Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Materials
2.2. Experimental Design
2.3. Experimental Method
2.4. Statistic Analysis
3. Results
3.1. Ecological Stoichiometric Characteristics of Plant Carbon, Nitrogen and Phosphorus under Different Precipitation Patterns
3.2. Ecological Stoichiometric Characteristics of Soil Carbon, Nitrogen and Phosphorus under Different Precipitation Patterns
3.3. Collaborative Correlation Analysis and Simulation of Plant–Soil Systems under Different Precipitation Patterns
4. Discussion
4.1. The Influence of Precipitation Patterns on the Ecological Stoichiometric Characteristics of Plant Carbon, Nitrogen and Phosphorus
4.2. The Influence of Precipitation Patterns on the Ecological Stoichiometric Characteristics of Soil Carbon, Nitrogen and Phosphorus
4.3. Influence of Precipitation Patterns on the Cooperative Correlation of Plant–Soil Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, M.G.; Holcombe, L.; Renaud, J.-P. Assessing slope stability in unplanned settlements in developing countries. J. Environ. Manag. 2007, 85, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.N.; Xia, Z.Y.; Zhou, M.T.; Liu, D.X.; Xia, D. The Vegetation Concrete Eco-Restoration Technology Theory and Practice; China Water & Power Press: Beijing, China, 2012; ISBN 9787508497747. (In Chinese) [Google Scholar]
- Du, Y.Q.; Bai, M.Z.; Wang, X.Q.; Gao, J.F. Landslide stability analysis of potential slope caused by the construction of shallow oil and gas pipeline tunnel. J. Beijing Jiaotong Univ. 2016, 40, 75–81. (In Chinese) [Google Scholar]
- Xu, W.N.; Wang, T.Q.; Ye, J.J. A Preliminary Probing into Slope Afforestation. J. China Three Gorges Univ. (Nat. Sci.) 2001, 23, 512–513. (In Chinese) [Google Scholar]
- Li, S.C.; Sun, H.L.; Zhang, H.D. Maintenance Principle and Method for TBS Planting Protection Engineering on Ruck Cut Slope. Subgrade Eng. 2003, 1, 56–58. [Google Scholar]
- Liang, Y.Z.; Chen, Y.; Liu, D.X.; Xu, W.N.; Yao, X.Y. Effect of additive plant fiber on shearing strength of vegetation-concrete under freezing-thawing cycles. Bull. Soil Water Conserv. 2016, 36, 136–139. (In Chinese) [Google Scholar]
- Wang, L.Y.; Zhang, X.S.; Gao, X.B.; Zhai, F.S. The application progress of soil spraying technology for ecological protection engineering. Shanxi Archit. 2015, 41, 191–192. (In Chinese) [Google Scholar]
- Liu, D.X.; Zhang, B.H.; Yang, Y.S.; Xu, W.N.; Ding, Y.; Xia, Z.Y. Effect of organic material type and proportion on the physical and mechanical properties of vegetation-concrete. Adv. Mater. Sci. Eng. 2018, 3608750. [Google Scholar] [CrossRef]
- Xu, W.N.; Xia, D.; Zhao, B.Q.; Xia, Z.Y.; Liu, D.X.; Zhou, M.T. Study on Vegetation Ecological Restoration Technology in Disturbed Area of Hydropower Project; Science Press: Beijing, China, 2017; ISBN 9787030536815. (In Chinese) [Google Scholar]
- Zhang, B.H.; Liu, D.X.; Su, H.Z. Single pullout experiment and reinforcement properties of basalt fiber in vegetation concrete. Sci. Rep. 2022, 12, 1264. [Google Scholar] [CrossRef]
- Gao, J.Z.; Liu, D.X.; Xu, Y.K.; Chen, J.G.; Yang, Y.S.; Xia, D.; Ding, Y.; Xu, W.N. Effects of two types of activated carbon on the properties of vegetation concrete and Cynodon dactylon growth. Sci. Rep. 2020, 10, 14483. [Google Scholar] [CrossRef]
