Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment
Abstract
:1. Introduction
2. Disposable MASKS Exposed to the Environment
3. Release of MPs from Masks
Mask Type | Description | Microplastic Release Capacity | Fragment Size | Detection Method | Ref. |
---|---|---|---|---|---|
N95, surgical mask | 3-layers, polypropylene | 3.1–3.3 × 109 nanoparticles per N95, 1.6–3.8 × 109 | 79 ± 14.1 nm | Counting of particles taken by scanning electron microscope (SEM). | [53] |
Disposable surgical mask | 3-layers, pleated cellulose polypropylene, polyester | 116,600 MPs released from a mask after washed three times. | 50% of MPs: <0.5 mm 80% of MPs: <1 mm | Counting of MPs in SEM images. | [43] |
Medical surgical face masks, disposal medical face masks, normal disposal face masks and N95 face masks | PP/PET, Blue/White | 1146 ± 308 to 1478 ± 266 particles per piece in 24 h. | MPs of 100–500 μm predominanting | Counting of MPs in an image taken by stereomicroscope after filtering. | [15] |
N95, surgical masks, cotton mask, fashion mask, nonwoven mask, and activated carbon mask. | Nonwoven and activated carbon masks are made from nonwoven fiber. Cotton masks are made of cotton. Fashion masks are made of organic polymer. N95 are made of five PP layers | After 72 h, the fiber-like MPs of 1521, 1913, 2824, 2576, 2134, 3180, 3984, and 1835 (per mask in air) detected for N95, surgical-A, cotton, fashion | 20–500 μm | MPs counted under a microscope | [44] |
Surgical face masks | 3 layers, PP spunbond nonwoven fabric | Average of MPs: 2.1 ± 1.4 × 1011 pieces m−2 per mask | 0.1–0.5 µm (78.9 ± 6.5%) and < 0.1 µm (20.5 ± 7.5%) | Bench-top flow cytometry used to detect MPs. | [45] |
Surgical masks | 3 layers, Polypropylene | 17,300 particles per mask/day | 25–500 μm | Counting of MPs in an image taken by stereomicroscope | [46] |
Ecoparksg disposable masks | 3-layers, polypropylene | 1,566,560 particles per weathered mask | 10–500 μm | Laser-equipped in-situ scattering and transmission-metry analyzer for calculating particles | [47] |
4. Environmental Effects
4.1. Eco-Toxicity of Masks and Released MPs
Contaminant Type | Size | Test Species | Exposure Conditions | Biological Toxicity Evaluation | Ref. | ||
---|---|---|---|---|---|---|---|
Concentration | Medium | Duration | |||||
Polypropylene(PP) particles | 70 μm | zebrafish Danio rerio, nematode Caenorhabditis elegans | 0.001, 0.01, 0.1, 1 and 10 mg L−1 | Water with suspended PP | 10 d | Causes damage to the intestines, including villi bursting and intestinal cell division. | [65] |
PP particles | 25–200 μm | Human derived cells | 0, 10, 50, 100, 500, and 1000 μg mL−1 | Microbial culture medium | 48 h | Stimulate the immune system | [66] |
PP particles | 0.5–1 mm2 | Spirulina sp. microalgae | 500 mg 500 mL−1 | Artificial microalgae culture medium | 30 d | Significant reduction of Spirulina growth rate; Damage to the surface | [67] |
PP particles | 40–165 μm | Sprague Dawley (SD) rats | 1234.8 ± 213.8 particles per 100 μg | Oral administration | 14 d | No adverse effects by secondary MPs (PP and PS) | [68] |
PP particles | 8–125, 71–383, 761–1660 μm | Eisenia fetida | 0.25% (w/w) | Soil with PP particles | 28 d | Causing neurotoxicity, oxidative stress and inflammation | [69] |
PP particles | 13 μm | Earthworm Metaphire guillelmi gut microbiota | 0.25% (w/w) | Soil with PP particles | 28 d | Significantly reduces the bacterial diversity and changes the community structure in the soil | [70] |
PP particles and triclosan (TCS) | 1–15 μm | Zebrafish | 200 μg mL−1 | Culture water | 28 d | PP changes the distribution of TCS in tissues and increases the accumulation of TCS in the liver and intestines | [71] |
