The Sedimentation Rate in the Crimean Hypersaline Lake Aktashskoye Estimated Using the Post-Chernobyl Artificial Radionuclide 90Sr as a Radiotracer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Lake
2.2. Determination of the 90Sr Concentration in the Bottom Sediments of Lake Aktashskoye
2.3. Geochronological Studies of Bottom Sediments of Lake Aktashskoye
2.4. Determination of Sr and Ba in the Bottom Sediments of Lake Aktashskoye
3. Results
4. Discussion
- -
- an increase in the specific activity of 90Sr at a depth of 15.5 cm, which is correlated with the atmospheric fallout of this radionuclide after the Chernobyl accident (1986);
- -
- -
- correlation of 90Sr activity below the level of detection in the upper layers of the core (depth 2 cm) to the period of the NCC closure, starting from 2014 [42];
- -
- core layers from 23 to 50 cm, which correspond to the global atmospheric fallout of the radionuclide during 1954–1971.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giller, P.S.; Hillebrand, H.; Berninger, U.G.; Gessner, M.O.; Hawkins, S.; Inchausti, P.; Inglis, C.; Leslie, H.; Malmqvist, B.; Monaghan, M.T.; et al. Biodiversity effects on ecosystem functioning: Emerging issues and their experimental test in aquatic environments. Oikos 2004, 104, 423–436. [Google Scholar] [CrossRef]
- Yamashiki, Y.; Nakamura, T.; Kurosawa, M.; Matsui, S. Ecosystem approach to mitigate impacts of sedimentation on the hydrological cycle and aquatic ecosystem. Hydrol. Process. 2006, 20, 1273–1291. [Google Scholar] [CrossRef]
- Flower, R.J.; Appleby, P.G.; Thompson, J.R.; Ahmed, M.H.; Ramdani, M.; Chouba, L.; Rose, N.; Rochester, R.; Ayache, F.; Kraiem, M.M.; et al. Sediment distribution and accumulation in lagoons of the Southern Mediterranean Region (the MELMARINA Project) with special reference to environmental change and aquatic ecosystems. Hydrobiologia 2009, 622, 85–112. [Google Scholar] [CrossRef]
- Middelburg, J.J.; Levin, L.A. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 2009, 6, 1273–1293. [Google Scholar] [CrossRef]
- Cyrus, D.P.; Vivier, L.; Jerling, H.L. Effect of hypersaline and low lake conditions on ecological functioning of St Lucia estuarine system, South Africa: An overview 2002–2008. Estuar. Coast. Shelf Sci. 2010, 86, 535–546. [Google Scholar] [CrossRef]
- Cummings, V.J.; Beaumont, J.; Mobilia, V.; Bell, J.J.; Tracey, D.; Clark, M.R.; Barr, N. Responses of a common New Zealand coastal sponge to elevated suspended sediments: Indications of resilience. Mar. Environ. Res. 2020, 155, 104886. [Google Scholar] [CrossRef]
- Shadrin, N.; Mirzoeva, N.; Kravchenko, N.; Miroshnichenko, O.; Tereshchenko, N.; Anufriieva, E. Trace elements in the bottom sediments of the Crimean saline lakes. Is it possible to explain their concentration variability? Water 2020, 12, 2364. [Google Scholar] [CrossRef]
