Experimental Design of Nature-Based-Solution Considering the Interactions between Submerged Vegetation and Pile Group on the Structure of the River Flow on Sand Beds
Abstract
:1. Introduction
2. Material and Methods
2.1. Dimensional Analysis
2.2. Channels and Tools Used
2.3. Hydraulic and Geometric Features
2.4. Vegetation Used to Assess the Efficiency as a Nature-Based Solution
2.5. Experiment Design
3. Results and Discussion
3.1. Scour Depth
3.2. Longitudinal Velocity Profiles
3.3. Vertical Velocity Profiles
3.4. Resultant Velocity Vector
3.5. Turbulence Intensity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angillieri, M.Y.E.; Perucca, L.; Vargas, N. Catastrophic flash flood triggered by an extreme rainfall event in El Rodeo village, January 2014. Northwestern Pampean Ranges of Argentina. Geogr. Ann. Ser. A Phys. Geogr. 2016, 99, 72–84. [Google Scholar] [CrossRef]
- Camarasa-Belmonte, A.M. Flash floods in Mediterranean ephemeral streams in Valencia Region (Spain). J. Hydrol. 2016, 541, 99–115. [Google Scholar] [CrossRef]
- Carisi, F.; Domeneghetti, A.; Gaeta, M.G.; Castellarin, A. Is anthropogenic land subsidence a possible driver of riverine flood-hazard dynamics? A case study in Ravenna, Italy. Hydrol. Sci. J. 2017, 62, 2440–2455. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.E.; Yip, J.Z.K.; Conger, T.; Oulahen, G.; Gray, E.; Marteleira, M. Explaining communities’ adaptation strategies for coastal flood risk: Vulnerability and institutional factors. J. Flood Risk Manag. 2020, 13, e12646. [Google Scholar] [CrossRef]
- Alyazichi, Y.M.; Jones, B.G.; McLean, E. Spatial distribution of sediment particles and trace element pollution within Gunnamatta Bay, Port Hacking, NSW, Australia. Reg. Stud. Mar. Sci. 2015, 2, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Qiao, S.; Peng, M.; Ma, X. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Environ. Sci. Pollut. Res. 2018, 25, 14018–14031. [Google Scholar] [CrossRef]
- Zaid, M.; Yazdanfar, Z.; Chowdhury, H.; Alam, F. A review on the methods used to reduce the scouring effect of bridge pier. Energy Procedia 2019, 160, 45–50. [Google Scholar] [CrossRef]
- Pandey, M.; Sharma, P.K.; Ahmad, Z.; Karna, N. Maximum scour depth around bridge pier in gravel bed streams. Nat. Hazards 2017, 91, 819–836. [Google Scholar] [CrossRef]
- Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes under Different Hydraulic and Geometric Conditions: A Numerical Study. Water 2019, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 2019, 44, 216. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Chiew, Y.-M.; Wei, M.; Hsieh, S.-C. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int. J. Sediment Res. 2018, 34, 118–124. [Google Scholar] [CrossRef]
- Shahriar, A.R.; Montoya, B.M.; Ortiz, A.C.; Gabr, M.A. Quantifying probability of deceedance estimates of clear water local scour around bridge piers. J. Hydrol. 2021, 597, 126177. [Google Scholar] [CrossRef]
- Azamathulla, H.M.; Yusoff, M.; Hasan, Z. Scour below submerged skewed pipeline. J. Hydrol. 2014, 509, 615–620. [Google Scholar] [CrossRef]
- Qi, W.-G.; Gao, F.-P. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast. Eng. 2014, 83, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Li, J.; Chen, Q. Comparison of existing equations for local scour at bridge piers: Parameter influence and validation. Nat. Hazards 2016, 82, 2089–2105. [Google Scholar] [CrossRef]
- Bestawy, A.; Eltahawy, T.; Alsaluli, A.; Almaliki, A.; AlQurashi, M. Reduction of local scour around a bridge pier by using different shapes of pier slots and collars. Water Supply 2020, 20, 1006–1015. [Google Scholar] [CrossRef]
- Tafarojnoruz, A.; Gaudio, R.; Dey, S. Flow-altering countermeasures against scour at bridge piers: A review. J. Hydraul. Res. 2010, 48, 441–452. [Google Scholar] [CrossRef]