- Liu, D.X.; Liu, D.Y.; Gao, J.Z.; Yang, Y.S.; Ding, Y.; Guo, C.Q.; Zhang, X.Z.; Xia, Z.Y.; Xu, W.N. Influence of addition of two typical activated carbons on fertility properties and mechanical strength of vegetation concrete under freeze-thaw conditions. Sci. Total Environ. 2022, 838, 156446. [Google Scholar] [CrossRef]
- Li, A.; Fahey, T.J.; Pawlowska, T.E.; Fisk, M.C.; Burtis, J. Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol. Biochem. 2015, 83, 76–83. [Google Scholar] [CrossRef]
- Eppinga, M.B.; Putten, W.H.; Bever, J.D. Plant-soil feedback as a driver of spatial structure in ecosystems. Phys. Life Rev. 2022, 40, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Kardol, P.; Wardle, D. How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol. Evol. 2010, 25, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Barot, S.; Ugolini, A.; Brikci, F.B. Nutrient cycling efficiency explains the long-term effect of ecosystem engineers on primary production. Funct. Ecol. 2007, 21, 1–10. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad Shah, J.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimen. Nature 2010, 462, 795. [Google Scholar] [CrossRef]
- Qi, D.; Feng, F.; Lu, C.; Fu, Y. C:N:P stoichiometry of different soil components after the transition of temperate primary coniferous and broad-leaved mixed forests to secondary forests. Soil Tillage Res. 2022, 216, 105260. [Google Scholar] [CrossRef]
- Brauman, K.A. Hydrologic ecosystem services: Linking ecohydrologic processes to human well-being in water research and watershed management. Wiley Interdiscip. Rev. Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Wei, Y.J.; Dang, X.H.; Wang, J.; Gao, J.L.; Gao, Y. Response of C:N:P in the plant-soil system and stoichiometric homeostasis of Nitraria tangutorum leaves in the oasis-desert ecotone, Northwest China. J. Arid Land Issue 2021, 13, 934–946. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Luo, Y.; Elser, J.; Wang, Y.-P.; Loladze, I.; Zhang, Q.; Dennis, S. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 2015, 96, 3354–3362. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Wang, G.; Song, Y.; Liu, Q.; Li, D.; Mao, P.; Zhang, H. Seasonal Variations of C: N: P Stoichiometry and Their Trade-Offs in Different Organs of Suaeda salsa in Coastal Wetland of Yellow River Delta, China. PLoS ONE 2015, 10, e0138169. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.N.; Zhou, M.T.; Xia, Z.Y.; Liu, D.X.; Ding, Y.; Xu, Y.; Cui, L.; Zhao, B.Q.; Yang, Y.S.; Li, M.Y. Technical Code for Eco-Restoration of Vegetation Concrete on Steep Slope of Hydropower Projects; NB/T 35082—2016; China Water & Power Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Bao, S.D. Soil Agro-Chemistrical Analysis; China Agriculture Press: Beijing, China, 2007; Volume 268–270, pp. 389–391. (In Chinese) [Google Scholar]
- Liu, S.F.; Cai, H.; Yang, Y.J.; Cao, Y. Advance in grey incidence analysis modelling. Syst. Eng.—Theory Pract. 2013, 33, 2041–2046. [Google Scholar]
- Bradshaw, C.; Kautsky, U.; Kumblad, L. Ecological stoichiometry and multi-element transfer in a coastal ecosystem. Ecosystems 2012, 15, 591–603. [Google Scholar] [CrossRef]
- Lasota, J.; Maek, S.; Jasik, M.; Błońsk, E. Effect of planting method on C:N:P stoichiometry in soils, young silver fir (Abies alba Mill.) and stone pine (Pinus cembra L.) in the upper mountain zone of karpaty mountains. Ecol. Indic. 2021, 129, 107905. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Huang, J.Y.; Yu, H.L.; Li, L.H.; Yuan, Z.Y.; Barrels, S. Water supply changes N and P conservation in a perennial grass Leymus chinensis. J. Integr. Plant Biol. 2009, 51, 1050–1056. [Google Scholar] [CrossRef]