Non-woven fabric | <300 µm | Springtails and earthworm | 1000 mg kg−1 dry soil | Soil with fibers and masks fragments | 28 d | Suppresses Springtails growth and sperm production by male earthworms. | [14] |
PFF-2 protective mask | A whole mask | Magellanic penguin | Juquehy Beach, Sebastian, Brazil | Death | [59] | ||
Face mask | A whole mask | Gull | A mask tangled around the leg | 14 d | Death | [29] | |
PP debris from the beach | 1–5 mm | Zebrafish, sea urchin and jellyfish | 333, 1000 and 3333 mg L−1 | Artificial seawater | 24–48 h | Sublethal effect on sea urchins and jellyfish; Not affecting the development of Zebrafish embryos | [72] |
Powdered plastics | 100–250 µm | Acutodesmus obliquus | 0, 5, 10, 15, 25, 100, 150, 200, and 250 mg L−1 | BG11 medium with MPs | 21 d | Significantly reduced protein content | [73] |
PP fibers | 50–60 µm | Medaka | 10,000 particles L−1 | AHAB recirculate-ing system | 21 d | Production of more eggs by females | |
PP fibers | 0.4% w/w | sandy soil | 31 d | Decreased soil enzyme activity | [74] | ||
PP fibers | 20–100 µm | Green mussel Perna viridis | Natural environment collection | Various negative physiological and structural changes in P. viridis | [75] | ||
PP fibers | 1.6 µm in diameter and 30.3 µm in length | Male Fischer 344 rats | 15, 30, or 60 mg m−3 of PP | negative control | 90 d | Induce pulmonary fibrosis | [76] |
Chemical Group | Sorbate | Adsorbent | Conditions | Adsorption Capacity | Ref. |
---|---|---|---|---|---|
Heavy metal | Cd | Carboxylated PP fibers-ball | Agitated at room temperature for 15 min. | 90% of Cd was adsorbed by PP fiber balls | [84] |
Cd | Anion-exchanger chelating fibers (PP) | 50 mL cadmium solution, agitated at 150 rpm for 2 h | 125.34 mg g−1 | [85] | |
Au, Hg | Modified PP fabrics | Agitated at 5, 20 and 50 °C from 2 to 120 h | 500 mg g−1 (Au) | [86] | |
Cu, Pb | Dopamine-modified PP fibers | 25 °C, pH = 6.8, 180 min | 1.28 mg g−1 (Cu), 1.73 mg g−1 (Pb) | [87] | |
Organic Pollutants | RhB | PP fibers | 25 °C, pH = 7.0, 12 h | 17.4 mg g−1 | [88] |
Oil | PP nanofibers | Soaked in oil long enough | It can absorb oil more than 60 times its own weight. | [89] | |
Toluene | PP melt-blown nonwovens | 20 g PP loaded into adsorption column at 25 °C and 5 m s−1. | 13.12 g g−1 | [90] | |
Parabens | Amphiphilic functionalized PP fiber | Added to parabens (35 mL, pH = 7) and stirred for 24 h. | 138.4 mg g−1 | [91] | |
Bacteria | Bacillus licheniformis, Bacillus subtilis | Modified PP (MPP) fibers | Incubated for 24 h on a shaker at 30 °C at 170 rpm | Bacteria can be adsorbed | [92] |
Virus | Adenovirus | Ionic surface active PP fibers | Place 5, 10, 20, 40 min at room temperature, add 200 µL culture solution | Viruses can be adsorbed | [93] |
4.2. Adsorption and Accumulation of Pollutants in PP Fiber
5. Concluding Remarks and Future Prospects
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, H.; Park, H.; Liu, Y.; Huang, J. On-Mask, Chemical Modulation of Respiratory, Droplets. Matter 2020, 3, 1791–1810. [Google Scholar] [CrossRef] [PubMed]
- Mitze, T.; Kosfeld, R.; Rode, J.; Wälde, K. Face masks considerably reduce COVID-19 cases in Germany. Proc. Natl. Acad. Sci. USA 2020, 117, 32293–32301. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Silva, A.L.P.; Duarte, A.C.; Rocha-Santos, T. Disposable over Reusable, Face Masks: Public, Safety or Environmental, Disaster? Environments 2021, 8, 31. [Google Scholar] [CrossRef]
- Tobol, Y.; Siniver, E.; Yaniv, G. Dishonesty and mandatory mask wearing in the COVID-19 pandemic. Econ. Lett. 2020, 197, 109617. [Google Scholar] [CrossRef] [PubMed]
