Tomato Evapotranspiration, Crop Coefficient and Irrigation Water Use Efficiency in the Winter Period in a Sunken Chinese Solar Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description
2.2. Plant Management
3. Measurement
3.1. Sap Flow
3.2. Soil Water
3.3. Microclimate
3.4. Photosynthetic Index
3.5. Plant Growth and Yield
4. Calculation
4.1. Reference Crop Evapotranspiration
4.2. Basal Crop Coefficient
4.3. Irrigation Water Use Efficiency and Irrigation Water Productivity
4.4. Statistical Analysis
5. Results
5.1. Inside and Outside Microclimate and Soil Matric Potential
5.2. Growth and Yield
5.3. Photosynthetic Traits
5.4. Sap Flow and Basal Crop Coefficient
6. Discussion
6.1. SF and Microclimate Factors
6.2. Basal Crop Coefficient of Tomato in This Study and the FAO 56 Paper
6.3. Photosynthesis Traits and Microclimate
6.4. Irrigation Water Productivity and Water Use Efficiency
7. Conclusions
- The SSG can increase the temperature by approximately 10 °C in November and 15 to 18 °C in December, which is beneficial for tomato growth.
- The leaf photosynthesis rate is linearly related to solar radiation; however, a concave quadratic curve is better for Pn and VPD, with the highest Pn at approximately 1.0 kPa VPD. Leaf transpiration is positively linearly related to solar radiation and VPD, and the daily sap flow of tomato crops was most related to solar radiation, followed by VPD. Correcting the slope of SF to radiation with VPD could improve SF estimation accuracy, yielding a smaller RMSE and MRE. Therefore, this integrated regression equation is recommended to estimate daily tomato transpiration when plant height is approximately 1.5 m, and LAI is between 2 and 2.5 in this SSG.
- The average basal crop coefficients Kcb during tomato fruit expansion and ripening were 1.06, 1.11, and 0.99 in the 2018, 2019, and 2020 seasons, respectively.
- The irrigation efficiency increased from 0.3 in the first season to 0.6–0.69 in the second and third seasons when the tensiometer method was used. Thus, the tensiometer method by which irrigation begins when the soil matric potential is at a depth of 20 cm in the root zone is -35 kPa, is recommended to guide tomato irrigation in greenhouses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Yuan, B.; Hu, X.; Yin, C.; Tang, X. Cucumber production and the economic revenues under various nitrogen applications in an unheated solar greenhouse on the North China Plain. Agron. J. 2021, 113, 3444–3459. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng. Rev. 2015, 8, 52–75. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Kleiber, T.; Kaczmarek, A. Effect of increasing manganese concentration in nutrient solution on the antioxidant activity, vitamin C, lycopene and polyphenol contents of tomato fruit. Food Addit. Contam. A 2017, 34, 379–389. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statisctis of China. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Zheng, J.; Huang, G.; Jia, D.; Wang, J.; Mota, M.; Pereira, L.S.; Huang, Q.; Xu, X.; Liu, H. Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agric. Water Manag. 2013, 129, 181–193. [Google Scholar] [CrossRef]
- Bogale, A.; Nagle, M.; Latif, S.; Aguila, M.; Müller, J. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Sci. Hortic. 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Chen, N.; Zhang, C.; Liu, Y.; Khan, S.; Lu, K.; Li, Y.; Dong, X.; Zhao, C. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong mountain, northwestern China. For. Ecol. Manag. 2019, 451, 117519. [Google Scholar] [CrossRef]
