Problems of Local Flooding in Functional Urban Areas in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Assesment of Flooding
- Water rise in watercourses and on natural or artificial reservoirs, snowmelt as well as rising groundwater levels.
- Heavy rainfall.
2.3. Assesment of Suburbanisation
- Net migration rate [67]
- Ii = number of immigrants (internal and external) per year i.
- Ei = number of emigrants (inward and outward) per year i.
- Mi = population of a given area (community) in the middle of year i, i.e., 30 June.
- 2.
- The number of dwellings completed [68]
- Hi = number of dwellings completed in year i.
2.4. Stormwater Fee from The Stakeholders’ Perspective
2.5. Challenge of Local Flooding from Citizens’ Perspective
2.6. Finding Solutions and Improvements
3. Results
3.1. Problem of Flooding
3.2. Scale of Suburbanization
3.3. Rainwater Fee from the Local Authorities’ Perspective
3.4. Rainwater Management from the Citizens’ Perspective
4. Discussion and Lessons Learned
- Without water retention devices, for sealed surfaces permanently connected to the ground-PLN 1.50 per 1 m2 per 1 year (€0.32 average €/PLN exchange rate in January–April 2022 acc. to NBP—the central bank of the Republic of Poland: €1 = PLN 4.63) (currently, it is PLN 0.5 (€0.11) [52].
- With water retention devices, for sealed surfaces, with a capacity of up to 10% of the annual outflow from sealed surfaces permanently connected to the ground-PLN 0.90 (€0.19) per 1 m2 per 1 year (currently, it is PLN 0.30 (€0.06)).
- With water retention devices, for sealed surfaces, with a capacity from 10 to 30% of the annual outflow from sealed surfaces permanently connected to the ground-PLN 0.45 (€0.1) per 1 m2 per 1 year (currently, it is PLN 0.15 (€0.03)).
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.P.; Zhai, A.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et al. (Eds.) Intergovernmental Panel on Climate Change: IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, in press; Available online: https://www.ipcc.ch/report/ar6/wg1/#SPM (accessed on 31 August 2021).
- Hooijer, A.; Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 2021, 12, 3592. [Google Scholar] [CrossRef] [PubMed]
- Urban Sprawl in Europe. The Ignored Challenge. 2006. No. 10 EEA. Available online: https://www.eea.europa.eu/publications/eea_report_2006_10/eea_report_10_2006.pdf/view (accessed on 31 August 2021).
- United Nations. World Population Prospects 2019 Highlights; United Nations: New York, NY, USA, 2019; Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 31 August 2021).
- Frenkel, I. Prognoza demograficzna Polski do 2050 roku ze szczególnym uwzględnieniem obszarów wiejskich. Wieś I Rol. 2016, 1, 19–58. [Google Scholar] [CrossRef]
- Mrozik, K.; Noskowiak, A. Suburbanizacja a możliwości zrównoważonego rozwoju przestrzennego wybranych gmin wiejskich Poznańskiego Obszaru Metropolitalnego. Infrastrukt. I Ekol. Teren. Wiej. 2018, 3, 755–769. [Google Scholar]
- Heffner, K. Proces suburbanizacji a polityka miejska w Polsce. In Miasto—Region—Gospodarka w Badaniach Geograficznych; Marszał, T., Ed.; Uniwersytetu Łódzkiego: Łódź, Poland, 2016; pp. 75–110. [Google Scholar]
- Mrozik, K.; Idczak, P. Suburbanizacja w wybranych gminach wiejskich Bydgosko-Toruńskiego Obszaru Metropolitalnego. Studi. I Pr. WNEiZ 2015, 42, 183–194. [Google Scholar]
- Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S. The Impact a Large City on Land Use in Suburban Area—The Case of Wrocław (Poland). J. Ecol. Eng. 2018, 19, 89–98. [Google Scholar] [CrossRef]
- Mrozik, K.; Waszczuk, M. Przestrzenne aspekty suburbanizacji w wybranych gminach wiejskich Białostockiego Obszaru Funkcjonalnego. Studi. Obsz. Wiej. 2019, 55, 53–68. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Land Take in Europe. Indicator Assessment. Available online: https://www.eea.europa.eu/data-and-maps/indicators/land-take-3/assessment (accessed on 31 August 2021).
