Terrorism, Freshwater, and Environmental Pollution: Evidence of Afghanistan, Burkina Faso, Iraq, Arab Republic of Egypt, Cameroon, Mali, Mozambique, Niger, Nigeria, Somalia, Syrian Arab Republic, and Pakistan
Abstract
:1. Introduction
2. Literature
2.1. Water and Terrorism
2.2. Terrorism and Environmental Pollution
3. Data and Definitions of the Variables
4. Econometric Methodology
4.1. Panel Fourier Bootstrapping ARDL Method
4.2. Panel Fourier Causality Test
4.3. Empirical Results
- We used descriptive statistics tests. Then, the cross-sectional dependence test was applied.
- For the confirmatory analysis, Im Pesaran Shin test (IPS) [55] and Cross-sectionally augmented IPS (CIPS) tests were preferred.
- PFBARDL, Pedroni, and Kao tests were used to determine the evidence of cointegration.
- The long-term coefficients were determined by using Pedroni’s Full Modified Ordinary Least Square (FMOLS) and Ordinary Least-Squares (OLS) methods. These coefficients were compared to those obtained using the PFBARDL method.
- Finally, the direction of the causality was determined by using panel Fourier causality and the results of causality were compared to those obtained by using Dumitrescu–Hurlin causality tests.
5. Descriptive Statistics
5.1. The Results of Panel Unit Root Tests
5.2. Panel Cointegration Results
5.3. Long-Term Coefficients
5.4. Causality Results
- There was bidirectional causality between water and energy consumption in Panel fourier Granger causality method, and unidirectional causality form water to energy consumption in Dumitrescu–Hurlin panel causality test.
- Evidence of unidirectional causality existed from energy consumption to real GDP, as well as from terrorism to CO2 emissions and from terrorism to energy consumption.
- Evidence of unidirectional causality from terrorism to drinking water and from terrorism to economic growth was found.
6. Discussion and Policy Implications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steffen, W.; Sanderson, A.; Tyson, P.; Jäger, J.; Matson, P.; Moore, B., III; Oldfield, F.; Richardson, K.; Schellnhuber, H.J.; Turner, B.L.; et al. Global Change and the Earth System: A Planet Under Pressure; Springer: New York, NY, USA, 2004. [Google Scholar]
- IEA. Global Energy & CO2 Status Report 2019. Available online: https://www.iea.org/reports/global-energy-co2-status (accessed on 1 August 2019).
- Bildirici, M. Chaotic Dynamics on Air Quality and Human Health: Evidence from China, India, and Turkey. Nonlinear Dyn. Psychol. Life Sci. 2021, 25, 207–235. [Google Scholar]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef]
- Bildirici, M. Terrorism, environmental pollution, foreign direct investment (FDI), energy consumption, and economic growth: Evidences from China, India, Israel, and Turkey. Energy Environ. 2021, 32, 75–95. [Google Scholar] [CrossRef]
- Bildirici, M.; Gokmenoglu, S.M. The impact of terrorism and FDI on environmental pollution: Evidence from Afghanistan, Iraq, Nigeria, Pakistan, Philippines, Syria, Somalia, Thailand and Yemen. Environ. Impact Assess. Rev. 2020, 81, 106340. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Andersen, O. Ecotoxicology of Metals—Sources, in Handbook on the Toxicology of Metals; Academic Press: London, UK, 2001; pp. 251–280. [Google Scholar]
- Bednarska, A.J.; Stachowicz, I.; Kuriańska, L. Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients. Environ. Sci. Pollut. Res. 2013, 20, 390–398. [Google Scholar] [CrossRef]
- Giżejewska, A.; Spodniewska, A.; Barski, D. Concentration of lead, cadmium, and mercury in tissues of European beaver (Castor fiber) from the north-eastern Poland. J. Vet. Res. 2014, 58, 77–80. [Google Scholar] [CrossRef]
- Hussein, H. Russia is weaponizing water in its invasion of Ukraine. Nature 2022, 603, 739. [Google Scholar] [CrossRef] [PubMed]
- Veilleux, J.; Dinar, S. A global analysis of water-related terrorism, 1970–2016. Terror. Political Violence 2021, 33, 1191–1216. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and conflict: Fresh water resources and international security. Int. Secur. 1993, 18, 79–112. [Google Scholar] [CrossRef]
- Gleick, P.H. The World’s Water 2004–2005: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Gleick, P.H. The World’s Water 2006–2007: The Biennial Report on Freshwater Resources, 189; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Al Amin, M.A. Hydropower resources as target of terrorism: Case study of selected water bodies in Northern Nigeria. Int. J. Eng. Sci. 2013, 11, 52–61. [Google Scholar]