- Missoni, E.; Armocida, B.; Formenti, B. Face, Masks for All and All for Face, Masks in the COVID-19 Pandemic: Community, Level Production to Face the Global, Shortage and Shorten the Epidemic. Disaster Med. Public Health Prep. 2021, 15, e29–e33. [Google Scholar] [CrossRef]
- Teymourian, T.; Teymoorian, T.; Kowsari, E.; Ramakrishna, S. Challenges, Strategies, and Recommendations for the Huge, Surge in Plastic and Medical, Waste during the Global, COVID-19 Pandemic with Circular, Economy Approach. Mater. Circ. Econ. 2021, 3, 6. [Google Scholar] [CrossRef]
- Kumar, H.; Azad, A.; Gupta, A.; Sharma, J.; Bherwani, H.; Labhsetwar, N.K.; Kumar, R. COVID-19 Creating another problem? Sustainable solution for PPE disposal through LCA approach. Environ. Dev. Sustain. 2021, 23, 9418–9432. [Google Scholar] [CrossRef]
- De-la-Torre, G.E.; Rakib, M.R.J.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C. Occurrence of personal protective equipment (PPE) associated with the COVID-19 pandemic along the coast of Lima, Peru. Sci. Total Environ. 2021, 774, 145774. [Google Scholar] [CrossRef]
- Akarsu, C.; Madenli, Ö.; Deveci, E.Ü. Characterization of littered face masks in the southeastern part of Turkey. Environ. Sci. Pollut. Res. 2021, 28, 47517–47527. [Google Scholar] [CrossRef]
- Cordova, M.R.; Nurhati, I.S.; Riani, E.; Nurhasanah; Iswari, M.Y. Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta, Bay during COVID-19 pandemic. Chemosphere 2021, 268, 129360. [Google Scholar] [CrossRef]
- Ardusso, M.; Forero-Lopez, A.D.; Buzzi, N.S.; Spetter, C.V.; Fernandez-Severini, M.D. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South, America. Sci. Total Environ. 2021, 763, 144365. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Arribas, J.; Moreno, T.; Bartrolí, R.; Eljarrat, E. COVID-19 face masks: A new source of human and environmental exposure to organophosphate esters. Environ. Int. 2021, 154, 106654. [Google Scholar] [CrossRef] [PubMed]
- Bartels, V.T. Handbook of Medical Textiles; Woodhead Publishing Ltd.: Thorston, UK, 2011; pp. 106–131. [Google Scholar]
- Kwak, J.I.; An, Y. Post, COVID-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. J. Hazard. Mater. 2021, 416, 126169. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Liu, Q.; Zhao, Q.; Xiong, X.; Wu, C. Used disposable face masks are significant sources of microplastics to environment. Environ. Pollut. 2021, 285, 117485. [Google Scholar] [CrossRef]
- Frère, L.; Maignien, L.; Chalopin, M.; Huvet, A.; Rinnert, E.; Morrison, H.; Kerninon, S.; Cassone, A.; Lambert, C.; Reveillaud, J.; et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ. Pollut. 2018, 242, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) as compared to SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic, Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef]
- Sullivan, G.L.; Delgado-Gallardo, J.; Watson, T.M.; Sarp, S. An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks-linked to the COVID-19 pandemic. Water Res. 2021, 196, 117033. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, B.; Zhang, B.; Li, H.; Liao, R.; Hong, H.; Lu, H.; Liu, J.; Yan, C. Uncovering the disposable face masks as vectors of metal ions (Pb(Ⅱ), Cd(Ⅱ), Sr(Ⅱ)) during the COVID-19 pandemic. Chem. Eng. J. 2022, 439, 135613. [Google Scholar] [CrossRef]
- Statistics on the Total Population of Young and Middle-Aged People and Gradually Entering the Working Age Group (15 to 64 Years Old) around the World-Wenku. Baidu [EB/OL]. Available online: https://wenku.baidu.com/view/7bb7822b9989680203d8ce2f0066f5335a8167aa.html (accessed on 2 November 2021).