- Main Land-Use Patterns in the EU within 2015–2030. JRC Policy Insight. February 2019. Available online: https://ec.europa.eu/jrc/sites/default/files/jrc115895.pdf (accessed on 31 August 2021).
- Haase, D.; Kabisch, N.; Haase, A. Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rienow, A.; Stenger, D.; Menz, G. Sprawling cities and shrinking regions—Forecasting urban growth in the Ruhr for 2025 by coupling cells and agents. Erdkunde 2014, 68, 85–107. [Google Scholar] [CrossRef]
- rban Sprawl in Europe. Joint EEA-FOEN Report. No. 11. EEA. Available online: https://www.eea.europa.eu/publications/urban-sprawl-in-europe (accessed on 31 August 2021).
- Lisowski, A.; Grochowski, M. Procesy suburbanizacji. Uwarunkowania, formy i konsekwencje. In Ekspertyzy Do Koncepcji Zagospodarowania Przestrzennego Kraju; Saganowski, K., Zagrzejewska-Fiedorowicz, M., Żuber, P., Eds.; Ministry of Regional Development: Warsaw, Poland, 2008; Volume 1, pp. 217–280. [Google Scholar]
- Zamieszkane Budynki. Narodowy Spis Powszechny Ludności i Mieszkań 2011. Available online: https://stat.gov.pl/download/cps/rde/xbcr/gus/L_zamieszk_budynki_nsp_2011.pdf (accessed on 31 August 2021).
- Gibas, P.; Heffner, K. Społeczne i ekonomiczne koszty bezładu przestrzeni—Osadnictwo obszarów wiejskich. Studi. KPZK 2018, 182, 163–195. [Google Scholar]
- Lityński, P.; Hołuj, A. Koszty migracji wahadłowych ze strefy podmiejskiej do miasta rdzeniowego ośrodków wojewódzkich. Studi. KPZK 2018, 182, 114–162. [Google Scholar]
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Legutko-Kobus, P.; Nowak, M. The Contemporary Economic Costs of Spatial Chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Przybyla, C.; Bykowski, J.; Mrozik, K.; Napierala, M. The Role of Water and Drainage System Infrastructure in the Process of Suburbanization. Rocz. Ochr. Sr. 2011, 13, 769–786. [Google Scholar]
- Nilsson, K.; Pauleit, S.; Bell, S.; Aalbers, C.; Sick Nielsen, T.A. Peri-Urban Futures: Scenarios and Models for Land Use Change in Europe; Springer: Berlin/Heidelberg, Germany, 2013; p. 453. [Google Scholar]
- Mrozik, K. Zmiany jakości życia mieszkańców w gminie wiejskiej podlegającej suburbanizacji. Pr. Nauk. UE We Wroc. 2013, 320, 91–101. [Google Scholar]
- Nilsson, K.; Nielsen, T.S.; Aalbers, C.; Bell, S.; Boitier, B.; Chery, J.P.; Fertner, C.; Groschowski, M.; Haase, D.; Loibl, W.; et al. Strategies for Sustainable Urban Development and Urban Rural Linkages. Eur. J. Spat. Dev. 2014, 4, 1–26. Available online: https://archive.nordregio.se/Global/EJSD/Research%20briefings/article4.pdf (accessed on 31 August 2021).
- Petrovic, A.M. Challenges of torrential flood risk management in Serbia. J. Geogr. Inst. Jovan Cvijic Sasa 2015, 65, 131–143. [Google Scholar] [CrossRef]
- Petrovic, A.M.; Kovacevic-Majkic, J.; Milosevic, M.V. Application of run-off model as a contribution to the torrential flood risk management in Topiderska Reka watershed, Serbia. Nat. Hazards 2016, 82, 1743–1753. [Google Scholar] [CrossRef]
- Emergency Events Database. Available online: https://public.emdat.be/ (accessed on 19 September 2021).
