Laboratory Determination of the Impact of Incorporated Alkali Lignin-Based Hydrogel on Soil Hydraulic Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lignin-Based Hydrogel
2.2. Soil Properties
2.3. Laboratory Experiments
2.4. Theory for Determination of Soil Hydraulic Functions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Lignin-Based Hydrogel on Saturated Hydraulic Conductivity
3.2. Effect of Lignin-Based Hydrogel on Near-Saturated Hydraulic Conductivity
3.3. Effect of Lignin-Based Hydrogel on Unsaturated Hydraulic Conductivity Relationships Using the Evaporation Method
3.4. Effect of Lignin-Based Hydrogel on Change in Total Water Storage in the Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 687–734. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Gallage, C.; Kodikara, J.; Uchimura, T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found. 2013, 53, 417–430. [Google Scholar] [CrossRef]
- Perkins, K.S. Measurement and modeling of unsaturated hydraulic conductivity. In Hydraulic Conductivity–Issues, Determination and Applications, 1st ed.; Lakshmanan, E., Ed.; Intech: Rijeka, Croatia, 2011; pp. 419–434. [Google Scholar]
- Peppas, N. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 2019, 135, 1006–1019. [Google Scholar] [CrossRef]
- Al-Darby, A.M. The hydraulic properties of a sandy soil treated with gel-forming soil conditioner. Soil Technol. 1996, 9, 15–28. [Google Scholar] [CrossRef]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 2013, 435073. [Google Scholar] [CrossRef]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water availability in different soils in relation to hydrogel application. Geoderma 2012, 187–188, 94–101. [Google Scholar] [CrossRef]
- Narjary, B.; Aggarwal, P. Evaluation of soil physical quality under amendments and hydrogel applications in a soybean–wheat cropping system. Commun. Soil Sci. Plant Anal. 2014, 45, 1167–1180. [Google Scholar] [CrossRef]
- Song, B.; Liang, H.; Sun, R.; Peng, P.; Jiang, Y.; She, D. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 2020, 144, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.M. The effect of hydrogel particle size on water retention properties and availability under water stress. Int. Soil Water Conserv. Res. 2019, 7, 275–285. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Shainberg, I.; Goldstein, D.; Warrington, D.N.; Levy, G.J. Water Retention and Hydraulic Conductivity of Cross-Linked Polyacrylamides in Sandy Soils. Soil Sci. Soc. Am. J. 2007, 71, 406–412. [Google Scholar] [CrossRef]
- Andry, H.; Yamamoto, T.; Irie, T.; Moritani, S.; Inoue, M.; Fujiyama, H. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. J. Hydrol. 2009, 373, 177–183. [Google Scholar] [CrossRef]
- Shahid, S.A.; Qidwai, A.A.; Anwar, F.; Ullah, I.; Rashid, U. Improvement in the Water Retention Characteristics of Sandy Loam Soil Using a Newly Synthesized Poly(acrylamide-co-acrylic Acid)/AlZnFe2O4 Superabsorbent Hydrogel Nanocomposite Material. Molecules 2012, 17, 9397–9412. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef]
- Zhuang, W.; Li, L.; Liu, C. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. Springer Plus 2013, 2, S11. [Google Scholar] [CrossRef]