- Chowdhury, H.; Chowdhury, T.; Sait, S.M. Estimating marine plastic pollution from COVID-19 face masks in coastal regions. Mar. Pollut. Bull. 2021, 168, 112419. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; De-la-Torre, G.E.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C.; Al-Nahian, S. Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in Cox’s Bazar, the longest natural beach in the world. Mar. Pollut. Bull. 2021, 169, 112497. [Google Scholar] [CrossRef] [PubMed]
- Akhbarizadeh, R.; Dobaradaran, S.; Nabipour, I.; Tangestani, M.; Abedi, D.; Javanfekr, F.; Jeddi, F.; Zendehboodi, A. Abandoned, COVID-19 personal protective equipment along the Bushehr shores, the Persian, Gulf: An emerging source of secondary microplastics in coastlines. Mar. Pollut. Bull. 2021, 168, 112386. [Google Scholar] [CrossRef] [PubMed]
- Okuku, E.; Kiteresi, L.; Owato, G.; Otieno, K.; Mwalugha, C.; Mbuche, M.; Gwada, B.; Nelson, A.; Chepkemboi, P.; Achieng, Q.; et al. The impacts of COVID-19 pandemic on marine litter pollution along the Kenyan, Coast: A synthesis after 100 days following the first reported case in Kenya. Mar. Pollut. Bull. 2021, 162, 111840. [Google Scholar] [CrossRef] [PubMed]
- Thiel, M.; de Veer, D.; Espinoza-Fuenzalida, N.L.; Espinoza, C.; Gallardo, C.; Hinojosa, I.A.; Kiessling, T.; Rojas, J.; Sanchez, A.; Sotomayor, F.; et al. COVID lessons from the global south—Face masks invading tourist beaches and recommendations for the outdoor seasons. Sci. Total Environ. 2021, 786, 147486. [Google Scholar] [CrossRef]
- Haddad, M.B.; De-la-Torre, G.E.; Abelouah, M.R.; Hajji, S.; Alla, A.A. Personal protective equipment (PPE) pollution associated with the COVID-19 pandemic along the coastline of Agadir, Morocco. Sci. Total Environ. 2021, 798, 149282. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, A.; Rambonnet, L.; Gravendeel, B.; Schilthuizen, M. The effects of COVID-19 litter on animal life. Anim. Biol. 2021, 71, 215–231. [Google Scholar] [CrossRef]
- Hasan, N.A.; Heal, R.D.; Bashar, A.; Haque, M.M. Face masks: Protecting the wearer but neglecting the aquatic environment?—A perspective from Bangladesh. Environ. Chall. 2021, 4, 100126. [Google Scholar] [CrossRef]
- Ammendolia, J.; Saturno, J.; Brooks, A.L.; Jacobs, S.; Jambeck, J.R. An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 2021, 269, 116160. [Google Scholar] [CrossRef] [PubMed]
- Benson, N.U.; Fred-Ahmadu, O.H.; Bassey, D.E.; Atayero, A.A. COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. J. Environ. Chem. Eng. 2021, 9, 105222. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, P.; Kuśnierz, S.; Sosna, P.; Mauer, J.; Maj, D. Disposal of Personal, Protective Equipment during the COVID-19 Pandemic, Is a Challenge for Waste, Collection Companies and Society: A Case, Study in Poland. Resources 2020, 9, 116. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmannb, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and Spatial, Distribution of Microplastics in River, Shore Sediments of the Rhine-Main, Area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Wang, Q.; Sun, Y. Microplastics as a Vector for HOC Bioaccumulation in Earthworm Eisenia fetida in Soil: Importance of Chemical, Diffusion and Particle, Size. Environ. Sci. Technol. 2020, 54, 12154–12163. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- Dybas, C.L. Silent, Scourge: Microplastics in Water, Food, and Air. BioScience 2020, 70, 1048–1055. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D.K.; Gun Ko, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 2020, 1, 746–754. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Y.; Zhu, D.; Xia, T.; Qi, Y.; Yao, Y.; Guo, X.; Ji, R.; Chen, W. Polystyrene, Nanoplastics-Enhanced, Contaminant Transport: Role of Irreversible, Adsorption in Glassy, Polymeric Domain. Environ. Sci. Technol. 2018, 52, 2677–2685. [Google Scholar] [CrossRef]