- Mao, H.; Ullah, I.; Jiheng, N.; Javed, Q.; Azeem, A. Estimating tomato water consumption by sap flow measurement in response to water stress under greenhouse conditions. J. Plant Interact. 2017, 12, 402–413. [Google Scholar]
- Brito, P.; Lorenzo, J.R.; Gonzalez-Rodriguez, A.M.; Morales, D.; Wieser, G.; Jimenez, M.S. Canopy transpiration of a semi arid Pinus canariensis forest at a treeline ecotone in two hydrologically contrasting years. Agric. For. Meteorol. 2015, 201, 120–127. [Google Scholar] [CrossRef]
- Clausnitzer, F.; Köstner, B.; Schwärzel, K.; Bernhofer, C. Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agric. For. Meteorol. 2011, 151, 1023–1034. [Google Scholar] [CrossRef]
- Liu, H.; Cohen, S.; Lemcoff, J.H.; Israeli, Y.; Tanny, J. Sap flow, canopy conductance and microclimate in a banana screenhouse. Agric. For. Meteorol. 2015, 201, 165–175. [Google Scholar]
- Momii, K.; Hiyama, H.; Takeuchi, S. Field sugarcane transpiration based on sap flow measurements and root water uptake simulations: Case study on Tanegashima Island, Japan. Agric. Water Manag. 2021, 250, 106836. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Ward, E.J.; Ding, R.; Zhang, X.; Zheng, R. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agric. Water Manag. 2011, 98, 1207–1214. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, S.; Ke, J.; Zhu, A. Effects of meteorological factors and groundwater depths on plant sap flow velocities in karst critical zone. Sci. Total Environ. 2021, 781, 146764. [Google Scholar] [CrossRef] [PubMed]
- Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43. [Google Scholar] [CrossRef]
- Hayat, M.; Iqbal, S.; Zha, T.; Jia, X.; Qian, D.; Bourque, C.P.A.; Khan, A.; Tian, Y.; Bai, Y.; Liu, P.; et al. Biophysical control on nighttime sap flow in Salix psammophila in a semiarid shrubland ecosystem. Agric. For. Meteorol. 2021, 300, 108329. [Google Scholar] [CrossRef]
- Olufayo, A.A.; Oguntunde, P.G.; Omotayo, F.S. Influence of Climatic Variables on Whole-plant Water use of Cocoa under Limited Soil Moisture Condition. J. Agric. Ecol. Res. 2019, 19, 1–8. [Google Scholar]
- Gong, X.; Qiu, R.; Sun, J.; Ge, J.; Li, Y.; Wang, S. Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agric. Water Manag. 2020, 235, 106154. [Google Scholar] [CrossRef]
- Li, B.; Shi, B.; Yao, Z.; Kumar Shukla, M.; Du, T. Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems. Agric. Water Manag. 2020, 234, 106096. [Google Scholar] [CrossRef]
- Zhou, K.; Jerszurki, D.; Sadka, A.; Shlizerman, L.; Rachmilevitch, S.; Ephrath, J. Effects of photoselective netting on root growth and development of young grafted orange trees under semi-arid climate. Sci. Hortic. 2018, 238, 272–280. [Google Scholar] [CrossRef]
- Mupambi, G.; Anthony, B.M.; Layne, D.R.; Musacchi, S.; Serra, S.; Schmidt, T.; Kalcsits, L.A. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 2018, 236, 60–72. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 2003, 23, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wei, M.; Li, Y.; Feng, G.; Wang, Y.; Li, S.; Zhang, D. Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand. Agric. Water Manag. 2019, 226, 105818. [Google Scholar] [CrossRef]
- Kimura, K.; Yasutake, D.; Koikawa, K.; Kitano, M. Spatiotemporal variability of leaf photosynthesis and its linkage with microclimates across an environment-controlled greenhouse. Biosyst. Eng. 2020, 195, 97–115. [Google Scholar] [CrossRef]
- Chen, S.N.; Li, Z.F.; Liu, F.; Yang, S.B.; Li, M. Risk evaluation of solar greenhouse cucumbers low temperature disaster based on GIS spatial analysis in Tianjin, China. Geomat. Nat. Hazards Risk 2019, 10, 576–598. [Google Scholar] [CrossRef]