- Gleick, P.H. The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2000. [Google Scholar]
- Meinhardt, P.L. Water and bioterrorism: Preparing for the potential threat to US water supplies and public health. Annu. Rev. Public Health 2005, 26, 213–237. [Google Scholar] [CrossRef] [PubMed]
- Burrows, W.; Renner, S.E. Biological warfare agents as threats to potable water. Environ. Health Perspect. 1999, 12, 975–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zirschky, J.; Reed, S.C. The use of duckweed for wastewater treatment. J. Water Pollut. Control. Fed. 1988, 60, 1253–1258. [Google Scholar]
- Szabo, J.; Scott, M. Decontamination of chemical agents from drinking water infrastructure: A literature review and summary. Environ. Int. 2014, 72, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Zirschky, J. Environmental terrorism. J. Water Pollut. Control. Fed. 1998, 69, 1206–1210. [Google Scholar]
- Banerjee, P.; Arčabić, V.; Lee, H. Fourier ADL Cointegration Test to Approximate Smooth Breaks with New Evidence from Crude Oil Market. Econ. Model. 2017, 67, 114–124. [Google Scholar] [CrossRef]
- Foran, J.A.; Brosnan, T.M. Early warning systems for hazardous biological agents in potable water. Environ. Health Perspect. 2000, 10, 993–995. [Google Scholar] [CrossRef]
- Ping, T.S.T. Terrorism—A new perspective in the water management landscape. Int. J. Water Resour. Dev. 2010, 26, 51–63. [Google Scholar] [CrossRef]
- Francis, R.A. The impacts of modern warfare on freshwater ecosystems. Environ. Manag. 2011, 48, 985–999. [Google Scholar] [CrossRef]
- Maguire, T.; Haenlein, C. An Illusion of Complicity; Royal United Services Institute: London, UK, 2015. [Google Scholar]
- Dreher, A.; Kreibaum, M. Weapons of choice: The effect of natural resources on terror and insurgencies. J. Peace Res. 2016, 53, 539–553. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Liu, J. Some roots of terrorism. Popul. Environ. 2002, 24, 183–192. [Google Scholar] [CrossRef]
- Berrebi, C.; Ostwald, J. Earthquakes, hurricanes, and terrorism: Do natural disasters incite terror? Public Choice 2011, 149, 383–403. [Google Scholar] [CrossRef]
- Eagan, S.P. From spikes to bombs: The rise of eco-terrorism. Stud. Confl. Terror. 1996, 19, 1–18. [Google Scholar] [CrossRef]
- Liddick, D. Eco-Terrorism; Praeger: Westport, CN, USA, 2006. [Google Scholar]
- Chalecki, E.L. A new vigilance: Identifying and reducing the risks of environmental terrorism. Glob. Environ. Politics 2002, 2, 46–64. [Google Scholar] [CrossRef]
- Smith, P.J. Climate change, weak states and the “War on Terrorism” in South and Southeast Asia. Contemp. Southeast Asia 2007, 29, 264–285. [Google Scholar] [CrossRef]
- Nett, K.; Rüttinger, L. Climate Diplomacy Report; Adelphi: Berlin, Germany, 2015; Available online: https://climate-diplomacy.org/sites/default/files/2020-11/NewClimateForPeace_FullReport_small_0.pdf (accessed on 8 October 2021).
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER Working Paper Series; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Enders, W.; Sandler, T. Causality between transnational terrorism and tourism: The case of Spain. Stud. Confl. Terror. 1991, 14, 49–58. [Google Scholar] [CrossRef]
- Enders, W.; Parise, G.F.; Sandler, T. A time-series analysis of transnational terrorism: Trends and cycles. Def. Peace Econ. 1992, 3, 305–320. [Google Scholar] [CrossRef]
- Enders, W.; Sandler, T. Terrorism and foreign direct investment in Spain and Greece. Kyklos 1996, 49, 331–352. [Google Scholar] [CrossRef]
- Tavares, J. The open society assesses its enemies: Shocks, disasters and terrorist attacks. J. Monet. Econ. 2004, 51, 1039–1070. [Google Scholar] [CrossRef]
- Blomberg, S.B.; Hess, G.D.; Orphanides, A. The macroeconomic consequences of terrorism. J. Monet. Econ. 2004, 51, 1007–1032. [Google Scholar] [CrossRef]
- Mirza, D.; Verdier, T. International Trade, Security and Transnational Terrorism: Theory and Empirics; World Bank Publications: Washington, DC, USA, 2007; Volume 6174. [Google Scholar]
- Gaibulloev, K.; Sandler, T. The impact of terrorism and conflicts on growth in Asia. Econ. Politics 2009, 21, 359–383. [Google Scholar] [CrossRef]
- Gries, T.; Kraft, M.; Meierrieks, D. Linkages between financial deepening, trade openness, and economic development: Causality evidence from Sub-Saharan Africa. World Dev. 2009, 37, 1849–1860. [Google Scholar] [CrossRef]
- GTI. Global Terrorism Index, Review. 2022. Available online: https://reliefweb.int/report/world/global-terrorism-index-2022 (accessed on 10 October 2021).