- Moresco, V.; Oliver, D.M.; Weidmann, M.; Matallana-Surget, S.; Quilliam, R.S. Survival of human enteric and respiratory viruses on plastics in soil, freshwater, and marine environments. Environ. Res. 2021, 199, 111367. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Song, B.; Yi, H.; Hu, T.; Zhang, Y.; Zeng, G.; Xiao, R. Neglected microplastics pollution in global COVID-19: Disposable surgical masks. Sci. Total Environ. 2021, 790, 148130. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, X.; Li, Z.; Song, K. COVID-19: Performance study of microplastic inhalation risk posed by wearing masks. J. Hazard. Mater. 2021, 411, 124955. [Google Scholar] [CrossRef] [PubMed]
- Morgana, S.; Casentini, B.; Amalfitano, S. Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. J. Hazard. Mater. 2021, 419, 126507. [Google Scholar] [CrossRef] [PubMed]
- Saliu, F.; Veronelli, M.; Raguso, C.; Barana, D.; Galli, P.; Lasagni, M. The release process of microfibers: From surgical face masks into the marine environment. Environ. Adv. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Wang, Z.; An, C.; Chen, X.; Lee, K.; Zhang, B.; Feng, Q. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. J. Hazard. Mater. 2021, 417, 126036. [Google Scholar] [CrossRef]
- Patrício Silva, A.L.; Prata, J.C.; Duarte, A.C.; Barcelò, D.; Rocha-Santos, T. An urgent call to think globally and act locally on landfill disposable plastics under and after COVID-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. Chem. Eng. J. 2021, 426, 131201. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Srivastava, R.R.; Kim, H. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Sci. Total Environ. 2020, 749, 141652. [Google Scholar] [CrossRef]
- Sangkham, S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2020, 2, 100052. [Google Scholar] [CrossRef]
- Aragaw, T.A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 2020, 159, 111517. [Google Scholar] [CrossRef]
- Ma, J.; Niu, X.; Zhang, D.; Lu, L.; Ye, X.; Deng, W.; Li, Y.; Lin, Z. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl, River Estuary of Guangzhou, China. Sci. Total Environ. 2020, 744, 140679. [Google Scholar] [CrossRef]
- Ma, J.; Chen, F.; Xu, H.; Jiang, H.; Liu, J.; Li, P.; Chen, C.C.; Pan, K. Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation. Environ. Pollut. 2021, 288, 117748. [Google Scholar] [CrossRef] [PubMed]
- Rathinamoorthy, R.; Balasaraswathi, S.R. Disposable tri-layer masks and microfiber pollution—An experimental analysis on dry and wet state emission. Sci. Total Environ. 2022, 816, 151562. [Google Scholar] [CrossRef]
- Liang, H.; Ji, Y.; Ge, W.; Wu, J.; Song, N.; Yin, Z.; Chai, C. Release kinetics of microplastics from disposable face masks into the aqueous environment. Sci. Total Environ. 2022, 816, 151650. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. Reusable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar. Pollut. Bull. 2020, 161, 111777. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Gallo, N.H.; Gomes, B.C.; Browning, J.; Della, F.N.; Albuquerque, B.T.; Teles, D.S.F.; de Karam, E.B.M.; Beatriz, B.C. Mortality of a juvenile Magellanic penguin (Spheniscus magellanicus, Spheniscidae) associated with the ingestion of a PFF-2 protective mask during the COVID-19 pandemic. Mar. Pollut. Bull. 2021, 166, 112232. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.L.; Braga, K.M.; Luque, J.L. Marine debris ingestion by Magellanic penguins, Spheniscus magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone. Mar. Pollut. Bull. 2011, 62, 2246–2249. [Google Scholar] [CrossRef]
- Tavares, D.C.; Da Costa, L.L.; Rangel, D.F.; de Moura, J.F.; Zalmon, I.R.; Siciliano, S. Nests of the brown booby (Sula leucogaster) as a potential indicator of tropical ocean pollution by marine debris. Ecol. Indic. 2016, 70, 10–14. [Google Scholar] [CrossRef]
- Lavers, J.L.; Hutton, I.; Bond, A.L. Clinical, Pathology of Plastic, Ingestion in Marine, Birds and Relationships with Blood, Chemistry. Environ. Sci. Technol. 2019, 53, 9224–9231. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, J.D.; Jentsch, J.D.; Van de Voort, C.A.; Roth, R.H.; Redmond, D.E., Jr.; Leranth, C. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. NeuroToxicology 2013, 35, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejjad, N.; Cherif, E.K.; Rodero, A.; Krawczyk, D.A.; El Kharraz, J.; Moumen, A.; Laqbaqbi, M.; Fekri, A. Disposal, Behavior of Used, Masks during the COVID-19 Pandemic in the Moroccan, Community: Potential, Environmental Impact. Int. J. Environ. Res. Public Health 2021, 18, 4382. [Google Scholar] [CrossRef]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Choi, D.; Han, S.; Choi, J.; Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019, 684, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Hadiyanto, H.; Khoironi, A.; Dianratri, I.; Suherman, S.; Muhammad, F.; Vaidyanathan, S. Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems. Heliyon 2021, 7, e7676. [Google Scholar] [CrossRef]