- Ren, H.; Xu, Z.W.; Huang, J.H.; Clark, C.; Chen, S.P.; Han, X.G. Nitrogen and water addition reduce leaf longevity of steppe species. Ann. Bot. 2011, 107, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Agren, G.I. The C: N: P stoichiometry of autotrophs-theory and observations. Ecology 2004, 7, 185–191. [Google Scholar]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef]
- Li, Y.C.; Yu, H.L.; Wang, P.; Niu, Y.B.; Fan, J.; Zhu, W.W.; Huang, J.Y. Effects of Precipitation on Plant Community Diversity and C: N: P Ecological Stoichiometry in a Desert Steppe of Ningxia. Northwest. China Chin. J. Grassl. 2020, 42, 117–126. (In Chinese) [Google Scholar]
- Liu, W.; Lü, X.T.; Xu, W.F.; Shi, H.Q.; Hou, L.Y.; Li, L.H.; Yuan, W.P. Effects of water and nitrogen addition on ecosystem respiration across three types of steppe: The role of plant and microbial biomass. Sci. Total Environ. 2018, 619–620, 103–111. [Google Scholar] [CrossRef]
- Ren, X.L.; Jia, Z.K.; Chen, X.L.; Han, J.; Han, Q.F. Effect of ridge and furrow planting of rainfall harvesting on soil available nutrient distribution and root growth of summer corn under simulated rainfall conditions. Trans. Chin. Soc. Agric. 2007, 23, 94–99. (In Chinese) [Google Scholar]
- Zhao, S.Y.; Li, J.T.; Sun, X.K.; Zeng, D.H.; Hu, Y.L. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions. Acta Ecol. Sin. 2018, 38, 7189–7197. (In Chinese) [Google Scholar]
- Zhang, C.H.; Wang, Z.M.; Ju, W.M.; Ren, C.Y. Spatial and Temporal Variability of Soil C/N Ratio in Songnen Plain Maize Belt. Chin. J. Environ. Sci. 2011, 32, 1407–1414. (In Chinese) [Google Scholar]
- Wang, S.Q.; Yu, G.R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 2008, 28, 3937–3947. (In Chinese) [Google Scholar]
- Smith, J.L.; Halvorson, J.J.; Bolton, H. Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biol. Biochem. 2002, 34, 1749–1757. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Augustine, D.J.; Brewer, P.; Fischer, J.C.V. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporally asynchronous? Oecologia 2012, 170, 799–808. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Gough, L. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 2002, 131, 453–462. [Google Scholar] [CrossRef]
- Tessier, J.T.; Raynal, D.J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 2003, 40, 523–534. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Shi, Z.; Chen, S.C.; Gou, Y.X.; Zhuo, Z.Q. Role of Environment Variables in Spatial Distribution of Soil C, N, P Ecological Stoichiometry in the Typical Black Soil Region of Northeast China. Sustainability 2022, 14, 2636. [Google Scholar] [CrossRef]
- Luo, W.; Elser, J.J.; Lü, X.T.; Wang, Z.W.; Bai, E.; Yan, C.F.; Wang, C.; Li, M.H.; Niklaus, E.Z.; Han, X.G.; et al. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Glob. Biogeochem. Cycles 2015, 29, 1298–1308. [Google Scholar] [CrossRef]
C | N | P | C/N | C/P | N/P | ||
---|---|---|---|---|---|---|---|
10-JS | C | 0.7474 | 0.5679 | 0.7215 | 0.7414 | 0.7047 | 0.5635 |
N | 0.8258 | 0.7494 | 0.5911 | 0.7767 | 0.6677 | 0.6829 | |
P | 0.7875 | 0.6374 | 0.5310 | 0.7248 | 0.7069 | 0.6273 | |
C/N | 0.5887 | 0.5538 | 0.8312 | 0.6826 | 0.7835 | 0.5101 | |
