrate–N Contamination of Shallow Groundwater in a Complex Agricultural Region, Central Western Taiwan" Water 14, no. 13: 2130. https://doi.org/10.3390/w14132130
APA StyleChen, S. -K., Lee, Y. -Y., & Liao, T. -L. (2022). Assessment of Ammonium–N and Nitrate–N Contamination of Shallow Groundwater in a Complex Agricultural Region, Central Western Taiwan. Water, 14(13), 2130. https://doi.org/10.3390/w14132130