Mechanism of Biofilm Formation on Installation Materials and Its Impact on the Quality of Tap Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Installation
2.2. Detachment the Biofilm from the Surface of the Material
2.3. Quantitative Analysis of Biofilm Microorganisms on the Surface of the Plates
2.4. Fractal Analysis of Biofilm Formation on the Surface of the Plates
2.5. Analysis of Tap Water
3. Results
3.1. The Process of Biofilm Formation
3.2. Water Quality in DWDS
4. Discussion and Analysis of the Results
4.1. Mechanism of Biofilm Formation
4.2. Influence of the Quality of Water Supplying the Installation on the Development of Biofilm—The Role of Water Biostability
4.2.1. Nutrients Content
4.2.2. Free Chlorine Concentration
4.2.3. Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; de Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, K.E.; Iglesias Rey, P.L.; et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water 2020, 12, 1049. [Google Scholar] [CrossRef] [Green Version]
- Gomes, I.B.; Simões, M.; Simões, L.C. An Overview on the Reactors to Study Drinking Water Biofilms. Water Res. 2014, 62, 63–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waller, S.A.; Packman, A.I.; Hausner, M. Comparison of Biofilm Cell Quantification Methods for Drinking Water Distribution Systems. J. Microbiol. Methods 2018, 144, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Goraj, W.; Pytlak, A.; Kowalska, B.; Kowalski, D.; Grządziel, J.; Szafranek-Nakonieczna, A.; Gałązka, A.; Stępniewska, Z.; Stępniewski, W. Influence of Pipe Material on Biofilm Microbial Communities Found in Drinking Water Supply System. Environ. Res. 2021, 196, 110433. [Google Scholar] [CrossRef]
- Chan, S.; Pullerits, K.; Keucken, A.; Persson, K.M.; Paul, C.J.; Rådström, P. Bacterial Release from Pipe Biofilm in a Full-Scale Drinking Water Distribution System. NPJ Biofilms Microbiomes 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Murinda, S.E. Linking Microbial Community Composition in Treated Wastewater with Water Quality in Distribution Systems and Subsequent Health Effects. Microorganisms 2019, 7, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zhang, Y.; van der Mark, E.; Magic-Knezev, A.; Pinto, A.; van den Bogert, B.; Liu, W.; van der Meer, W.; Medema, G. Assessing the Origin of Bacteria in Tap Water and Distribution System in an Unchlorinated Drinking Water System by SourceTracker Using Microbial Community Fingerprints. Water Res. 2018, 138, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Maurice, P. (Ed.) Encyclopedia of Water: Science, Technology, and Society, 1st ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-30075-5. [Google Scholar]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G. An Experimental Study on the Influence of Water Stagnation and Temperature Change on Water Quality in a Full-Scale Domestic Drinking Water System. Water Res. 2017, 123, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Bai, X. Characterization of the Synergistic Relationships between Nitrification and Microbial Regrowth in the Chloraminated Drinking Water Supply System. Environ. Res. 2021, 199, 111252. [Google Scholar] [CrossRef] [PubMed]
- Blokker, M.; Vreeburg, J.; Speight, V. Residual Chlorine in the Extremities of the Drinking Water Distribution System: The Influence of Stochastic Water Demands. Procedia Eng. 2014, 70, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Fish, K.E.; Boxall, J.B. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front. Microbiol. 2018, 9, 2519. [Google Scholar] [CrossRef] [PubMed]
- Tsvetanova, Z. Quantification of the Bacterial Community of Drinking Water-Associated Biofilms under Different Flow Velocities and Changing Chlorination Regimes. Appl. Water Sci. 2020, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Learbuch, K.L.G.; Smidt, H.; van der Wielen, P.W.J.J. Influence of Pipe Materials on the Microbial Community in Unchlorinated Drinking Water and Biofilm. Water Res. 2021, 194, 116922. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Effects of Water Age on Distribution System Water Quality; Office of Water (4601M) Office of Ground Water and Drinking Water Distribution System Issue Paper; US Environmental Protection Agency: Washington, DC, USA, 2002; pp. 1–17.