- Climate of Risk. How Can Prevention and Insurance Reduce the Impact of Natural Disasters on the Environment? Available online: https://piu.org.pl/wp-content/uploads/2019/07/raport-klimatyczny-web_eng.pdf (accessed on 19 September 2021).
- Tanim, A.H.; McRae, C.B.; Tavakol-Davani, H.; Goharian, E. Flood Detection in Urban Areas Using Satellite Imagery and Machine Learning. Water 2022, 14, 1140. [Google Scholar] [CrossRef]
- Walczykiewicz, T.; Skonieczna, M. Rainfall Flooding in Urban Areas in the Context of Geomorphological Aspects. Geosciences 2020, 10, 457. [Google Scholar] [CrossRef]
- Seleem, O.; Heistermann, M.; Bronstert, A. Efficient Hazard Assessment for Pluvial Floods in Urban Environments: A Benchmarking Case Study for the City of Berlin, Germany. Water 2021, 13, 2476. [Google Scholar] [CrossRef]
- Benito, G.; Sanchez-Moya, Y.; Medialdea, A.; Barriendos, M.; Calle, M.; Rico, M.; Sopeña, A.; Machado, M.J. Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water 2020, 12, 1008. [Google Scholar] [CrossRef] [Green Version]
- Bryła, M.; Walczykiewicz, T.; Skonieczna, M.; Żelazny, M. Selected Issues of Adaptive Water Management on the Example of the Białka River Basin. Water 2021, 13, 3540. [Google Scholar] [CrossRef]
- Hlaváček, P.; Kopáček, M.; Horáčková, L. Impact of Suburbanisation on Sustainable Development of Settlements in Suburban Spaces: Smart and New Solutions. Sustainability 2019, 11, 7182. [Google Scholar] [CrossRef] [Green Version]
- Majewska, A.; Denis, M.; Krupowicz, W. Urbanization Chaos of Suburban Small Cities in Poland: ‘Tetris Development’. Land 2020, 9, 461. [Google Scholar] [CrossRef]
- Werner, P.A.; Kaleyeva, V.; Porczek, M. Urban Sprawl in Poland (2016–2021): Drivers, Wildcards, and Spatial Externalities. Remote Sens. 2022, 14, 2804. [Google Scholar] [CrossRef]
- Mrozik, K.; Przybyla, C.; Pyszny, K. Problems of the Integrated Urban Water Management. The Case of the Poznan Metropolitan Area (Poland). Rocz. Ochr. Sr. 2015, 17, 230–245. [Google Scholar]
- Mrozik, K. Assessment of Retention Potential Changes as an Element of Suburbanization Monitoring on Example of an Ungauged Catchment in Poznan Metropolitan Area (Poland). Rocz. Ochr. Sr. 2016, 18, 188–200. [Google Scholar]
- Solarek, K.; Pudelko, A.; Mierzwicki, K.; Bartosik, Z.; Pyjor, A. The potential of the research by design method in balancing water problems: An integrated water and space management program for a part of the Warsaw agglomeration. Cities 2022, 121, 10345. [Google Scholar] [CrossRef]
- Andrzejewska, A.K. Challenges of Spatial Planning in Poland in the Context of Global Climate Change—Selected Issues. Buildings 2021, 11, 596. [Google Scholar] [CrossRef]
- Solarek, K.; Kubasińska, M. Local Spatial Plans in Supporting Sustainable Water Resources Management: Case Study from Warsaw Agglomeration—Kampinos National Park Vicinity. Sustainability 2022, 14, 5766. [Google Scholar] [CrossRef]
- de Luca, C.; Naumann, S.; Davis, M.; Tondelli, S. Nature-Based Solutions and Sustainable Urban Planning in the European Environmental Policy Framework: Analysis of the State of the Art and Recommendations for Future Development. Sustainability 2021, 13, 5021. [Google Scholar] [CrossRef]