- Polikarpov, G.G.; Zesenko, A.Y.; Egorov, V.N.; Nazarov, A.B. Application of radioisotope methods in the study of production processes and dynamics of organic matter in the ocean. Mor. Gidrofiz. Issled. 1976, 74, 116–124. (In Russian) [Google Scholar]
- Polikarpov, G.G.; Egorov, V.N.; Gulin, S.B.; Stokozov, N.A.; Lazorenko, G.E.; Mirzoyeva, N.Y.; Tereschenko, N.N.; Tsitsugina, V.G.; Kulebakina, L.G.; Popovichev, V.N.; et al. Radioecological Response of the Black Sea to the Chernobyl Accident; EKOSI-Gidrofizika: Sevastopol, Russia, 2008; 667p. (In Russian) [Google Scholar]
- Drevnick, P.E.; Cooke, C.A.; Barraza, D.; Blais, J.M.; Coale, K.H.; Cumming, B.F.; Curtis, C.J.; Das, B.; Donahue, W.F.; Eagles-Smith, C.A.; et al. Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Sci. Total Environ. 2016, 568, 1157–1170. [Google Scholar] [CrossRef]
- Celis-Hernandez, O.; Rosales-Hoz, L.; Cundy, A.B.; Carranza-Edwards, A.; Croudace, I.W.; Hernandez-Hernandez, H. Historical trace element accumulation in marine sediments from the Tamaulipas shelf, Gulf of Mexico: An assessment of natural vs anthropogenic inputs. Sci. Total Environ. 2018, 622, 325–336. [Google Scholar] [CrossRef]
- Sun, R.; Sun, G.; Kwon, S.Y.; Feng, X.; Kang, S.; Zhang, Q.; Huang, J.; Yin, R. Mercury biogeochemistry over the Tibetan Plateau: An overview. Crit. Rev. Environ. Sci. Technol. 2020, 51, 577–602. [Google Scholar] [CrossRef]
- Wang, T.; Ramezani, J.; Wang, C.; Wu, H.; He, H.; Bowring, S.A. High-precision U–Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth Planet. Sci. Lett. 2016, 446, 37–44. [Google Scholar] [CrossRef]
- Vieira, L.M.; Neto, D.M.; do Couto, E.V.; Lima, G.B.; Peron, A.P.; Halmeman, M.C.; Froehner, S. Contamination assessment and prediction of 27 trace elements in sediment core from an urban lake associated with land use. Environ. Monit. Assess. 2019, 191, 236. [Google Scholar] [CrossRef] [PubMed]
- Kokryatkaya, N.M.; Shevchenko, V.P.; Titova, K.V.; Vakhrameeva, E.A.; Aliev, R.A.; Grigoriev, V.A.; Savelieva, L.A.; Maksimov, F.E.; Kuznetsov, V.Y. Early diagenesis of bottom sediments of freshwater lakes of the Vaygach Island. Arct. Antarct. Res. 2020, 66, 534–554. [Google Scholar] [CrossRef]
- Anderson, R.F.; Schiff, S.L.; Hesslein, R.H. Determining sediment accumulation and mixing rates using 210Pb, 137Cs and other tracers: Problems due to postdepositional mobility and coring artefacts. Can. J. Fish. Aquat. Sci. 1987, 44, 231–250. [Google Scholar] [CrossRef]
- Gulin, S.B. Radioisotope geochronological reconstruction of pollution and eutrophication of the Black Sea. In Radioecological Response of the Black Sea to the Chernobyl Accident; Polikarpov, G.G., Egorov, V.N., Gulin, S.B., Stokozov, N.A., Lazorenko, G.E., Mirzoyeva, N.Y., Tereschenko, N.N., Tsitsugina, V.G., Kulebakina, L.G., et al., Eds.; ECOSY-Hydrophysics: Sevastopol, Russia, 2008; pp. 519–547. (In Russian) [Google Scholar]