- Guidance on Monitoring the Biological Stability of Drinking Water in Distribution Systems. Available online: https://www.canada.ca/en/health-canada/programs/consultation-guidance-biological-stability-water-distribution-systems/document.html (accessed on 30 April 2020).
- Zlatanovic, L.; Moerman, A.; van der Hoek, J.P.; Vreeburg, J.; Blokker, M. Development and Validation of a Drinking Water Temperature Model in Domestic Drinking Water Supply Systems. Urban Water J. 2017, 14, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Bédard, E.; Laferrière, C.; Déziel, E.; Prévost, M. Impact of Stagnation and Sampling Volume on Water Microbial Quality Monitoring in Large Buildings. PLoS ONE 2018, 13, e0199429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Suárez, A.; Dellundé, J.; Salvadó, H.; Cervero-Aragó, S.; Méndez, J.; Canals, O.; Blanco, S.; Arcas, A.; Araujo, R. Microbial and Physicochemical Parameters Associated with Legionella Contamination in Hot Water Recirculation Systems. Environ. Sci. Pollut. Res. 2013, 20, 5534–5544. [Google Scholar] [CrossRef]
- Prest, E.I.; Hammes, F.; Kötzsch, S.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Monitoring Microbiological Changes in Drinking Water Systems Using a Fast and Reproducible Flow Cytometric Method. Water Res. 2013, 47, 7131–7142. [Google Scholar] [CrossRef] [PubMed]
- Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Front. Microbiol. 2016, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Preciado, C.C.; Boxall, J.; Soria-Carrasco, V.; Douterelo, I. Effect of Temperature Increase in Bacterial and Fungal Communities of Chlorinated Drinking Water Distribution Systems. Access Microbiol. 2019, 1, 74–85. [Google Scholar] [CrossRef]
- Lipphaus, P.; Hammes, F.; Kötzsch, S.; Green, J.; Gillespie, S.; Nocker, A. Microbiological Tap Water Profile of a Medium-Sized Building and Effect of Water Stagnation. Environ. Technol. 2014, 35, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Bucheli-Witschel, M.; Kötzsch, S.; Darr, S.; Widler, R.; Egli, T. A New Method to Assess the Influence of Migration from Polymeric Materials on the Biostability of Drinking Water. Water Res. 2012, 46, 4246–4260. [Google Scholar] [CrossRef] [PubMed]
- Hemdan, B.A.; El-Taweel, G.E.; Goswami, P.; Pant, D.; Sevda, S. The Role of Biofilm in the Development and Dissemination of Ubiquitous Pathogens in Drinking Water Distribution Systems: An Overview of Surveillance, Outbreaks, and Prevention. World J. Microbiol. Biotechnol. 2021, 37, 36. [Google Scholar] [CrossRef] [PubMed]
- Ingerson-Mahar, M.; Reid, A. Microbes in Pipes (MIP): The Microbiology of the Water Distribution System; American Society for Microbiology: Washington, DC, USA, 2012. [Google Scholar]
- Mandelbrot, B.B. Fractals. Form, Chance and Dimension; W. H. Freeman and Company: San Francisco, CA, USA, 1977. [Google Scholar] [CrossRef]
- Konkol, J.; Prokopski, G. The Necessary Number of Profile Lines for the Analysis of Concrete Fracture Surfaces. Struct. Eng. Mech. 2007, 25, 565–576. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption [Dz.U. 2017 Poz. 2294]. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170002294/O/D20172294.pdf (accessed on 30 April 2020).