- Li, A.; Huang, L.; Zhang, T. Field test and analysis of microclimate in naturally ventilated single-sloped greenhouses. Energy Build. 2017, 138, 479–489. [Google Scholar] [CrossRef]
- Liu, H.; Yin, C.; Hu, X.; Tanny, J.; Tang, X. Microclimate Characteristics and Evapotranspiration Estimates of Cucumber Plants in a Newly Developed Sunken Solar Greenhouse. Water 2020, 12, 2275. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, K.L.; Fan, Z.B.; Wei, Y.P.; Lin, S.; Wang, J.G. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate_N model. Agric. Water Manag. 2013, 128, 72–84. [Google Scholar] [CrossRef]
- Wang, C.; Gu, F.; Chen, J.; Yang, H.; Jiang, J.; Du, T.; Zhang, J. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agric. Water Manag. 2015, 161, 9–19. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, J.; Chen, X.; Zhang, X.; Zhang, W. Greenhouse tomato–cucumber yield and soil N leaching as affected by reducing N rate and adding manure: A case study in the Yellow River Irrigation Region China. Nutr. Cycl. Agroecosyst. 2012, 94, 221–235. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, B.; Hu, X.; Yin, C. Drip irrigation enhances water use efficiency without losses in cucumber yield and economic benefits in greenhouses in North China. Irrig. Sci. 2022, 40, 135–149. [Google Scholar] [CrossRef]
- National Bureau of Statisctis of China. China National Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Feng, Z.; Kang, Y.; Wan, S.; Liu, S. Effect of Drip Fertigation on Potato Productivity with Basal Application of Loss Control Fertilizer in Sandy Soil. Irrig. Drain. 2018, 67, 210–221. [Google Scholar] [CrossRef]
- Liu, H.; Yin, C.; Gao, Z.; Hou, L. Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China. Agric. Water Manag. 2021, 243, 106442. [Google Scholar] [CrossRef]
- Sun, J.; Kang, Y.; Wan, S.; Hu, W. Influence of drip irrigation level on salt leaching and vegetation growth during reclamation of coastal saline soil having an imbedded gravel–sand layer. Ecol. Eng. 2017, 108, 59–69. [Google Scholar] [CrossRef]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Erratum to: Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2011, 29, 91–92. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998.
- Perry, C. Efficient irrigation; Inefficient communication; Flawed recommendations. Irrig. Drain. 2007, 56, 367–378. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Pereira, L.S. Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosyst. Eng. 2009, 103, 536–551. [Google Scholar] [CrossRef] [Green Version]
- Abedinpour, M. Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter. Soil Water Res. 2016, 10, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Shock, C.C.; Wang, F. Soil Water Tension, a Powerful Measurement for Productivity and Stewardship. Hortscience 2011, 46, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Cohen, Y.; Fuchs, M.; Plaut, Z.; Grava, A. The effect of vapor pressure deficit on leaf area and water transport in flower stems of soil-less culture rose. Agric. Water Manag. 2006, 81, 216–224. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.; Tian, F.; Guan, H.; Lin, H. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agric. For. Meteorol. 2017, 240–241, 46–57. [Google Scholar] [CrossRef]
- Siddiq, Z.; Chen, Y.; Zhang, Y.; Zhang, J.; Cao, K. More sensitive response of crown conductance to VPD and larger water consumption in tropical evergreen than in deciduous broadleaf timber trees. Agric. For. Meteorol. 2017, 247, 399–407. [Google Scholar] [CrossRef]