- Ribeiro Guevara, S.; Arribére, M. 137Cs dating of lake cores from the Nahuel Huapi National Park, Patagonia, Argentina: Historical records and profile measurements. J. Radioanal. Nucl. Chem. 2002, 252, 37–45. [Google Scholar] [CrossRef]
- Mirzoeva, N.Y.; Egorov, V.N.; Polikarpov, G.G. The content of 90Sr in bottom sediments of the Black Sea and its use as a radio tracer for assessing the rate of sedimentation. Environ. Control. Syst. Means Monit. 2005, 276–282. (In Russian) [Google Scholar]
- Medinets, V.I.; Cherkez, E.A.; Medinets, S.V.; Kozlova, T.V.; Soltys, I.E.; Soloviev, V.G.; Fetisov, L.P. Using of Caesium-137 for Bottom Sediments’ Accumulation Rates Assessment in the Kuyalnyk Estuary. In XIV International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”; European Association of Geoscientists & Engineers: Kyiv, Ukraine, 2020; Volume 2020, pp. 1–5. [Google Scholar]
- Lin, W.; Mo, M.; Yu, K.; Du, J.; Shen, H.; Wang, Y.; He, X.; Feng, L. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018. Mar. Pollut. Bull. 2022, 176, 113476. [Google Scholar] [CrossRef] [PubMed]
- Boice, J.D. Studies of Atomic Bomb Survivors: Understanding the Radiation Effects. J. Am. Med. Assoc. 1990, 264, 622–623. [Google Scholar] [CrossRef]
- Gudiksen, P.H.; Harvey, T.F.; Lange, R. Chernobyl source term, atmospheric dispersion and dose estimation. J. Health Phys. 1989, 57, 697–705. [Google Scholar] [CrossRef]
- Appleby, L.J.; Devell, L.; Mishra, Y.K. Ways of Migration of Artificial Radionuclides in the Environment. Radiology after Chernobyl; Mir: Moscow, Russia, 1999; 512p. (In Russian) [Google Scholar]
- Livingston, H.; Clarke, W.; Honjo, S.; Izdar, E.; Konuk, T.; Degens, E.; Ittekkot, V. Chernobyl fallout studies in the Black Sea and other oceans areas. Environ. Mar. Lab. 1986, 460, 214–223. [Google Scholar]
- Egorov, V.N.; Povinec, P.P.; Polikarpov, G.G.; Stokozov, N.A.; Gulin, S.B.; Kulebakina, L.G.; Osvath, I. 90Sr and 137Cs in the Black Sea after the Chernobyl NPP accident: Inventories, balance and tracer applications. J. Environ. Radioact. 1999, 43, 137–155. [Google Scholar] [CrossRef]
- Gulin, S.B.; Mirzoeva, N.Y.; Lazorenko, G.E.; Egorov, V.N.; Trapeznikov, A.V.; Sidorov, I.G.; Proskurnin, V.Y.; Popovichev, V.N.; Bey, O.N.; Rodina, E.A. Modern radiological situation associated with the mode of operation of the North Crimean Canal. Radiatsionnaya Biologiya. Radioekol. 2016, 56, 647–654. (In Russian) [Google Scholar]
- Mirzoeva, N.; Shadrin, N.; Arkhipova, S.; Miroshnichenko, O.; Kravchenko, N.; Anufriieva, E. Does salinity affect the distribution of the artificial radionuclides 90Sr and 137Cs in water of the saline lakes? A case of the Crimean Peninsula. Water 2020, 12, 349. [Google Scholar] [CrossRef]