- Manuel, C.M.; Nunes, O.C.; Melo, L.F. Dynamics of Drinking Water Biofilm in Flow/Non-Flow Conditions. Water Res. 2007, 41, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wei, Z.; Sun, G.; Su, H.; Liu, J.; Hu, B.; Zhou, X.; Lou, L. Formation of Biofilms from New Pipelines at Both Ends of the Drinking Water Distribution System and Comparison of Disinfection By-Products Formation Potential. Environ. Res. 2020, 182, 109150. [Google Scholar] [CrossRef]
- Eichler, S.; Christen, R.; Höltje, C.; Westphal, P.; Bötel, J.; Brettar, I.; Mehling, A.; Höfle, M.G. Composition and Dynamics of Bacterial Communities of a Drinking Water Supply System as Assessed by RNA- and DNA-Based 16S RRNA Gene Fingerprinting. Appl. Environ. Microbiol. 2006, 72, 1858–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Van der Mark, E.J.; Verberk, J.Q.J.C.; Van Dijk, J.C. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems. BioMed Res. Int. 2013, 2013, 595872. [Google Scholar] [CrossRef]
- Lührig, K.; Canbäck, B.; Paul, C.J.; Johansson, T.; Persson, K.M.; Rådström, P. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden. Microbes Environ. 2015, 30, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Prest, E.I. Biological Stability in Drinking Water Distribution Systems: A Novel Approach for Systematic Microbial Water Quality Monitoring. Appl. Sci. 2015. [Google Scholar] [CrossRef]
- Papciak, D.; Domoń, A.; Zdeb, M.; Skwarczyńska-Wojsa, A.; Konkol, J. Optimization of Quantitative Analysis of Biofilm Cell from Pipe Materials. Coatings 2021, 11, 1286. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Uprety, S.; Dangol, B.; Nakarmi, P.; Dhakal, I.; Sherchan, S.P.; Shisler, J.L.; Jutla, A.; Amarasiri, M.; Sano, D.; Nguyen, T.H. Assessment of Microbial Risks by Characterization of Escherichia Coli Presence to Analyze the Public Health Risks from Poor Water Quality in Nepal. Int. J. Hyg. Environ. Health 2020, 226, 113484. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.T.; Jhutty, A.; Parks, S.; Willis, C.; Copley, V.; Turton, J.F.; Hoffman, P.N.; Bennett, A.M. Investigation of Healthcare-Acquired Infections Associated with Pseudomonas Aeruginosa Biofilms in Taps in Neonatal Units in Northern Ireland. J. Hosp. Infect. 2014, 86, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Proctor, C.R.; Reimann, M.; Vriens, B.; Hammes, F. Biofilms in Shower Hoses. Water Res. 2018, 131, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Aumeran, C.; Paillard, C.; Robin, F.; Kanold, J.; Baud, O.; Bonnet, R.; Souweine, B.; Traore, O. Pseudomonas Aeruginosa and Pseudomonas Putida Outbreak Associated with Contaminated Water Outlets in an Oncohaematology Paediatric Unit. J. Hosp. Infect. 2007, 65, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Papciak, D.; Tchórzewska-Cieslak, B.; Pietrucha-Urbanik, K.; Pietrzyk, A. Analysis of the Biological Stability of Tap Water on the Basis of Risk Analysis and Parameters Limiting the Secondary Growth of Microorganisms in Water Distribution Systems. Desalin. Water Treat 2018, 117, 1–8. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Lu, Q.; Chen, G.; Wang, G. Assessing Comprehensive Performance of Biofilm Formation and Water Quality in Drinking Water Distribution Systems. Water Supply 2017, 17, 267–278. [Google Scholar] [CrossRef]