- El Amrani, A.; Loriot, S.; El Amrani-Callens, F.; Duclos, M.; Singh, P. Impact of housing conditions on cardiovascular parameters in telemetry-implanted cynomolgus monkeys. J. Pharmacol. Toxicol. Methods 2020, 105, 106812. [Google Scholar] [CrossRef]
- Li, B.; Song, W.; Cheng, Y.; Zhang, K.; Tian, H.; Du, Z.; Wang, J.; Wang, J.; Zhang, W.; Zhu, L. Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida. Sci. Total Environ. 2021, 783, 147007. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Song, W.; Tian, H.; Zhang, K.; Li, B.; Du, Z.; Zhang, W.; Wang, J.; Wang, J.; Zhu, L. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Chemosphere 2021, 267, 129219. [Google Scholar] [CrossRef]
- Sheng, C.; Zhang, S.; Zhang, Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J. Hazard. Mater. 2021, 402, 123733. [Google Scholar] [CrossRef]
- Cormier, B.; Gambardella, C.; Tato, T.; Perdriat, Q.; Costa, E.; Veclin, C.; Le Bihanic, F.; Grassl, B.; Dubocq, F.; Kärrman, A.; et al. Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms. Ecotoxicol. Environ. Saf. 2021, 208, 111665. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.A.; Ratha, S.K.; Renuka, N.; Ramanna, L.; Gupta, S.K.; Rawat, I.; Bux, F. Effect of microplastics on growth and biochemical composition of microalga Acutodesmus obliquus. Algal Res. 2021, 56, 102296. [Google Scholar] [CrossRef]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics, Increase Soil pH and Decrease, Microbial Activities as a Function of Microplastic, Shape, Polymer, Type, and Exposure, Time. Front. Environ. Sci. 2021, 9, 675803. [Google Scholar] [CrossRef]
- Vasanthi, R.L.; Arulvasu, C.; Kumar, P.; Srinivasan, P. Ingestion of microplastics and its potential for causing structural alterations and oxidative stress in Indian green mussel Perna viridis—A multiple biomarker approach. Chemosphere 2021, 283, 130979. [Google Scholar] [CrossRef]
- Hesterberg, T.W.; McConnell, E.E.; Miller, W.C.; Hamilton, R.; Bunn, W.B. Pulmonary toxicity of inhaled polypropylene fibers in rats. Fundam. Appl. Toxicol. 1992, 19, 358–366. [Google Scholar] [CrossRef]
- Rebelein, A.; Int-Veen, I.; Kammann, U.; Scharsack, J.P. Microplastic fibers Underestimated threat to aquatic organisms. Sci. Total Environ. 2021, 777, 146045. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. An overview of recent advances in micro/nano beads and microfibers research: Critical assessment and promoting the less known. Sci. Total Environ. 2020, 740, 139991. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, S.; Zhou, G.; Zhang, K.; Lu, Y.; Jin, Q.; Lam, P.K.S.; Leung, K.M.Y.; He, Y. Release of Microplastics from Discarded, Surgical Masks and Their, Adverse Impacts on the Marine, Copepod Tigriopus japonicus. Environ. Sci. Technol. Lett. 2021, 8, 1065–1070. [Google Scholar] [CrossRef]
- Song, Y.; Cao, C.; Qiu, R.; Hu, J.; Liu, M.; Lu, S.; Shi, H. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ. Pollut. 2019, 250, 447–455. [Google Scholar] [CrossRef]
- Liu, P.; Shi, Y.; Wu, X.; Wang, H.; Huang, H.; Guo, X.; Gao, S. Review of the artificially-accelerated aging technology and ecological risk of microplastics. Sci. Total Environ. 2021, 768, 144969. [Google Scholar] [CrossRef]