- Shadrin, N.V.; Anufriieva, E.V.; Kipriyanova, L.M.; Kolesnikova, E.A.; Latushkin, A.A.; Romanov, R.E.; Sergeeva, N.G. The political decision caused the drastic ecosystem shift of the Sivash Bay (the Sea of Azov). Quat. Int. 2018, 475, 4–10. [Google Scholar] [CrossRef]
- Mirzoyeva, N.Y.; Egorov, V.N.; Polikarpov, G.G. Distribution and migration of 90Sr in components of the Dnieper River basin and the Black Sea ecosystems after the Chernobyl NPP accident. J. Environ. Radioact. 2013, 125, 27–35. [Google Scholar] [CrossRef]
- Mirzoeva, N.Y.; Gulin, S.B.; Sidorov, I.G.; Gulina, L.V. Estimation of the sedimentation rate in the coastal and deep water areas of the Black Sea using natural and anthropogenic (Chernobyl) radionuclides. In System of the Black Sea; Lisitsyn, A.P., Ed.; Nauchny Mir: Moscow, Russia, 2018; pp. 659–670. (In Russian) [Google Scholar]
- Mirzoyeva, N.Y.; Arkhipova, S.I.; Kravchenko, N.V. Sources of inflow and nature of redistribution of 90Sr in the salt lakes of the Crimea. J. Environ. Radioact. 2018, 188, 38–46. [Google Scholar] [CrossRef]
- Shadrin, N.V.; Anufriieva, E.V.; Belyakov, V.P.; Bazhora, A.I. Chironomidae larvae in hypersaline waters of the Crimea: Diversity, distribution, abundance and production. Eur. Zool. J. 2017, 84, 61–72. [Google Scholar] [CrossRef]
- Lisovsky, A.A.; Novik, V.A.; Timchenko, Z.V.; Mustafayeva, Z.R. Surface Water Bodies of the Crimea; Reskomvodhoz, ARC: Simferopol, Russia, 2004; 114p. (In Russian) [Google Scholar]
- Anufriieva, E.V. How can saline and hypersaline lakes contribute to aquaculture development? A review. J. Oceanol. Limnol. 2018, 36, 2002–2009. [Google Scholar] [CrossRef]
- Papucci, C. Sampling marine sediments for radionuclide monitoring. In Strategies and Methodologies for Applied Marine Radioactivity Studies. Training Course, Series №7; IAEA: Vienna, Austria, 1997; pp. 279–297. [Google Scholar]
- Schafer, C.T.; Smith, J.N.; Loring, D.H. Recent sedimentation events at the head of Saguenay Fjord, Canada. Environ. Geol. 1980, 3, 139–150. [Google Scholar] [CrossRef]
- Gulin, S.B.; Aarkrog, A.; Polikarpov, G.G.; Nielsen, S.P.; Egorov, V.N. Chronological study of 137Cs input to the Black Sea deep and shelf sediments. In International Symposium on Radionuclides in the Oceans—RADOS 96–97, Proceedings. Part 1: Inventories, Behavior and Processes; Les Éditions de Physique: Octeville-Cherbourg, France, 1997; Volume 32, pp. 257–262. [Google Scholar]
- Harvey, B.K.; Ibbett, R.D.; Lovett, M.B.; Williams, K.J. Analytical procedures for the determination of strontium radionuclides in environmental materials. In Aquatic Environmental Protection, Analytical Methods; Ministry of Agriculture, Fisheries and Food: Lowestoft, UK, 1989; Volume 5, p. 33. [Google Scholar]