- Lautenschlager, K.; Hwang, C.; Liu, W.-T.; Boon, N.; Köster, O.; Vrouwenvelder, H.; Egli, T.; Hammes, F. A Microbiology-Based Multi-Parametric Approach towards Assessing Biological Stability in Drinking Water Distribution Networks. Water Res. 2013, 47, 3015–3025. [Google Scholar] [CrossRef] [Green Version]
- Tchórzewska-Cieślak, B.; Papciak, D.; Pietrucha-Urbanik, K.; Pietrzyk, A. Safety analysis of tap water biostability. Archit. Civ. Eng. Environ. 2018, 11, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Payne, S.J.; Piorkowski, G.S.; Hansen, L.T.; Gagnon, G.A. Impact of Zinc Orthophosphate on Simulated Drinking Water Biofilms Influenced by Lead and Copper. J. Environ. Eng. 2016, 142, 04015067. [Google Scholar] [CrossRef]
- Jang, H.-J.; Choi, Y.-J.; Ro, H.-M.; Ka, J.-O. Effects of Phosphate Addition on Biofilm Bacterial Communities and Water Quality in Annular Reactors Equipped with Stainless Steel and Ductile Cast Iron Pipes. J. Microbiol. 2012, 50, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Nescerecka, A.; Rubulis, J.; Vital, M.; Juhna, T.; Hammes, F. Biological Instability in a Chlorinated Drinking Water Distribution Network. PLoS ONE 2014, 9, e96354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Kooij, D. Managing Regrowth in Drinking Water Distribution Systems. Heterotrophic Plate Counts and Drinking-Water Safety; IWA Publishing: London, UK, 2003; pp. 199–232. [Google Scholar]
- Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P. Drinking Water Temperature Modelling in Domestic Systems. Procedia Eng. 2014, 89, 143–150. [Google Scholar] [CrossRef] [Green Version]
- PN-EN ISO 7730:2006; Thermal Environment Ergonomics—Analytical Determination and Interpretation of Thermal Comfort with the Application of Calculation of PMV and PPD Indexes and Local Thermal Comfort Criteria. Available online: https://sklep.pkn.pl/pn-en-iso-7730-2006p.html (accessed on 30 April 2020).
- Zamorska, J. Biological Stability of Water after the Biofiltration Process. J. Ecol. Eng. 2018, 19, 234–239. [Google Scholar] [CrossRef]
- Husband, S.; Boxall, J.B. Field Studies of Discoloration in Water Distribution Systems: Model Verification and Practical Implications. J. Environ. Eng. 2010, 136, 86–94. [Google Scholar] [CrossRef]
- Douterelo, I.; Husband, S.; Boxall, J.B. The Bacteriological Composition of Biomass Recovered by Flushing an Operational Drinking Water Distribution System. Water Res. 2014, 54, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.J.; Minalt, N.; Culotti, A.; Pryor, M.; Packman, A. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes. PLoS ONE 2014, 9, e98542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Analytical Method/Standard | Range |
---|---|---|
Dissolved oxygen | Electrochemical method using a Hach–Lange oxygen probe (Germany) | 0.00–20.00 mg O2/L |
Temperature | Multifunction meter CX-505 (Elmetron, Poland) | −50–199.9 °C |
Turbidity | 2100P ISO turbidimeter (Hach, Germany) | 0–1000 NTU |
Total organic carbon (TOC) | TOC analyzer Sievers 5310 C (SUEZ, Boulder, CO, USA) | 0.004–50 mg C/L |