- Boguniewicz-Zabłocka, J.; Capodaglio, A.G. Analysis of Alternatives for Sustainable Stormwater Management in Small Developments of Polish Urban Catchments. Sustainability 2020, 12, 10189. [Google Scholar] [CrossRef]
- Mordwa, S.; Ostrowska, M. The influence of land cover on the spatial distribution of fire sites: A case study of Lodzkie Voivodeship, Poland. Eur. Spat. Res. Policy 2020, 27, 171–197. [Google Scholar] [CrossRef]
- Matuszkiewicz, R. Statistical analysis of State Fire Service intervention during chemical, radiation and biological hazards. In Proceedings of the International Conference on Fire and Environmental Safety Engineering (FESE), Lviv State Univ Life Safety, Lviv, Ukraine, 7–8 November 2018. [Google Scholar]
- Parkinson, M.; Meegan, R.; Karecha, J. City size and economic performance: Is bigger better, small more beautiful or middling marvellous? Eur. Plan. Stud. 2015, 23, 1054–1068. [Google Scholar] [CrossRef]
- Van der Gaast, K.; van Leeuwen, E.; Wertheim-Heck, S. City-Region Food Systems and Second Tier Cities: From Garden Cities to Garden Regions. Sustainability 2020, 12, 2532. [Google Scholar] [CrossRef] [Green Version]
- ESPON Project 1.4.3. Study on Urban Functions. Final Report. Available online: https://www.espon.eu/sites/default/files/attachments/fr-1.4.3_April2007-final.pdf (accessed on 30 June 2020).
- Cardoso, R.V.; Meijers, E.J. Contrasts between first-tier and second-tier cities in Europe: A functional perspective. Eur. Plan. Stud. 2016, 24, 996–1015. [Google Scholar] [CrossRef]
- Dogaru, T.; Burger, M.; van Oort, F.; Karreman, B. The Geography of Multinational Corporations in CEE Countries: Perspectives for Second-Tier City Regions and European Cohesion Policy. Investig. Reg. J. Reg. Res. 2014, 29, 193–214. [Google Scholar]
- Parkinson, M.; Meegan, R. Economic place making: Policy messages for European cities. Policy Stud. 2013, 34, 377–400. [Google Scholar] [CrossRef]
- Rondinelli, D. Dynamics of growth of secondary cities in developing countries. Geogr. Rev. 1983, 73, 42–57. [Google Scholar] [CrossRef]
- Komornicki, T.; Rosik, P.; Śleszyński, P.; Solon, J.; Wiśniewski, R.; Stępniak, M.; Czapiewski, K.; Goliszek, S.; Regulska, E. Wpływ Budowy Autostrad i Dróg Ekspresowych Finansowanych ze Środków UE w Latach 2004–2012 na Rozwój Ekonomiczny Regionów; Ministry of Regional Development: Warsaw, Poland, 2013. Available online: https://www.ewaluacja.gov.pl/media/24516/Wp%C5%82yw%20budowy%20autostrad%20i%20dr%C3%B3g%20ekspresowych%20na%20rozw%C3%B3j%20spo%C5%82eczno-gospodarczy%20i%20terytorialny%20Polski.pdf (accessed on 30 June 2020).
- Biuletyn Informacji Publicznej (BIP) Urzędu Marszałkowskiego Województwa Łódzkiego. Nowy Plan Zagospodarowania Przestrzennego Województwa. Available online: https://bip.lodzkie.pl/urzad-marszalkowski/programy/item/7929-nowy-plan-zagospodarowania-przestrzennego-wojew%C3%B3dztwa (accessed on 30 April 2019).
- Wielkopolskie Biuro Planowania Przestrzennego. Plan Zagospodarowania Przestrzennego Województwa Wielkopolskiego. Available online: http://www.wbpp.poznan.pl/index.php?option=com_content&task=view&id=198&Itemid=1 (accessed on 30 April 2019).