- Han, Y.; Yu, X.; Yang, P.; Li, B.; Xu, L.; Wang, C. Dynamic study on water diffusivity of soil with super-absorbent polymer application. Environ. Earth Sci. 2013, 69, 289–296. [Google Scholar] [CrossRef]
- Hussien, R.A.; Donia, A.M.; Atia, A.A.; El-Sedfy, O.F.; El-Hamid, A.R.A.; Rashad, R.T. Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. Catena 2012, 92, 172–178. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Shnyrev, N.A.; Kokoreva, A.A.; Sidorova, M.A. Saturated and unsaturated hydraulic conductivity of synthetic gel structures in coarse textured soil substrates. IOP Conf. Ser. Earth Environ. Sci. 2019, 368, 012048. [Google Scholar] [CrossRef]
- Mohawesh, O.; Durner, W. Effects of Bentonite, Hydrogel and Biochar Amendments on Soil Hydraulic Properties from Saturation to Oven Dryness. Pedosphere 2019, 29, 598–607. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, N.; Hill, R.L.; Wu, S.; Dong, Q.G.; Ma, P. Effects of the combined application of biomaterial amendments and polyacrylamide on soil water and maize growth under deficit irrigation. Can. J. Soil Sci. 2019, 99, 182–194. [Google Scholar] [CrossRef]
- Wei, Y.; Durian, D.J. Rain water transport and storage in a model sandy soil with hydrogel particle additives. Eur. Phys. J. E 2014, 37, 97. [Google Scholar] [CrossRef]
- Liao, R.; Yang, P.; Wang, Z.; Wu, W.; Ren, S. Development of a Soil Water Movement Model for the Superabsorbent Polymer Application. Soil Sci. Soc. Am. J. 2018, 82, 436. [Google Scholar] [CrossRef]
- Liao, R.; Wu, W.; Ren, S.; Yang, P. Effects of Superabsorbent Polymers on the Hydraulic Parameters and Water Retention Properties of Soil. J. Nanomater. 2016, 2016, 5403976. [Google Scholar] [CrossRef]
- Jiang, P.; Sheng, X.; Yu, S.; Li, H.; Lu, J.; Zhou, J.; Wang, H. Preparation and characterization of thermo-sensitive gel with phenolated alkali lignin. Sci. Rep. 2018, 8, 14450. [Google Scholar] [CrossRef]
- Passauer, L. Highly swellable lignin hydrogels: Novel materials with interesting properties. In Functional Materials from Renewable Sources; ACS Publications: Washington, DC, USA, 2012; pp. 211–228. [Google Scholar]
- Mazloom, N.; Khorassani, R.; Zohuri, G.H.; Emami, H.; Whalen, J. Development and Characterization of Lignin-Based Hydrogel for Use in Agricultural Soils: Preliminary Evidence. CLEAN Soil Air Water 2019, 47, 1900101. [Google Scholar] [CrossRef]
- Arias, N.; Virto, I.; Enrique, A.; Bescansa, P.; Walton, R.; Wendroth, O. Effect of Stoniness on the Hydraulic Properties of a Soil from an Evaporation Experiment Using the Wind and Inverse Estimation Methods. Water 2019, 11, 440. [Google Scholar] [CrossRef]
- Miller, W.; Miller, D. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 1987, 18, 1–15. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Soil Analysis Handbook of Reference Methods; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M.; Analysis, P. Carbon and nitrogen analysis of soils by automated combustion techniques. Commun. Soil Sci. Plant Anal. 1991, 22, 843–850. [Google Scholar] [CrossRef]
- Reed, J.F.; Cummings, R.W. Soil reaction—Glass electrode and colorimetric methods for determining pH values of soils. Soil Sci. 1945, 59, 97–105. [Google Scholar] [CrossRef]
- Eijkelkamp. Laboratory Permeameters User Manual. Available online: https://www.eijkelkamp.com/download.php?file=M0902E_Permeameter_402b.pdf (accessed on 2 July 2022).