Biodegradable organic carbon (BDOC) | DOC (dissolved organic carbon) = 88% TOC; BDOC = 7% DOC [24] | - |
Ammonium nitrogen | Spectrophotometric method 8155 (sachet tests—ammonia salicylate (1) and cyanurate (2)) using Hach-Lange DR 500 spectrophotometer (Germany) | 0.01–0.50 mg NH3–N/L |
Nitrite nitrogen | Colorimetric method by Nitrite Test Merck 1.14408 (Germany) | 0.0015–0.03 mg N-NO2−/L |
Nitrate nitrogen | Spectrophotometric method 8039 (sachet tests—NitraVer5) using Hach–Lange DR 500 spectrophotometer (Germany) | 0.3–30.0 mg N-NO3−/L |
Phosphates | Spectrophotometric method 8048 (sachet tests—PhosVer3) using Hach–Lange DR 500 spectrophotometer (Germany) | 0.02–2.50 mg PO43−/L |
Total and free chlorine | Spectrophotometric methods 8167 and 8021 (sachet tests—DPD reagent) using Hach-Lange DR 500 spectrophotometer (Germany) | 0.02–2.00 mg Cl2/L |
The heterotrophic plate count (HPC) method at 22 °C and 37 °C | HPC method at 22 °C and 37 °C using R2A Agar (CM0906) manufactured by Oxoid Thermo Scientific (UK) (incubation 7 days) and A Agar (P-0231) manufactured by Department of Enzymes and Peptons (Poland) (HPC at 22 °C (3 days) and 37 °C (2 days); According to the PN-EN ISO 6222: 2004 standard. | The methods allow to determine the number of viable and capable development microorganisms in the tested water volume. |
Escherichia coli | Membrane filtration procedure using Endo agar WG ISO 9308-1 (BTL, Poland); According to the PN-EN ISO 9308-1:2014-12 standard. | |
Pseudomonas aeruginosa | Membrane filtration procedure using King agar WG ISO 9308-1 (BTL, Poland); According to the PN-EN ISO 16266:2009 standard. | |
ATP analysis | LuminUltra Photonmaster Luminometer (BacTiter-Glo Microbial Cell Enviability Assay, Promega) | 0–106 RLU |
Parameters | Bacteria Growing at 37 °C | Bacteria Growing at 22 °C | ATP Analysis | Sum of Bacteria Grown at 22 and 37 °C |
---|---|---|---|---|
Bacteria growing at 37 °C | 1.00 | 0.84 | 0.92 | 0.89 |
Bacteria growing at 22 °C | 1.00 | 0.93 | 1.00 | |
ATP analysis | 1.00 | 0.95 | ||
Sum of bacteria grown at 22 and 37 °C | 1.00 |
Series * | Fractographic Parameter | |||||
---|---|---|---|---|---|---|
Fractal Dimension D | ±Standard Deviation | ±Standard Error of the Mean | Total Height of the Roughness Profile Pt | ±Standard Deviation | ±Standard Error of the Mean | |
A | 1.41 | 0.096 | 0.025 | 37.1 | 4.4 | 1.13 |
B | 1.45 | 0.040 | 0.010 | 35.8 | 13.5 | 3.48 |
C | 1.24 | 0.023 | 0.006 | 35.6 | 3.3 | 0.85 |
D | 1.23 | 0.026 | 0.007 | 35.0 | 4.8 | 1.23 |
Parameter | Unit | Min | Max | Mean | Median | Standard Deviation | Guidelines for Drinking Water According to [31] |
---|---|---|---|---|---|---|---|
Dissolved oxygen | mg O2/L | 9.03 | 10.67 | 10.00 | 10.02 | 0.52 | - |
Temperature | °C | 21.20 | 23.60 | 22.01 | 21.80 | 0.77 | - |
Turbidity | NTU | 0.35 | 5.04 | 1.01 | 0.65 | 1.35 | <1 |
TOC | mg C/L | 1.79 | 2.28 | 2.00 | 1.96 | 0.17 | - |
BDOC | mg C/L | 0.11 | 0.14 | 0.12 | 0.12 | 0.01 | - |
Ammonium nitrogen | mg N-NH3+/L | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.5 |
Nitrite nitrogen | mg N-NO2−/L | 0.000 | 0.001 | 0.0005 | 0.001 | 0.0004 | 0.5 |
Nitrate nitrogen | mg N-NO3−/L | 0.60 | 1.30 | 0.88 | 0.90 | 0.20 | 50 |
Phosphates | mg PO43−/L | 0.02 | 0.06 | 0.04 | 0.04 | 0.01 | - |