- Biuletyn Informacji Publicznej (BIP) Urząd Marszałkowski Województwa Dolnośląskiego. Plan Zagospodarowania Przestrzennego Województwa Dolnośląskiego. Perspektywa 2020. Available online: http://bip.umwd.dolnyslask.pl/dokument,iddok,23975,idmp,435,r,r (accessed on 30 April 2019).
- Statistics Poland. Local Data Bank. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 17 June 2020).
- National Register of Boundaries. Available online: https://www.geoportal.gov.pl/dane/panstwowy-rejestr-granic (accessed on 30 September 2020).
- Mapy Zagrożenia Powodziowego. Available online: https://wody.isok.gov.pl/imap_kzgw/?gpmap=gpMZP (accessed on 14 July 2018).
- Zasady Ewidencjonowania Zdarzeń w Systemie Wspomagania Decyzji Państwowej Straży Pożarnej. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj9yfiqrqX1AhUMkMMKHdp1AUAQFnoECAsQAQ&url=https%3A%2F%2Fwww.gov.pl%2Fattachment%2F4a4a6c0e-28f4-4826-a60a-9e75c43e9d63&usg=AOvVaw0U8PtejeJNB1InvSQEZR8z (accessed on 14 September 2021).
- European Commission. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Off. J. Eur. Union 2007, 288, 27–34. Available online: https://eur-lex.europa.eu/eli/dir/2007/60/oj (accessed on 10 July 2022).
- Rauter, M.; Thaler, T.; Attems, M.-S.; Fuchs, S. Obligation or Innovation: Can the EU Floods Directive Be Seen as a Tipping Point Towards More Resilient Flood Risk Management? A Case Study from Vorarlberg, Austria. Sustainability 2019, 11, 5505. [Google Scholar] [CrossRef] [Green Version]
- Lityński, P. The Intensity of Urban Sprawl in Poland. ISPRS Int. J. Geo-Inf. 2021, 10, 95. [Google Scholar] [CrossRef]
- Sroka, W.; Mikolajczyk, J.; Wojewodzic, T.; Kwoczynska, B. Agricultural Land vs. Urbanisation in Chosen Polish Metropolitan Areas: A Spatial Analysis Based on Regression Trees. Sustainability 2018, 10, 837. [Google Scholar] [CrossRef] [Green Version]
- Wysocka, D.; Biegańska, J.; Grzelak-Kostulska, E. Construction Activity as an Element of Suburban Zone Development. Land 2021, 10, 1229. [Google Scholar] [CrossRef]
- Surówka, K.; Wyrobek, J.; Surówka, M. The Condition of Polish Housing Against the Background of Selected European Countries. Eur. Res. Stud. J. 2020, 23, 469–482. [Google Scholar] [CrossRef]
- Pripoaie, R.; Cretu, C.-M.; Turtureanu, A.-G.; Sirbu, C.-G.; Marinescu, E.Ş.; Talaghir, L.-G.; Chițu, F.; Robu, D.M. A Statistical Analysis of the Migration Process: A Case Study—Romania. Sustainability 2022, 14, 2784. [Google Scholar] [CrossRef]
- Plaziak, M.; Szymanska, A.I. Construction Sector in the Czech Republic and Poland: Focus on the Housing Segment in Selected Regions. Entrep. Bus. Econ. Rev. 2014, 2, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Kleovoulou, E.G.; Konstantinou, C.; Constantinou, A.; Kuijpers, E.; Loh, M.; Galea, K.S.; Stierum, R.; Pronk, A.; Makris, K.C. Stakeholders′ Perceptions of Environmental and Public Health Risks Associated with Hydrocarbon Activities in and around the Vasilikos Energy Center, Cyprus. Int. J. Environ. Res. Public Health 2021, 18, 13133. [Google Scholar] [CrossRef]