- Wendroth, O.; Simunek, J.; van Genuchten, M.T. Soil hydraulic properties determined from evaporation and tension infiltration experiments and their use for modeling field moisture status. In Proceedings of the Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, Riverside, CA, USA, 22–24 October 1997. [Google Scholar]
- Wendroth, O.; Wypler, N.; Carter, M.; Gregorich, E. Unsaturated hydraulic properties: Laboratory evaporation. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 1089–1127. [Google Scholar]
- Wind, G. Capillary conductivity data estimated by a simple method. In Water in the Unsaturated Zone; Rijtema, P.E., Wassink, H., Eds.; Institute for Land and Water Management Research: Wageningen, The Netherlands, 1968; pp. 181–191. [Google Scholar]
- Tamari, S.; Bruckler, L.; Halbertsma, J.; Chadoeuf, J. A Simple Method for Determining Soil Hydraulic Properties in the Laboratory. Soil Sci. Soc. Am. J. 1993, 57, 642–651. [Google Scholar] [CrossRef]
- Schindler, U.; Müller, L. Simplifying the evaporation method for quantifying soil hydraulic properties. J. Plant Nutr. Soil Sci. 2006, 169, 623–629. [Google Scholar] [CrossRef]
- Wendroth, O.; Ehlers, W.; Kage, H.; Hopmans, J.; Halbertsma, J.; Wösten, J. Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Sci. Soc. Am. J. 1993, 57, 1436–1443. [Google Scholar] [CrossRef]
- Yates, S.R.; Van Genuchten, M.T.; Warrick, A.W.; Leij, F.J. Analysis of Measured, Predicted, and Estimated Hydraulic Conductivity Using the RETC Computer Program. Soil Sci. Soc. Am. J. 1992, 56, 347–354. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99. [Google Scholar] [CrossRef]
- Adjuik, T.A.; Nokes, S.E.; Montross, M.D.; Wendroth, O. Lignin-based Hydrogel for Water Retention in Silt Loam Soil. In Proceedings of the 2021 ASABE Annual International Meeting, Virtual, 12–16 July 2021. [Google Scholar]
- Jarvis, N.J.; Zavattaro, L.; Rajkai, K.; Reynolds, W.D.; Olsen, P.A.; McGechan, M.; Mecke, M.; Mohanty, B.; Leeds-Harrison, P.B.; Jacques, D. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma 2002, 108, 1–17. [Google Scholar] [CrossRef]
- Jarvis, N.J.; Messing, I. Near-Saturated Hydraulic Conductivity in Soils of Contrasting Texture Measured by Tension Infiltrometers. Soil Sci. Soc. Am. J. 1995, 59, 27–34. [Google Scholar] [CrossRef]
- Peters, A.; Durner, W. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol. 2008, 356, 147–162. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Pachepsky, Y.A. Hydraulic properties of unsaturated soils. In Encyclopedia of Agrophysics, 1st ed.; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 368–376. [Google Scholar]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Idso, S.B.; Reginato, R.J.; Jackson, R.D.; Kimball, B.A.; Nakayama, F.S. The Three Stages of Drying of a Field Soil. Soil Sci. Soc. Am. J. 1974, 38, 831–837. [Google Scholar] [CrossRef]
- Rose, D. Water movement in porous materials III. Evaporation of water from soil. J. Phys. D Appl. Phys. 1968, 1, 1779. [Google Scholar] [CrossRef]
Soil Texture | Clay (%) | Silt (%) | Sand (%) | Total N (%) | Total C (%) | CEC | Ex. Mg | Ex. Ca | Ex. Na | Ex. K | Base Saturation (%) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Silt loam | 18.18 | 72.25 | 9.57 | 0.178 | 1.769 | 18.68 | 1.37 | 11.2 | 0.03 | 0.67 | 71 | 5.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adjuik, T.A.; Nokes, S.E.; Montross, M.D.; Walton, R.; Wendroth, O. Laboratory Determination of the Impact of Incorporated Alkali Lignin-Based Hydrogel on Soil Hydraulic Conductivity. Water 2022, 14, 2516. https://doi.org/10.3390/w14162516
Adjuik TA, Nokes SE, Montross MD, Walton R, Wendroth O. Laboratory Determination of the Impact of Incorporated Alkali Lignin-Based Hydrogel on Soil Hydraulic Conductivity. Water. 2022; 14(16):2516. https://doi.org/10.3390/w14162516
Chicago/Turabian StyleAdjuik, Toby A., Sue E. Nokes, Michael D. Montross, Riley Walton, and Ole Wendroth. 2022. "Laboratory Determination of the Impact of Incorporated Alkali Lignin-Based Hydrogel on Soil Hydraulic Conductivity" Water 14, no. 16: 2516. https://doi.org/10.3390/w14162516
APA StyleAdjuik, T. A., Nokes, S. E., Montross, M. D., Walton, R., & Wendroth, O. (2022). Laboratory Determination of the Impact of Incorporated Alkali Lignin-Based Hydrogel on Soil Hydraulic Conductivity. Water, 14(16), 2516. https://doi.org/10.3390/w14162516