- Qiu, R.; Du, T.; Kang, S.; Chen, R.; Wu, L. Influence of Water and Nitrogen Stress on Stem Sap Flow of Tomato Grown in a Solar Greenhouse. J. Am. Soc. Hortic. Sci. 2015, 140, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Wang, T.; Wei, X.; Li, B.; Bai, Y. Grapevine Sap Flow in Response to Physio-Environmental Factors under Solar Greenhouse Conditions. Water 2020, 12, 3081. [Google Scholar]
- Xia, G.; Kang, S.; Li, F.; Zhang, J.; Zhou, Q. Diurnal and seasonal variations of sap flow ofCaragana korshinskii in the arid desert region of north-west China. Hydrol. Process 2008, 22, 1197–1205. [Google Scholar] [CrossRef]
- Xu, X.; Tong, L.; Li, F.; Kang, S.; Qu, Y. Sap flow of irrigated Populus alba var. pyramidalis and its relationship with environmental factors and leaf area index in an arid region of Northwest China. J. For. Res. 2017, 16, 144–152. [Google Scholar] [CrossRef]
- Qiu, R.; Song, J.; Du, T.; Kang, S.; Tong, L.; Chen, R.; Wu, L. Response of evapotranspiration and yield to planting density of solar greenhouse grown tomato in northwest China. Agric. Water Manag. 2013, 130, 44–51. [Google Scholar] [CrossRef]
- Garcia, R.L.; Long, S.P.; Wall, G.W.; Osborne, C.P.; Kimball, B.A.; Nie, G.Y.; Pinter, P.J.; Lamorte, R.L.; Wechsung, F. Photosynthesis and conductance of spring-wheat leaves: Field response to continuous free-air atmospheric CO2 enrichment. Plant Cell. Environ. 1998, 21, 659–669. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, F.; Gou, X.; Fonti, P.; Xia, J.; Cao, Z.; Liu, J.; Wang, Y.; Zhang, J. Seasonal variations in leaf-level photosynthesis and water use efficiency of three isohydric to anisohydric conifers on the Tibetan Plateau. Agric. For. Meteorol. 2021, 308–309, 108581. [Google Scholar] [CrossRef]
- Lu, N.; Nukaya, T.; Kamimura, T.; Zhang, D.; Kurimoto, I.; Takagaki, M.; Maruo, T.; Kozai, T.; Yamori, W. Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Sci. Hortic. 2015, 197, 17–23. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Li, J.; Chang, Y.; Du, Q.; Pan, T. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season. PLoS ONE 2015, 10, e0133919. [Google Scholar] [CrossRef]
- Zhang, D.; Du, Q.; Zhang, Z.; Jiao, X.; Song, X.; Li, J. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci. Rep. 2017, 7, 43461. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Chen, G.; Yang, H.; Du, T. Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane. Agric. Water Manag. 2018, 203, 430–437. [Google Scholar] [CrossRef]
- Min, L.; Shen, Y.; Pei, H.; Wang, P. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain. J. Hydrol. 2018, 559, 510–522. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Gates, J.B.; Reedy, R.C.; Jackson, W.A.; Bordovsky, J.P. Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour. Res. 2010, 46, 2095–2170. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Xue, X.; Guo, W.; Xu, F.; Li, Y.; Sun, W.; Chen, F. Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain. Agric. Water Manag. 2017, 184, 1–8. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
Years | Time Period | Solar Radiation /(MJ m−2 d−1) | Temperature /oC | Relative Humidity /% | Vapor Pressure Deficit /kPa | Wind Speed /m s−1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
In | Out | In | Out | In | Out | In | Out | In | Out | ||
2018 * | October | N.M. ** | 14.74 | 20.91 | 11.47 | 57.70 | 55.61 | 1.36 | 0.70 | N.M. | 1.14 |
November | N.M. | 9.33 | 16.84 | 6.59 | 87.86 | 75.89 | 0.33 | 0.26 | N.M. | 1.27 | |
December | 5.94 | 8.63 | 13.99 | −1.60 | 91.17 | 62.34 | 0.22 | 0.22 | N.M. | 1.23 | |
2019 | October | 8.34 | 11.62 | 17.94 | 14.98 | 78.18 | 68.23 | 0.64 | 0.62 | 0.23 | 1.86 |