- Borja, M.E.L.; Zema, D.A.; Guzman, M.D.H.; Yang, Y.; Hernández, A.C.; Xiangzhou, X.; Carrà, B.G.; Nichols, M.; Cerdá, A. Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol. Eng. 2018, 122, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.J.; Ares, J.O.; Jobbágy, E.G.; Vivoni, E.R.; Vervoort, R.W.; Schreiner-McGraw, A.P.; Saco, P.M. Vegetation and terrain drivers of infiltration depth along a semiarid hillslope. Sci. Total Environ. 2018, 644, 1399–1408. [Google Scholar] [CrossRef]
- Albert, C.; Hack, J.; Schmidt, S.; Schröter, B. Planning and governing nature-based solutions in river landscapes: Concepts, cases, and insights. Ambio 2021, 50, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Hoyek, A.; Arias-Rodriguez, L.F.; Perosa, F. Holistic Approach for Estimating Water Quality Ecosystem Services of Danube Floodplains: Field Measures, Remote Sensing, and Machine Learning. Hydrobiology 2022, 1, 211–231. [Google Scholar] [CrossRef]
- Tickner, D.; Parker, H.; Moncrieff, C.R.; Oates, N.E.M.; Ludi, E.; Acreman, M. Managing Rivers for Multiple Benefits–A Coherent Approach to Research, Policy and Planning. Front. Environ. Sci. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Huang, W.; Yano, S.; Lin, L.; Zhang, J. Using Functional Indicators to Assess the River Health Under Partial Flow Restoration. In Proceedings of the International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; pp. 501–504. [Google Scholar]
- Huai, W.-X.; Zhang, J.; Katul, G.G.; Cheng, Y.-G.; Tang, X.; Wang, W.-J. The structure of turbulent flow through submerged flexible vegetation. J. Hydrodyn. 2019, 31, 274–292. [Google Scholar] [CrossRef]
- Zhang, H.B.; Meng, H.J.; Liu, X.D.; Zhao, W.J.; Wang, X.P. Vegetation characteristics and ecological restoration technology of typical degradation wetlands in the middle of heihe river basin, zhangye city of gansu province. Wetl. Sci. 2012, 10, 194–199. [Google Scholar]
- Evans, J.H. Dimensional Analysis and the Buckingham Pi Theorem. Am. J. Phys. 1972, 40, 1815–1822. [Google Scholar] [CrossRef]
- Chiew, Y.M.; Melville, B.W. Local Scour Around Bridge Piles. J. Hydraul. Res. 1987, 25, 15–26. [Google Scholar] [CrossRef]
- Afzalimehr, H.; Singh, V.P.; Najafabadi, E.F. Determination of Form Friction Factor. J. Hydrol. Eng. 2010, 15, 237–243. [Google Scholar] [CrossRef]
- Raudkivi, A.J.; Ettema, R. Clear-Water Scour at Cylindrical Piers. J. Hydraul. Eng. 1983, 109, 338–350. [Google Scholar] [CrossRef]
- Laursen, E.M. An Analysis of Relief Bridge Scour. J. Hydraul. Div. 1963, 89, 93–118. [Google Scholar] [CrossRef]
- McGlinchey, D. Characterisation of Bulk Solids; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ettema, R. Scour at Bridge Piers: A Report Submitted to the National Roads Board. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 1980. [Google Scholar]
- Cao, Z.; Pender, G.; Meng, J. Explicit Formulation of the Shields Diagram for Incipient Motion of Sediment. J. Hydraul. Eng. 2006, 132, 1097–1099. [Google Scholar] [CrossRef]
- Pagliara, S.; Carnacina, I. Temporal scour evolution at bridge piers: Effect of wood debris roughness and porosity. J. Hydraul. Res. 2010, 48, 3–13. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, G.Q.; Bin Li, Z.; Li, P. Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- El Kateb, H.; Zhang, H.; Zhang, P.; Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. CATENA 2013, 105, 1–10. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, R.; Ma, D.; Liu, D.; Liu, Y.; Gao, Z.; Rodrigo-Comino, J. Multiple surface runoff and soil loss responses by sandstone morphologies to land-use and precipitation regimes changes in the Loess Plateau, China. CATENA 2022, 217, 106477. [Google Scholar] [CrossRef]
- Dey, S.; Barbhuiya, A.K. Turbulent flow field in a scour hole at a semicircular abutment. Can. J. Civ. Eng. 2005, 32, 213–232. [Google Scholar] [CrossRef]
- Ahmed, F.; Rajaratnam, N. Observations on Flow around Bridge Abutment. J. Eng. Mech. 2000, 126, 51–59. [Google Scholar] [CrossRef]
- Kumar, A.; Kothyari, U.C. Three-Dimensional Flow Characteristics within the Scour Hole around Circular Uniform and Compound Piers. J. Hydraul. Eng. 2012, 138, 420–429. [Google Scholar] [CrossRef]
