Test of a Screw-Style Fish Lift for Introducing Migratory Fish into a Selective Fish Passage Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Hydraulics
2.3. Experimental Procedure
2.4. Statistical Analysis
3. Results
3.1. Hydraulics
3.2. Fish Passage
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GLRI (Great Lakes Restoration Initiative). Great Lakes Restoration Initiative Action Plan III. 2019. Available online: https://www.epa.gov/sites/default/files/2019-10/documents/glri-action-plan-3-201910-30pp.pdf (accessed on 22 April 2022).
- McLaughlin, R.L.; Smyth, E.R.; Castro-Santos, T.; Jones, M.L.; Koops, M.A.; Pratt, T.C.; Vélez-Espino, L.A. Unintended consequences and trade-offs of fish passage. Fish Fish. 2013, 14, 580–604. [Google Scholar] [CrossRef]
- Zielinski, D.P.; McLaughlin, R.L.; Pratt, T.C.; Goodwin, R.A.; Muir, A.M. Single-stream recycling inspires selective fish passage solutions for the connectivity conundrum in aquatic ecosystems. BioScience 2020, 70, 871–886. [Google Scholar] [CrossRef] [PubMed]
- Hrodey, P.J.; Lewandoski, S.A.; Sullivan, W.P.; Barber, J.M.; Mann, K.A.; Paudel, B.; Symbal, M.J. Evolution of the Sea Lamprey Control Barrier Program: The importance of lowermost barriers. J. Great Lakes Res. 2021, 47, S285–S296. [Google Scholar] [CrossRef]
- Mandrak, N.E.; Jones, M.L.; McLaughlin, R.L. Evaluation of the Great Lakes Fishery Commission interim policy on barrier placement. Great Lakes Fish. Comm. 2003, 76. [Google Scholar]
- Januchowski-Hartley, S.R.; McIntyre, P.B.; Diebel, M.; Doran, P.J.; Infante, D.M.; Joseph, C.; Allan, J.D. Restoring aquatic ecosystem connectivity requires expanding inventories of both dams and road crossings. Front. Ecol. Environ. 2013, 11, 211–217. [Google Scholar] [CrossRef]
- Rahel, F.J.; McLaughlin, R.L. Selective fragmentation and the management of fish movement across anthropogenic barriers. Ecol. Appl. 2018, 28, 2066–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, R.L.; Hallett, A.; Pratt, T.C.; O’Connor, L.M.; McDonald, D.G. Research to Guide Use of Barriers, Traps, and Fishways to Control Sea Lamprey. J. Great Lakes Res. 2007, 33, 7–19. [Google Scholar] [CrossRef]
- Pratt, T.C.; O’Connor, L.M.; Hallett, A.G.; McLaughlin, R.L.; Katopodis, C.; Hayes, D.B.; Bergstedt, R.A. Balancing aquatic habitat fragmentation and control of invasive species: Enhancing selective fish passage at sea lamprey control barriers. Trans. Am. Fish. Soc. 2009, 138, 652–665. [Google Scholar] [CrossRef]
- Eickholt, J.; Kelly, D.; Bryan, J.; Miehls, S.; Zielinski, D.P. Advancements towards selective barrier passage by automatic species identification: Applications of deep convolutional neural networks on images of dewatered fish. ICES J. Mar. Sci. 2020, 77, 2804–2813. [Google Scholar] [CrossRef]
- Garavelli, L.; Linley, T.J.; Bellgraph, B.J.; Rhode, B.M.; Janak, J.M.; Colotelo, A.H. Evaluation of passage and sorting of adult Pacific salmonids through a novel fish passage technology. Fish. Res. 2019, 212, 40–47. [Google Scholar] [CrossRef]
- Hawkins, P.R.; Hortle, K.G.; Phommanivong, S.; Singsua, Y. Underwater video monitoring of fish passage in the Mekong River at Sadam Channel, Khone Falls, Laos. River Res. Appl. 2017, 34, 232–242. [Google Scholar] [CrossRef]
- Allken, V.; Rosen, S.; Handegard, N.L.; Malde, K. A deep learning-based method to identify and count pelagic and mesopelagic fishes from trawl camera images. ICES J. Mar. Sci. 2012, 78, 3780–3792. [Google Scholar] [CrossRef]
- Mallen-Cooper, M.; Brand, D.A. Non-salmonids in a salmonid fishway: What do 50 years of data tell us about past and future fish passage? Fish. Manag. Ecol. 2007, 14, 319–332. [Google Scholar] [CrossRef]
- Noonan, M.J.; Grant, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [Google Scholar] [CrossRef]
- Bajer, P.; Adapting Stream Barriers to Remove Common Carp. Legislative-Citizen Commission on Minnesota Resources. 2020; Final Report. Available online: https://www.lccmr.mn.gov/projects/2017-index.html#201706d (accessed on 22 April 2022).