- Sendra, M.; Pereiro, P.; Figueras, A.; Novoa, B. An integrative toxicogenomic analysis of plastic additives. J. Hazard. Mater. 2021, 409, 124975. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Peng, C.; Guo, Y.; Wang, X.; Wu, Y.; Chen, D. Organophosphate, Flame Retardants in House, Dust from South, China and Related, Human Exposure, Risks. Bull. Environ. Contam. Toxicol. 2017, 99, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.; Wei, J.; Wang, D.; Kong, Z.; Zhang, H.; Wang, H. A novel remediation method of cadmium (Cd) contaminated soil: Dynamic equilibrium of Cd2+ rapid release from soil to water and selective adsorption by PP-g-AA fibers-ball at low concentration. J. Hazard. Mater. 2021, 416, 125884. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tao, Z.; Wang, H.; Zhao, F.; Sun, Q. Preparation and characterization of a series of porous anion-exchanger chelating fibers and their adsorption behavior with respect to removal of cadmium(II). RSC Adv. 2016, 6, 115222–115237. [Google Scholar] [CrossRef]
- Ehrhardt, A.; Miyazaki, K.; Sato, Y.; Hori, T. Modified polypropylene fabrics and their metal ion sorption role in aqueous solution. Appl. Surf. Sci. 2005, 252, 1070–1075. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, N.Y.; Xie, C.X.; Mou, B.; Ai, Y.N. Design dopamine-modified polypropylene fibers towards removal of heavy metal ions from water. AIP Adv. 2017, 7, 45011. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, S.; Wu, Q. Surface molecular imprinting on polypropylene fibers for rhodamine B selective adsorption. J. Colloid Interface Sci. 2012, 385, 193–201. [Google Scholar] [CrossRef]
- Wu, W.; Hirogaki, T.; Aoyama, E. Investigation of oil adsorption performance of polypropylene nanofiber nonwoven fabric. J. Eng. Mater. Technol. 2019, 141, 21004. [Google Scholar] [CrossRef]
- Guo, M.; Liang, H.; Luo, Z.; Chen, Q.; Wei, W. Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption. Fibers Polym. 2016, 17, 257–265. [Google Scholar] [CrossRef]
- Ran, J.; Li, M.; Zhang, C.; Xue, F.; Tao, M.; Zhang, W. Synergistic, Adsorption for Parabens by an Amphiphilic, Functionalized Polypropylene, Fiber with Tunable, Surface Microenvironment. ACS Omega 2020, 5, 2920–2930. [Google Scholar] [CrossRef]
- Su, Y.; Qian, C.; Zheng, T.; Chen, Q. A prepared easily bio-carrier based on chitosan modified polypropylene fibers. Biochem. Eng. J. 2021, 165, 107824. [Google Scholar] [CrossRef]
- Song, J.; Zhou, W.; Wu, Z.; Wang, Y.; Cui, Y.; Zhou, S.J.; Li, C.P.; Han, J. Adsorption of virus onto ionic surfactants of polypropylene fibers. Chin. J. Exp. Clin. Virol. 2011, 25, 191–193. [Google Scholar]
- Joo, S.H.; Liang, Y.; Kim, M.; Byun, J.; Choi, H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. Environ. Chall. 2021, 3, 100042. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Single-use surgical face masks, as a potential source of microplastics: Do they act as pollutant carriers? J. Mol. Liq. 2021, 326, 115247. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Yu, X.; Cai, L.; Wang, J.; Peng, J. Microplastics and associated PAHs in surface water from the Feilaixia, Reservoir in the Beijiang, River, China. Chemosphere 2019, 221, 834–840. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, J.; Wu, J.; Yang, J.; Wang, H. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustain. Mater. Technol. 2021, 28, e251. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Vianello, A.; Jensen, R.L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a Breathing, Thermal Manikin. Sci. Rep. 2019, 9, 8670. [Google Scholar] [CrossRef]
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of Biofilm, Formation on the Fate and Potential, Effects of Microplastic in the Aquatic, Environment. Environ. Sci. Technol. Lett. 2017, 4, 258–267. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Ting, Z.; You, Z.; Kim, H.; Shah, K.J. Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. Water 2022, 14, 2403. https://doi.org/10.3390/w14152403
Zhao C, Ting Z, You Z, Kim H, Shah KJ. Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. Water. 2022; 14(15):2403. https://doi.org/10.3390/w14152403
Chicago/Turabian StyleZhao, Changrong, Zhang Ting, Zhaoyang You, Hyunook Kim, and Kinjal J. Shah. 2022. "Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment" Water 14, no. 15: 2403. https://doi.org/10.3390/w14152403
APA StyleZhao, C., Ting, Z., You, Z., Kim, H., & Shah, K. J. (2022). Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. Water, 14(15), 2403. https://doi.org/10.3390/w14152403