- Lashminarayana, P.; Sarma, N.; Rao, N.S.L. Dip in Vertical Velocity Profiles and Fow in Rectangular Open Channel Flow. In Proceedings of the 21st IAHR Congress, Melbourne, VIC, Australia, 13–18 August 1984. [Google Scholar]
- Afzalimehr, H.; Dey, S. Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions. Int. J. Sediment Res. 2009, 24, 236–246. [Google Scholar] [CrossRef]
- Fazel Najafabadi, E. Experimental Investigation of the Effect of Vegetation on the Wall and Non-Stick Sediments in the Floor of a Flume on Turbulent Flow Components under Optimal Pressure Gradients. Master’s Thesis, Faculty of Agriculture, Isfahan University of Technology, Daneshgah e Sanati Hwy, Iran, 2010. [Google Scholar]
Parameter | Symbol | Unit |
---|---|---|
Time | t | s |
Pile angle to the horizon | ϴ | - |
The angle of water and pile contact | Kϕ | - |
Number of piles | m | - |
Number of group piles | n | - |
Piles shape coefficient | Cd | - |
Critical deviation of sediment particles | σ | - |
Bed particle diameter | d50 | m |
Velocity | U | m/s |
Mass of unit water volume | ρ | kg/m3 |
Cinematic viscosity | ϑ | m2/s |
Vegetation height | hv | m |
Vegetation density | dv | % |
Vegetation width to flow width | lp | - |
Scour depth | ds | - |
Depth of flow | H | m |
Channel width | B | m |
Bridge pile diameter | D | m |
Distance of two adjacent piles | G | m |
Gravity acceleration | g | m/s2 |
Mass of unit sediment | ρs | kg/m3 |
Channel cross-sectional area | A | m2 |
Channel wetted perimeter | P | m |
Parameters | Median Sediment Size | Uniformity Coefficient | Geometric Mean Size | Standard Geometry Deviation | Gradation Coefficient |
---|---|---|---|---|---|
Symbols | d50 | Cu | Dg | δg | Gr |
Dimension | meter | dimensionless | dimensionless | dimensionless | dimensionless |
Value | 0.00077 | 1.133 | 0.763 | 1.075 | 1.075 |
Pile Type | Vegetation Type | Vegetation-Free | Type 1 (2 cm-100%) | Type 2 (0.5 cm-100%) | Type 3 (2 cm-50%) | ||||
---|---|---|---|---|---|---|---|---|---|
Ye (cm) | te (min) | Ye (cm) | te (min) | Ye (cm) | te (min) | Ye (cm) | te (min) | ||
Single | Free | 6.5 | 800 | - | - | - | - | - | - |
Overall | - | - | 4.7 | 550 | 5.3 | 711 | 4.6 | 610 | |
Patched | - | - | 4.1 | 550 | 4.9 | 711 | 4.5 | 550 | |
Triple G/D = 2 | Free | 5.3 | 670 | - | - | - | - | - | - |
Overall | - | - | 3.9 | 430 | 4.6 | 490 | 4.9 | 440 | |
Patched | - | - | 3.9 | 610 | 4.9 | 690 | 4.3 | 610 | |
Triple G/D = 3 | Free | 5.9 | 760 | - | - | - | - | - | - |
Overall | - | - | 4.8 | 610 | 5.3 | 760 | 5.1 | 760 | |
Patched | - | - | 4.5 | 760 | 5.2 | 760 | 4.9 | 760 | |
Triple G/D = 4 | Free | 6.2 | 760 | - | - | - | - | - | - |
Overall | - | - | 5.3 | 490 | 5.3 | 760 | 5 | 490 | |
Patched | - | - | 5 | 490 | 5.1 | 711 | 5 | 550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyab, N.M.; Fazloula, R.; Heidarpour, M.; Kavian, A.; Rodrigo-Comino, J. Experimental Design of Nature-Based-Solution Considering the Interactions between Submerged Vegetation and Pile Group on the Structure of the River Flow on Sand Beds. Water 2022, 14, 2382. https://doi.org/10.3390/w14152382
Miyab NM, Fazloula R, Heidarpour M, Kavian A, Rodrigo-Comino J. Experimental Design of Nature-Based-Solution Considering the Interactions between Submerged Vegetation and Pile Group on the Structure of the River Flow on Sand Beds. Water. 2022; 14(15):2382. https://doi.org/10.3390/w14152382
Chicago/Turabian StyleMiyab, Nazanin Mohammadzade, Ramin Fazloula, Manouchehr Heidarpour, Ataollah Kavian, and Jesús Rodrigo-Comino. 2022. "Experimental Design of Nature-Based-Solution Considering the Interactions between Submerged Vegetation and Pile Group on the Structure of the River Flow on Sand Beds" Water 14, no. 15: 2382. https://doi.org/10.3390/w14152382
APA StyleMiyab, N. M., Fazloula, R., Heidarpour, M., Kavian, A., & Rodrigo-Comino, J. (2022). Experimental Design of Nature-Based-Solution Considering the Interactions between Submerged Vegetation and Pile Group on the Structure of the River Flow on Sand Beds. Water, 14(15), 2382. https://doi.org/10.3390/w14152382