- Zydroń, A.; Szoszkiewicz, K.; Chwiałkowski, C. Valuing Protected Areas: Socioeconomic Determinants of the Willingness to Pay for the National Park. Sustainability 2021, 13, 765. [Google Scholar] [CrossRef]
- Oppenheim, A.N. Questionnaire Design, Interviewing and Attitude Measurement; Pinter: London, UK; Washington, DC, USA, 1997; ISBN 10:0826451764. [Google Scholar]
- Ságvári, B.; Gulyás, A.; Koltai, J. Attitudes towards Participation in a Passive Data Collection Experiment. Sensors 2021, 21, 6085. [Google Scholar] [CrossRef]
- Górska, P.; Górna, I.; Miechowicz, I.; Przysławski, J. Changes in Eating Behaviour during SARS-CoV-2 Pandemic among the Inhabitants of Five European Countries. Foods 2021, 10, 1624. [Google Scholar] [CrossRef]
- Rymarz, J.; Niewczas, A.; Hołyszko, P.; Dębicka, E. Application of Spearman’s Method for the Analysis of the Causes of Long-Term Post-Failure Downtime of City Buses. Appl. Sci. 2022, 12, 2921. [Google Scholar] [CrossRef]
- Theis, S.; Poesch, M.S. Assessing Conservation and Mitigation Banking Practices and Associated Gains and Losses in the United States. Sustainability 2022, 14, 6652. [Google Scholar] [CrossRef]
- Ustawa z Dnia 20 Lipca 2017 r. (t.j. Dz. U. z 2021r. poz. 2233 ze zm.) (The Water Law Act of 20 July 2017). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170001566/U/D20171566Lj.pdf (accessed on 25 February 2022).
- Godyń, I.; Grela, A.; Stajno, D.; Tokarska, P. Sustainable Rainwater Management Concept in a Housing Estate with a Financial Feasibility Assessment and Motivational Rainwater Fee System Efficiency Analysis. Water 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Godyń, I.; Muszyński, K.; Grela, A. Assessment of the Impact of Loss-of-Retention Fees on Green Infrastructure Investments. Water 2022, 14, 560. [Google Scholar] [CrossRef]
- Rozporządzenie Rady Ministrów z Dnia 22 Grudnia 2017r. w Sprawie Jednostkowych Stawek Opłat za Usługi Wodne (Dz. U. z 2017r. poz. 2502) (The Coucil of Ministers’ Decree of 22 December 2017 Regarding Unit Rates of Fees for Water Services). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170002502/O/D20172502.pdf (accessed on 25 February 2022).
- Matej-Łukowicz, K.; Wojciechowska, E. Opłaty za odprowadzanie wód deszczowcyh. Fees for discharge of stormwater. Res. Pap. Wroc. Univ. Econ. 2015, 441, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Tokarczyk-Dorociak, K.; Walter, E.; Kobierska, K.; Kolodynski, R. Rainwater management in the urban landscape of Wroclaw in terms of adaptation to climate changes. J. Ecol. Eng. 2017, 18, 171–184. [Google Scholar] [CrossRef]
- Responses of the Minister of Climate and Environment to a parliamentary interpellation from 9 November 2020. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiosbXsgoX4AhXx_CoKHd2GAZMQFnoECAIQAQ&url=https%3A%2F%2Fwww.sejm.gov.pl%2FSejm9.nsf%2FInterpelacjaTresc.xsp%3Fkey%3DBVADS6&usg=AOvVaw2SfTHl8qHtocnw9XZc7Si8 (accessed on 25 February 2022).