C/P | 0.6526 | 0.5995 | 0.7141 | 0.6897 | 0.6523 | 0.5518 | |
N/P | 0.5784 | 0.5645 | 0.6105 | 0.5257 | 0.5945 | 0.5915 | |
15-JS | C | 0.7032 | 0.6119 | 0.7616 | 0.6696 | 0.7757 | 0.7519 |
N | 0.6338 | 0.6587 | 0.6166 | 0.6480 | 0.6373 | 0.6070 | |
P | 0.7351 | 0.7212 | 0.5827 | 0.6125 | 0.6271 | 0.8038 | |
C/N | 0.8226 | 0.6458 | 0.5559 | 0.6441 | 0.6841 | 0.8005 | |
C/P | 0.6070 | 0.6882 | 0.7385 | 0.6404 | 0.7659 | 0.8444 | |
N/P | 0.6025 | 0.6681 | 0.5797 | 0.6036 | 0.8819 | 0.5257 | |
20-JS | C | 0.6165 | 0.7369 | 0.6493 | 0.6871 | 0.7102 | 0.7095 |
N | 0.6719 | 0.6398 | 0.7533 | 0.5387 | 0.6865 | 0.5553 | |
P | 0.5330 | 0.6994 | 0.8865 | 0.7201 | 0.6409 | 0.7036 | |
C/N | 0.6611 | 0.7282 | 0.5910 | 0.7502 | 0.7213 | 0.7750 | |
C/P | 0.6475 | 0.7327 | 0.6135 | 0.5748 | 0.8145 | 0.7347 | |
N/P | 0.6782 | 0.7286 | 0.5676 | 0.5261 | 0.6993 | 0.6179 |
C | N | P | C/N | C/P | N/P | ||
---|---|---|---|---|---|---|---|
10-JS | C | 0.6453 | 0.6545 | 0.7485 | 0.5986 | 0.5274 | 0.6713 |
N | 0.6211 | 0.7511 | 0.5369 | 0.5488 | 0.5516 | 0.7671 | |
P | 0.6988 | 0.7836 | 0.5890 | 0.6919 | 0.7697 | 0.8266 | |
C/N | 0.8779 | 0.6021 | 0.7985 | 0.8146 | 0.6679 | 0.5692 | |
C/P | 0.5473 | 0.5490 | 0.8105 | 0.8311 | 0.8640 | 0.5198 | |
N/P | 0.6088 | 0.7368 | 0.6728 | 0.7047 | 0.5891 | 0.7310 | |
15-JS | C | 0.5704 | 0.7268 | 0.6979 | 0.8232 | 0.5802 | 0.7819 |
N | 0.7831 | 0.6838 | 0.5622 | 0.6769 | 0.6276 | 0.6618 | |
P | 0.5647 | 0.6077 | 0.6768 | 0.6008 | 0.5349 | 0.6917 | |
C/N | 0.7245 | 0.6470 | 0.5560 | 0.5637 | 0.6966 | 0.5712 | |
C/P | 0.5897 | 0.5669 | 0.5743 | 0.7320 | 0.7613 | 0.8261 | |
N/P | 0.6506 | 0.7131 | 0.7779 | 0.7757 | 0.6300 | 0.7950 | |
20-JS | C | 0.6169 | 0.7070 | 0.7982 | 0.7187 | 0.6454 | 0.7649 |
N | 0.6326 | 0.7146 | 0.8256 | 0.6081 | 0.6687 | 0.6695 | |
P | 0.7653 | 0.7060 | 0.7937 | 0.5490 | 0.7280 | 0.6145 | |
C/N | 0.5513 | 0.6399 | 0.7085 | 0.7327 | 0.5462 | 0.7212 | |
C/P | 0.5665 | 0.5932 | 0.7198 | 0.6779 | 0.6847 | 0.6544 | |
N/P | 0.6101 | 0.7414 | 0.7514 | 0.7102 | 0.7327 | 0.6111 |
C | N | P | C/N | C/P | N/P | |
---|---|---|---|---|---|---|
10-JS | 0.6744 | 0.7156 | 0.6692 | 0.6583 | 0.6433 | 0.5775 |
15-JS | 0.7123 | 0.6336 | 0.6804 | 0.6922 | 0.7141 | 0.6436 |
20-JS | 0.6849 | 0.6409 | 0.6973 | 0.7045 | 0.6863 | 0.6363 |
C | N | P | C/N | C/P | N/P | |
---|---|---|---|---|---|---|
10-JS | 0.6409 | 0.6294 | 0.7266 | 0.7217 | 0.6869 | 0.6739 |
15-JS | 0.6967 | 0.6659 | 0.6128 | 0.6265 | 0.6751 | 0.7237 |
20-JS | 0.7085 | 0.6865 | 0.6927 | 0.6500 | 0.6494 | 0.6928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Dong, W.; Wang, R.; Li, Q.; Xu, W.; Xia, Z.; Xiao, H.; Geng, Q. Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions. Water 2022, 14, 2558. https://doi.org/10.3390/w14162558
Li M, Dong W, Wang R, Li Q, Xu W, Xia Z, Xiao H, Geng Q. Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions. Water. 2022; 14(16):2558. https://doi.org/10.3390/w14162558
Chicago/Turabian StyleLi, Mingyi, Wenhao Dong, Ran Wang, Qixiu Li, Wennian Xu, Zhenyao Xia, Hai Xiao, and Qiming Geng. 2022. "Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions" Water 14, no. 16: 2558. https://doi.org/10.3390/w14162558
APA StyleLi, M., Dong, W., Wang, R., Li, Q., Xu, W., Xia, Z., Xiao, H., & Geng, Q. (2022). Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions. Water, 14(16), 2558. https://doi.org/10.3390/w14162558