Bakteria growing at 37 °C (A agar) | CFU/mL | 0.00 | 57.00 | 6.83 | 2.00 | 14.27 | - |
Bacteria growing at 22 °C (A agar) | CFU/mL | 0.00 | 79.00 | 10.00 | 4.00 | 18.64 | <200 |
Bacteria growing at 37 °C (R2A agar) | CFU/mL | 2.00 | 630.00 | 163.94 | 57.00 | 204.77 | - |
Bacteria growing at 32 °C (R2A agar) | CFU/mL | 100.00 | 971.00 | 368.11 | 311.50 | 221.68 | - |
E. coli | CFU/100 mL | 0.00 | 1.00 | 0.06 | 0.00 | 0.24 | 0 |
Pseudomonas | CFU/100 mL | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
ATP | RLU/100 µL | 5579 | 43,140 | 18,876 | 16,614 | 9978 | - |
Total chlorine | mg Cl2/L | 0.02 | 0.5 | 0.11 | 0.08 | 0.14 | - |
Free chlorine | mg Cl2/L | 0.00 | 0.04 | 0.01 | 0.01 | 0.01 | 0.3 |
Parameter | Value | Min | Max | Mean | Median | Standard Deviation | Guidelines for Drinking Water According to [31] |
---|---|---|---|---|---|---|---|
Dissolved oxygen | mg O2/L | 7.58 | 8.89 | 8.48 | 8.54 | 0.38 | - |
Temperature | °C | 21.50 | 23.60 | 22.59 | 22.50 | 0.61 | - |
Turbidity | NTU | 0.95 | 5.15 | 2.75 | 2.45 | 1.60 | <1 |
TOC | mg C/L | 1.87 | 4.06 | 2.21 | 2.03 | 0.66 | - |
BDOC | 0.12 | 0.25 | 0.14 | 0.12 | 0.04 | - | |
Ammonium nitrogen | mg N-NH3+/L | 0.00 | 0.09 | 0.02 | 0.02 | 0.03 | 0.5 |
Nitrite nitrogen | mg N-NO2−/L | 0.00 | 0.01 | 0.0020 | 0.00 | 0.00 | 0.5 |
Nitrate nitrogen | mg N-NO3−/L | 0.40 | 1.10 | 0.70 | 0.70 | 0.24 | 50 |
Phosphates | mg PO43−/L | 0.02 | 0.05 | 0.03 | 0.03 | 0.01 | - |
Bakteria growing at 37 °C (A agar) | CFU/mL | 0.00 | 782.00 | 358.83 | 320.00 | 240.17 | - |
Bacteria growing at 22 °C (A agar) | CFU/mL | 20.00 | 7625.00 | 2816.67 | 1462.50 | 2678.41 | <200 |
Bacteria growing at 37 °C (R2A agar) | CFU/mL | 120.00 | 42,000.00 | 8503.56 | 4063.50 | 10,539.56 | - |
Bacteria growing at 32 °C (R2A agar) | CFU/mL | 330.00 | 69,500.00 | 22,253.78 | 14,025.00 | 20,390.17 | - |
E. coli | CFU/100 mL | 0.00 | 5.00 | 0.59 | 0.00 | 1.37 | 0 |
Pseudomonas | CFU/100 mL | 0.00 | 6.00 | 0.59 | 0.00 | 1.50 | 0 |
ATP | RLU/100 µL | 2765 | 132,590 | 45,627 | 37,739 | 35,042 | - |
Total chlorine | mg Cl2/L | 0.02 | 0.06 | 0.03 | 0.03 | 0.01 | - |
Free chlorine | mg Cl2/L | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papciak, D.; Domoń, A.; Zdeb, M.; Tchórzewska-Cieślak, B.; Konkol, J.; Sočo, E. Mechanism of Biofilm Formation on Installation Materials and Its Impact on the Quality of Tap Water. Water 2022, 14, 2401. https://doi.org/10.3390/w14152401
Papciak D, Domoń A, Zdeb M, Tchórzewska-Cieślak B, Konkol J, Sočo E. Mechanism of Biofilm Formation on Installation Materials and Its Impact on the Quality of Tap Water. Water. 2022; 14(15):2401. https://doi.org/10.3390/w14152401
Chicago/Turabian StylePapciak, Dorota, Andżelika Domoń, Monika Zdeb, Barbara Tchórzewska-Cieślak, Janusz Konkol, and Eleonora Sočo. 2022. "Mechanism of Biofilm Formation on Installation Materials and Its Impact on the Quality of Tap Water" Water 14, no. 15: 2401. https://doi.org/10.3390/w14152401
APA StylePapciak, D., Domoń, A., Zdeb, M., Tchórzewska-Cieślak, B., Konkol, J., & Sočo, E. (2022). Mechanism of Biofilm Formation on Installation Materials and Its Impact on the Quality of Tap Water. Water, 14(15), 2401. https://doi.org/10.3390/w14152401