- Qiao, X.-J.; Randrup, T.B. Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities. Water 2022, 14, 428. [Google Scholar] [CrossRef]
- Mrozik, K.D.; Przybyla, C.T. An Attempt to Introduce Cultivation and Planning Measures into the Decision-Making Process in Order to Improve Water-Retaining Capacity of River Catchments. Pol. J. Environ. Stud. 2013, 22, 1767–1773. [Google Scholar]
- Antón, R.; Ruiz-Sagaseta, A.; Orcaray, L.; Arricibita, F.J.; Enrique, A.; Soto, I.D.; Virto, I. Soil Water Retention and Soil Compaction Assessment in a Regional-Scale Strategy to Improve Climate Change Adaptation of Agriculture in Navarre, Spain. Agronomy 2021, 11, 607. [Google Scholar] [CrossRef]
- Ket, P.; Oeurng, C.; Degré, A. Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data. Soil Syst. 2018, 2, 55. [Google Scholar] [CrossRef] [Green Version]
Metropolitan Area | Number of Communities: Urban, Urban–Rural, Rural, Total | Area in km2 | Population in Thousands | Share in the Number of Communities of the Province | Share in the Population of the Province | Share in the Area of the Province |
---|---|---|---|---|---|---|
ŁMA | 7, 5, 16, 28 | 2498.9 | 1068.4 | 15.8 | 13.7 | 43.5 |
PMA | 6, 21, 18, 45 | 6201.9 | 1447.2 | 19.9 | 20.8 | 41.4 |
WrMA | 3, 9, 15, 27 | 3797.1 | 1064.8 | 16 | 19 | 36.7 |
Name | MA | Area in km2 | Population in Thousands | Population Per 1 km2 | Entities of the National Economy Employing More Than 49 People Per 10 Thousand Population |
---|---|---|---|---|---|
Andrespol | ŁMA | 25.7 | 14.2 | 552 | 4.2 |
Brójce | ŁMA | 69.0 | 6.7 | 97 | 7.5 |
Czernica | WrMA | 83.6 | 16.6 | 199 | 2.4 |
Czerwonak | PMA | 82.5 | 27.6 | 335 | 7.2 |
Długołęka | WrMA | 212.8 | 33.8 | 159 | 5.3 |
Dopiewo | PMA | 108.0 | 28.1 | 260 | 7.8 |
Kleszczewo | PMA | 74.5 | 8.9 | 119 | 10.1 |
Kobierzyce | WrMA | 149.3 | 21.8 | 146 | 20.7 |
Komorniki | PMA | 66.4 | 30.6 | 461 | 13.4 |
Ksawerów | ŁMA | 13.6 | 7.7 | 562 | 9.1 |
Miękinia | WrMA | 179.5 | 17.0 | 95 | 7.1 |
Nowosolna | ŁMA | 54.0 | 5.1 | 94 | 3.9 |
Pabianice | ŁMA | 87.7 | 7.6 | 87 | 1.3 |
Rokietnica | PMA | 79.3 | 18.6 | 235 | 6.4 |
Suchy Las | PMA | 116.0 | 18.1 | 156 | 21.5 |
Tarnowo Podgórne | PMA | 101.7 | 28.1 | 276 | 33.1 |
Wisznia Mała | WrMA | 103.4 | 10.6 | 102 | 0.9 |
Zgierz | ŁMA | 199.0 | 14.5 | 73 | 4.1 |
Min | 13.6 | 5.1 | 73 | 0.9 | |
Max | 21.3 | 33.8 | 562 | 33.1 | |
Mean | 10.0 | 17.5 | 223 | 9.2 | |
Std. deviation | 5.3 | 8.8 | 155 | 8.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrozik, K.D. Problems of Local Flooding in Functional Urban Areas in Poland. Water 2022, 14, 2453. https://doi.org/10.3390/w14162453
Mrozik KD. Problems of Local Flooding in Functional Urban Areas in Poland. Water. 2022; 14(16):2453. https://doi.org/10.3390/w14162453
Chicago/Turabian StyleMrozik, Karol Dawid. 2022. "Problems of Local Flooding in Functional Urban Areas in Poland" Water 14, no. 16: 2453. https://doi.org/10.3390/w14162453
APA StyleMrozik, K. D. (2022). Problems of Local Flooding in Functional Urban Areas in Poland. Water, 14(16), 2453. https://doi.org/10.3390/w14162453