- Gulin, S.B.; Polikarpov, G.G.; Egorov, V.N.; Martin, J.M.; Korotkov, A.A.; Stokozov, N.A. Radioactive contamination of the north-western Black Sea sediments. Estuar. Coast. Shelf Sci. 2002, 54, 541–549. [Google Scholar] [CrossRef]
- Pekov, I.V.; Chukanov, N.V.; Kulikova, I.M.; Zubkova, N.V.; Krotova, O.D.; Sorokina, N.I.; Pushcharovsky, D.Y. The new mineral baryoolgite Ba(Na, Sr, REE)2Na[PO4]2 and its crystal structure. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva 2004, 1, 41–49. (In Russian) [Google Scholar]
- Mirzoeva, N.Y. Estimation of the sedimentation rate in the water area “Cape Martyan” (Black Sea, Crimea) on the example of dating of bottom sediments of Lake Krasnoe (Crimea, Perekop group). Environ. Control. Syst. 2018, 14, 75–83. (In Russian) [Google Scholar]
- Tishkov, V.P.; Stepanov, A.V.; Tsvetkov, O.S. Radioactive contamination of the river system Pripyat-Kiev reservoir-Dnepr in 1986 as a result of the accident at the Chernobyl nuclear power plant. Trudy Radiyevogo Instituta V.G. Khlopina 2009, 14, 46–64. (In Russian) [Google Scholar]
- Waters, C.N.; Syvitski, J.P.; Gałuszka, A.; Hancock, G.J.; Zalasiewicz, J.; Cearreta, A.; Grinevald, J.; Jeandel, C.; McNeill, J.R.; Summerhayes, C.; et al. Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch? Bull. At. Sci. 2015, 71, 46–57. [Google Scholar] [CrossRef]
- Xue, B.; Yao, S. Recent sedimentation rates in lakes in lower Yangtze River basin. Quat. Int. 2011, 244, 248–253. [Google Scholar] [CrossRef]
- O’Beirne, M.D.; Strzok, L.J.; Werne, J.P.; Johnson, T.C.; Hecky, R.E. Anthropogenic influences on the sedimentary geochemical record in western Lake Superior (1800–present). J. Great Lakes Res. 2015, 41, 20–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Pei, Z.; Lu, X.; Xu, S.; Wang, X. Effect of dam construction on nutrient deposition from a small agricultural karst catchment. Ecol. Indic. 2019, 107, 105548. [Google Scholar] [CrossRef]
- Ai-jun, W.; Xiang, Y.; Zhen-kun, L.; Liang, W.; Jing, L. Response of sedimentation processes in the Minjiang River subaqueous delta to anthropogenic activities in the river basin. Estuar. Coast. Shelf Sci. 2020, 232, 106484. [Google Scholar] [CrossRef]
- Gulina, L.V.; Gulin, S.B. Natural and technogenic radionuclides in the ecosystem of the Salt Lake Koyashskoye (South-Eastern Crimea). Morskoi Ekol. Zhurnal 2011, 10, 19–25. (In Russian) [Google Scholar]
- Pekov, I.V. Genetic Mineralogy and Crystal Chemistry of Rare Elements in Highly Alkaline Postmagmatic Systems. Ph.D. Thesis, Moscow State University, Moscow, Russia, 2005; 52p. (In Russian). [Google Scholar]
- Dommain, R.; Andama, M.; McDonough, M.M.; Prado, N.A.; Goldhammer, T.; Potts, R.; Maldonado, J.E.; Nkurunungi, J.B.; Campana, M.G. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: A 2200-year-long metagenomic record from Bwindi impenetrable forest, Uganda. Front. Ecol. Evol. 2020, 8, 218. [Google Scholar] [CrossRef]