- Koetsier, T.; Blauwendraat, H. The Archimedean screw-pump: A note on its invention and the development of the theory. In International Symposium on History of Machines and Mechanisms; Ceccarelli, M., Ed.; Kluwer Academic Publishers: New York, NY, USA, 2004; pp. 181–194. [Google Scholar]
- Larinier, M. Upstream and downstream fish passage experience in France. In Fish Migration and Fish Bypasses; Jungwirth, M., Schmutz, S., Weiss, S., Eds.; Oxford: Malden, MA, USA, 1998; pp. 127–145. [Google Scholar]
- Havn, T.B.; Sæther, S.A.; Thorstad, E.B.; Teichert, M.A.K.; Heermann, L.; Diserud, O.H.; Borcherding, J.; Tambets, M.; Økland, F. Downstream migration of Atlantic salmon smolts past a low head hydropower station equipped with Archimedes screw and Francis turbines. Ecol. Eng. 2017, 105, 262–275. [Google Scholar] [CrossRef]
- Piper, A.T.; Rosewarne, P.J.; Wright, R.M.; Kemp, P.S. The impact of an Archimedes screw hydropower turbine on fish migration in a lowland river. Ecol. Eng. 2018, 118, 31–42. [Google Scholar] [CrossRef]
- Buysse, D.; Mouton, A.M.; Stevens, M.; Van den Neucker, T.; Coeck, J. Mortality of European eel after downstream migration through two types of pumping stations. Fish. Manag. Ecol. 2014, 21, 13–21. [Google Scholar] [CrossRef]
- McNabb, C.D.; Liston, C.R.; Borthwick, S.M. Passage of Juvenile Chinook Salmon and other Fish Species through Archimedes Lifts and a Hidrostal Pump at Red Bluff, California; Passage of Juvenile Chinook Salmon and other Fish Species through Archimedes Lifts and a Hidrostal Pump at Red Bluff, California. Trans. Am. Fish. Soc. 2003, 132, 326–334. [Google Scholar]
- Vriese, F.T.; Research into the Fish-Friendly Screw Pumps. FishFlow Innovations. 2009. Available online: https://www.aquaticcontrol.co.uk/wp-content/uploads/2017/02/2009-Screw-Pump-research-Paper.pdf (accessed on 22 April 2022).
- Lyons, M.; Simmons, S.; Fisher, M.; Williams, J.S.; Lubitz, W.D. Experimental investigation of Archimedes screw pump. J. Hydraul. Eng. 2020, 146, 04020057. [Google Scholar] [CrossRef]
- Wahl, T. Analyzing ADV Data Using WinADV. In Proceedings of the 2000 Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Reston, VA, USA, 30 July–2 August 2000. [Google Scholar]
- Silva, A.T.; Hatry, C.; Thiem, J.D.; Gutowsky, L.F.G.; Hatin, D.; Zhu, D.Z.; Dawson, J.W.; Katopodis, C.; Cooke, S.J. Behaviour and locomotor activity of a migratory catostomid during fishway passage. PLoS ONE 2015, 10, e0123051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Santos, T.; Haro, A. Fish guidance and passage at barriers. In Fish Locomotion: An Eco-Ethological Perspective; Domenici, P., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2010; pp. 62–89. [Google Scholar]
Dimension | Prototype ASFL | Variable |
---|---|---|
Outside diameter (mm) | 762 | O.D. |
Inner diameter (mm) | 101 | I.D. |
Length (m) | 3.05 | L |
Vertical lift (m) | 1.50 | H |
Angle of inclination (degrees) | 27 | β |
Bucket length (mm) | 762 | S |
Bucket volume (liters) | 50 | |
Motor torque (N·m) | 115 | |
Rotation (rpm) | 12 |
Species | Scientific Name | No. Passed | Ave. Length (mm) | Max Length (mm) |
---|---|---|---|---|
northern pike | Essox lucius (Linnaeus, 1758) | 3 | 577 | 635 |
rock bass | Ambloplites rupestris (Rafinesque, 1817) | 4 | 178 | 218 |
rainbow trout | Oncorhynchus mykiss (Walbaum, 1792) | 2 | 257 | 410 |
sea lamprey | Petromyzon marinus (Linnaeus, 1758) | 3 | 475 | 482 |
smallmouth bass | Micropterus dolomieu (Lacépède, 1802) | 1 | 352 | 352 |
yellow perch | Perca flavescens (Mitchill, 1814) | 3 | 208 | 224 |
suckers | Catostomidae | 688 | 451 | 534 |
Model | AIC | ΔAIC |
---|---|---|
Temp + Attract + (Day) | 120.76 | - |
Attract + (Day) | 124.37 | 3.61 |
Temp + (Day) | 125.45 | 4.69 |
Model Term | Coefficient | SE | df | t | p-Value |
---|---|---|---|---|---|
Intercept | −101.50 | 51.10 | 8 | −1.99 | 0.08 |
Water temp. | 16.46 | 6.09 | 8 | 2.70 | 0.03 |
Attraction flow | 68.37 | 22.53 | 8 | 3.04 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielinski, D.P.; Miehls, S.; Lewandoski, S. Test of a Screw-Style Fish Lift for Introducing Migratory Fish into a Selective Fish Passage Device. Water 2022, 14, 2298. https://doi.org/10.3390/w14152298
Zielinski DP, Miehls S, Lewandoski S. Test of a Screw-Style Fish Lift for Introducing Migratory Fish into a Selective Fish Passage Device. Water. 2022; 14(15):2298. https://doi.org/10.3390/w14152298
Chicago/Turabian StyleZielinski, Daniel P., Scott Miehls, and Sean Lewandoski. 2022. "Test of a Screw-Style Fish Lift for Introducing Migratory Fish into a Selective Fish Passage Device" Water 14, no. 15: 2298. https://doi.org/10.3390/w14152298
APA StyleZielinski, D. P., Miehls, S., & Lewandoski, S. (2022). Test of a Screw-Style Fish Lift for Introducing Migratory Fish into a Selective Fish Passage Device. Water, 14(15), 2298. https://doi.org/10.3390/w14152298