November | 5.79 | 8.33 | 17.88 | 7.19 | 86.73 | 65.36 | 0.42 | 0.38 | 0.25 | 0.95 | |
December | 4.96 | 6.92 | 14.28 | −0.37 | 89.69 | 71.48 | 0.31 | 0.19 | 0.32 | 0.41 | |
2020 | October | 8.92 | 12.44 | 18.10 | 14.16 | 76.46 | 60.69 | 0.67 | 0.70 | 0.19 | 2.12 |
November | 5.07 | 8.05 | 16.78 | 7.57 | 86.16 | 68.60 | 0.40 | 0.40 | 0.14 | 1.15 | |
December | 5.73 | 8.40 | 16.69 | −1.01 | 84.86 | 61.98 | 0.48 | 0.24 | 0.14 | 0.85 |
Growth Seasons | Date | LAI | Height/cm | Seasonal Yield/ton ha−1 |
---|---|---|---|---|
2018 season | 2018.11.01 | 2.86 | 165 | 86.5 |
2019.01.01 | 2.20 | 147 | ||
2019 season | 2019.10.04 | 0.92 | 81 | 56.3 |
2019.10.26 | 1.62 | 119 | ||
2019.11.23 | 1.55 | 125 | ||
2019.12.21 | 1.68 | 123 | ||
2020 season | 2020.10.05 | 2.19 | 111 | 83.6 |
2020.11.10 | 3.31 | 155 | ||
2020.12.26 | 2.19 | 152 |
Microclimate Variables | Seasons | Regressed Lines | RMSE/mm d−1 | MRE/% | NSE | R2 |
---|---|---|---|---|---|---|
Solar radiation (MJ m−2 d−1) | 2018 | SF = 0.16Rs | 0.147 | 6.79 | 0.82 | 0.87 |
2019 | SF = 0.21Rs | 0.142 | 4.43 | 0.94 | 0.96 | |
2020 | SF = 0.15Rs | 0.122 | 0.80 | 0.85 | 0.92 | |
All data | SF = 0.18Rs | 0.221 | 8.89 | 0.79 | 0.82 | |
VPD (kPa) | 2018 | SF = 4.13VPD | 0.106 | 1.13 | 0.91 | 0.91 |
2019 | SF = 3.30VPD | 0.202 | −3.94 | 0.88 | 0.89 | |
2020 | SF = 1.76VPD | 0.104 | −1.63 | 0.90 | 0.90 | |
All data | SF = 2.92VPD | 0.334 | −7.29 | 0.50 | 0.61 | |
Temperature (°C) | 2018 | SF = 0.15T − 1.12 | 0.220 | 5.74 | 0.61 | 0.62 |
2019 | SF = 0.21T − 1.94 | 0.235 | 7.74 | 0.84 | 0.84 | |
2020 | SF = 0.16T − 1.90 | 0.170 | −9.88 | 0.72 | 0.79 | |
All data | SF = 0.16T − 1.33 | 0.314 | 4.98 | 0.57 | 0.58 |
Microclimate Variables | Seasons | Regressed Lines | RMSE/mm d−1 | MRE/% | NSE | R2 |
---|---|---|---|---|---|---|
Solar radiation (MJ m−2 d−1) | 2018 | SF = (0.09 + 0.28VPD)Rs | 0.098 | 3.28 | 0.92 | 0.93 |
2019 | SF = (0.14 + 0.18VPD)Rs | 0.102 | 2.84 | 0.97 | 0.97 | |
2020 | SF = (0.07 + 0.14VPD)Rs | 0.088 | −1.40 | 0.93 | 0.93 | |
All data | SF = (0.12 + 0.14VPD)Rs | 0.174 | 2.36 | 0.87 | 0.90 | |
VPD (kPa) | 2018 | SF = (3.32 + 0.13Rs)VPD | 0.104 | 0.98 | 0.91 | 0.92 |
2019 | SF = (4.24 − 0.12Rs)VPD | 0.207 | 3.08 | 0.87 | 0.88 | |
2020 | SF = (1.18 + 0.10Rs)VPD | 0.114 | 3.18 | 0.87 | 0.90 | |
All data | SF = (3.38 + 0.01Rs)VPD | 0.278 | 8.95 | 0.67 | 0.72 |
Seasons | WPI (kg m−3) | SF Measurement Period * | ||
---|---|---|---|---|
Irrigation Depth (mm) | SF Amount (mm) | IE | ||
2018 | 16.8 | 255 | 78 | 0.31 |
2019 | 11.1 | 162 | 98 | 0.60 |
2020 | 18.1 | 52 | 36 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, H.; Tang, X.; Li, L. Tomato Evapotranspiration, Crop Coefficient and Irrigation Water Use Efficiency in the Winter Period in a Sunken Chinese Solar Greenhouse. Water 2022, 14, 2410. https://doi.org/10.3390/w14152410
Yang L, Liu H, Tang X, Li L. Tomato Evapotranspiration, Crop Coefficient and Irrigation Water Use Efficiency in the Winter Period in a Sunken Chinese Solar Greenhouse. Water. 2022; 14(15):2410. https://doi.org/10.3390/w14152410
Chicago/Turabian StyleYang, Li, Haijun Liu, Xiaopei Tang, and Lun Li. 2022. "Tomato Evapotranspiration, Crop Coefficient and Irrigation Water Use Efficiency in the Winter Period in a Sunken Chinese Solar Greenhouse" Water 14, no. 15: 2410. https://doi.org/10.3390/w14152410
APA StyleYang, L., Liu, H., Tang, X., & Li, L. (2022). Tomato Evapotranspiration, Crop Coefficient and Irrigation Water Use Efficiency in the Winter Period in a Sunken Chinese Solar Greenhouse. Water, 14(15), 2410. https://doi.org/10.3390/w14152410