- Garner, R.E.; Gregory-Eaves, I.; Walsh, D.A. Sediment metagenomes as time capsules of lake microbiomes. mSphere 2020, 5, e00512-20. [Google Scholar] [CrossRef] [PubMed]
- Pearman, J.K.; Thomson-Laing, G.; Howarth, J.D.; Vandergoes, M.J.; Thompson, L.; Rees, A.; Wood, S.A. Investigating variability in microbial community composition in replicate environmental DNA samples down lake sediment cores. PLoS ONE 2021, 16, e0250783. [Google Scholar] [CrossRef] [PubMed]
The Middle of the Height of the Decompacted Layer, cm | Wet Weight of the Layer, g | Dry Weight of the Layer, g | Dry Desalted Weight of the Layer, g | Mass Cumulative, g/cm2 | 90Sr Concentration Corrected for Desalted Mass, Bq kg−1 Dry Weight | |
---|---|---|---|---|---|---|
Average | Standard Deviation | |||||
0.5 | 49.3 | 40.9 | 38.6 | 1.5 | 0 * | 0 * |
1.5 | 46.1 | 37.9 | 36.2 | 2.8 | 0 * | 0 * |
2.3 | 31.2 | 25.4 | 24.3 | 3.8 | 1.4 | 1.0 |
3.3 | 47.5 | 37.9 | 36.0 | 5.1 | 13.3 | 1.0 |
4.6 | 48.4 | 36.4 | 34.0 | 6.4 | 52.2 | 2.7 |
5.5 | 50.2 | 36.9 | 34.3 | 7.7 | 9.5 | 1.1 |
6.5 | 42.9 | 32.9 | 30.9 | 8.9 | 2.9 | 0.8 |
7.5 | 46.1 | 36.4 | 34.5 | 10.2 | 0 | 0 |
8.6 | 49.8 | 39.9 | 37.9 | 11.6 | 9.9 | 0.7 |
9.7 | 51.7 | 40.4 | 38.2 | 13.6 | 0 * | 0 * |
10.5 | 42.0 | 30.9 | 28.7 | 14.2 | 5.8 | 1.0 |
11.4 | 44.5 | 30.9 | 28.2 | 15.2 | 0.7 | 0.9 |
12.5 | 48.9 | 34.4 | 31.5 | 16.4 | 7.3 | 0.8 |
13.3 | 33.7 | 22.4 | 20.2 | 17.2 | 31.6 | 0.1 |
14.3 | 38.7 | 26.4 | 24.0 | 18.1 | 56.9 | 0.3 |
15.5 | 45.4 | 31.4 | 28.6 | 19.2 | 4.1 | 0.2 |
16.7 | 46.9 | 37.4 | 35.5 | 20.5 | 0 * | 0 * |
17.9 | 53.9 | 44.4 | 42.5 | 22.1 | 0 * | 0 * |
19.0 | 56.9 | 47.4 | 45.5 | 23.8 | 0 * | 0 * |
20.0 | 54.4 | 45.4 | 43.6 | 25.5 | 0 * | 0 * |
21.0 | 52.9 | 43.9 | 42.1 | 27.1 | 0 * | 0 * |
21.9 | 47.9 | 39.9 | 38.3 | 28.5 | 0 * | 0 * |
23.0 | 58.9 | 47.4 | 45.1 | 30.3 | 3.7 | 0.2 |
23.9 | 45.4 | 35.9 | 34.0 | 31.5 | 2.6 | 0 |
24.8 | 47.9 | 37.9 | 35.9 | 32.9 | 2.5 | 0.1 |
25.9 | 53.9 | 41.4 | 38.9 | 34.4 | 0 * | 0 * |
26.9 | 49.9 | 37.9 | 35.5 | 35.7 | 2.6 | 0.2 |
27.9 | 45.4 | 33.9 | 31.6 | 36.9 | 3.7 | 0.1 |
28.7 | 42.9 | 30.9 | 28.5 | 38.0 | 4.1 | 0.2 |
29.8 | 53.9 | 38.4 | 35.3 | 39.3 | 0 * | 0 * |
30.8 | 47.4 | 33.4 | 30.6 | 40.5 | 3.8 | 0.8 |
31.7 | 39.9 | 28.4 | 26.1 | 41.5 | 0 * | 0 * |
32.6 | 38.4 | 27.9 | 25.8 | 42.5 | 0 * | 0 * |
33.7 | 47.9 | 35.4 | 32.9 | 43.7 | 2.9 | 0.5 |
34.9 | 53.4 | 39.9 | 37.2 | 45.1 | 2.6 | 0.4 |
35.9 | 46.4 | 34.4 | 32.0 | 46.3 | 2.9 | 0.5 |
36.9 | 52.4 | 39.4 | 36.8 | 47.7 | 3.1 | 0.4 |
37.9 | 44.4 | 33.9 | 31.8 | 48.9 | 0 * | 0 * |
38.9 | 47.9 | 35.9 | 33.5 | 50.2 | 4.2 | 0.5 |
39.9 | 45.4 | 34.4 | 32.2 | 51.4 | 2.5 | 0.4 |
40.9 | 49.9 | 37.4 | 34.9 | 52.7 | 2.3 | 0.4 |
41.9 | 49.4 | 37.4 | 35.0 | 54.1 | 0 * | 0 * |
42.9 | 46.9 | 34.4 | 31.9 | 55.3 | 0 * | 0 * |
43.9 | 49.9 | 35.9 | 33.1 | 56.5 | 2.8 | 0.4 |
44.9 | 40.9 | 29.9 | 27.7 | 57.6 | 0 * | 0 * |
45.9 | 50.4 | 35.9 | 33.0 | 58.8 | 2.6 | 0.3 |
46.9 | 50.9 | 37.4 | 34.7 | 60.1 | 2.1 | 0.3 |
48.0 | 49.4 | 36.9 | 34.4 | 61.4 | 0 * | 0 * |
48.9 | 44.9 | 33.4 | 31.1 | 62.6 | 4.9 | 0.6 |
50.0 | 58.9 | 44.4 | 41.5 | 64.2 | 1.6 | 0.3 |
Average Column Layer Depth, cm | Age of the Bottom Sediment Layer, Year | The Concentration of Stable Elements, mg kg−1 Dry Weight | |||
---|---|---|---|---|---|
Sr | Ba | ||||
Average | Standard Deviation | Average | Standard Deviation | ||
0.5 | 2019 | 674 | 14 | 62.6 | 2.4 |
1.5 | 2016 | 683 | 17 | 60.8 | 1.3 |
2.5 | 2014 | 742 | 13 | 54.0 | 1.6 |
3.5 | 2012 | 620 | 8 | 81.7 | 3.0 |
4.5 | 2010 | 531 | 17 | 66.8 | 2.7 |
5.5 | 2008 | 411 | 7 | 52.4 | 1.1 |
6.5 | 2006 | 423 | 5 | 83.0 | 2.6 |
7.5 | 2004 | 343 | 8 | 67.5 | 1.4 |
8.5 | 2002 | 371 | 7 | 79.2 | 2.8 |
9.5 | 2000 | 190 | 4 | 74.8 | 2.8 |
10.5 | 1998 | 190 | 5 | 52.8 | 1.0 |
11.5 | 1996 | 215 | 4 | 58.7 | 1.3 |
12.5 | 1994 | 186 | 3 | 61.7 | 1.6 |
13.5 | 1992 | 139 | 1 | 63.2 | 1.8 |
14.5 | 1990 | 110 | 1 | 194.0 | 6.1 |
15.5 | 1988 | 133 | 4 | 80.1 | 1.6 |
16.5 | 1986 | 84 | 4 | 78.7 | 3.3 |
17.5 | 1984 | 103 | 4 | 71.6 | 1.8 |
18.5 | 1982 | 90 | 2 | 59.0 | 1.7 |
19.5 | 1980 | 92 | 3 | 47.7 | 1.2 |
20.5 | 1978 | 96 | 3 | 48.9 | 1.4 |
21.5 | 1976 | 155 | 4 | 67.3 | 2.0 |
22.5 | 1974 | 96 | 2 | 52.9 | 0.9 |
23.5 | 1971 | 247 | 9 | 84.6 | 2.9 |
24.5 | 1970 | 141 | 3 | 80.0 | 3.7 |
25.5 | 1969–1970 | 182 | 5 | 65.8 | 1.8 |
26.5 | 1969 | 197 | 5 | 75.6 | 3.1 |
27.5 | 1968 | 163 | 6 | 89.3 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzoeva, N.; Shadrin, N.; Proskurnin, V.; Arkhipova, S.; Moseychenko, I.; Anufriieva, E. The Sedimentation Rate in the Crimean Hypersaline Lake Aktashskoye Estimated Using the Post-Chernobyl Artificial Radionuclide 90Sr as a Radiotracer. Water 2022, 14, 2506. https://doi.org/10.3390/w14162506
Mirzoeva N, Shadrin N, Proskurnin V, Arkhipova S, Moseychenko I, Anufriieva E. The Sedimentation Rate in the Crimean Hypersaline Lake Aktashskoye Estimated Using the Post-Chernobyl Artificial Radionuclide 90Sr as a Radiotracer. Water. 2022; 14(16):2506. https://doi.org/10.3390/w14162506
Chicago/Turabian StyleMirzoeva, Natalia, Nickolai Shadrin, Vladislav Proskurnin, Svetlana Arkhipova, Igor Moseychenko, and Elena Anufriieva. 2022. "The Sedimentation Rate in the Crimean Hypersaline Lake Aktashskoye Estimated Using the Post-Chernobyl Artificial Radionuclide 90Sr as a Radiotracer" Water 14, no. 16: 2506. https://doi.org/10.3390/w14162506
APA StyleMirzoeva, N., Shadrin, N., Proskurnin, V., Arkhipova, S., Moseychenko, I., & Anufriieva, E. (2022). The Sedimentation Rate in the Crimean Hypersaline Lake Aktashskoye Estimated Using the Post-Chernobyl Artificial Radionuclide 90Sr as a Radiotracer. Water, 14(16), 2506. https://doi.org/10.3390/w14162506