- IEP. Global Terrorism Index: 2020. Sydney. Available online: http://visionofhumanity.org/resources (accessed on 10 October 2021).
- IEP. Global Terrorism Index 2022: Measuring the Impact of Terrorism, Sydney. Available online: https://www.visionofhumanity.org/wp-content/uploads/2022/03/GTI-2022-web-09062022.pdf (accessed on 8 October 2021).
- McNown, R.; Sam, C.Y.; Goh, S.K. Bootstrapping the Autoregressive Distributed Lag Test for Cointegration; Working Paper; Department of Economics, University of Colorado: Boulder, CO, USA, 2016. [Google Scholar]
- Solarin, S. Modelling the relationship between financing by Islamic banking system and environmental quality: Evidence from bootstrap autoregressive distributive lag with Fourier terms. Qual. Quant. 2019, 53, 2867–2884. [Google Scholar] [CrossRef]
- Wu, C.F.; Huang, S.-C.; Chiou, C.-C.; Chang., T.; Chen, Y.-C. The Relationship Between Economic Growth and Electricity Consumption: Bootstrap ARDL Test with a Fourier Function and Machine Learning Approach. Comput. Econ. 2021, 1–24. Available online: https://link.springer.com/article/10.1007/s10614-021-10097-7 (accessed on 10 October 2021). [CrossRef]
- Bildirici, M.; Kayıkçı, F. Renewable energy and current account balance nexus. Environ. Sci. Pollut. Res. 2022, 29, 48759–48768. [Google Scholar] [CrossRef]
- Bildirici, M. Refugees, governance, and sustainable environment: PQARDL method. Environ. Sci. Pollut. Res. 2022, 29, 39295–39309. [Google Scholar] [CrossRef]
- Bildirici, M.; Castanho, R.A.; Kayıkçı, F.; Genç, S.Y. ICT, Energy Intensity, and CO2 Emission Nexus. Energies 2022, 15, 4567. [Google Scholar] [CrossRef]
- McNown, R.; Sam, C.Y.; Goh, S.K. Bootstrapping the autoregressive distributed lag test for cointegration, Applied Economics, Taylor & Francis Journals. Appl. Taylor Fr. J. 2018, 50, 1509–1521. Available online: https://www.tandfonline.com/doi/citedby/10.1080/00036846.2017.1366643?scroll=top&needAccess=true (accessed on 10 October 2021).
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Abadie, A.; Gardeazabal, J. The economic costs of conflict: A case study of the Basque Country. Am. Econ. Rev. 2003, 93, 113–132. [Google Scholar] [CrossRef]
- Sandler, T.; Enders, W. Economic Consequences of Terrorism in Developing and Developing Countries: An Overview, Terrorism, Economic Development and Political Openness; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Shahzad, S.J.H.; Zakaria, M.; Rehman, M.U.; Ahmed, T.; Fida, B.A. Relationship between FDI, terrorism and economic growth in Pakistan: Pre and post 9/11 analysis. Soc. Indic. Res. 2016, 127, 179–194. [Google Scholar] [CrossRef]
- Peng, H.; Tan, X.; Li, Y.; Hu, L. Economic growth, foreign direct investment and CO2 emissions in China: A panel granger causality analysis. Sustainability 2016, 8, 233. [Google Scholar] [CrossRef]
- Shahbaza, M.; Shabbirb, M.S.; Malikc, M.N.; Wolters, M.E. An analysis of a causal relationship between economic growth and terrorism in Pakistan. Econ. Model. 2013, 35, 21–29. [Google Scholar] [CrossRef] [Green Version]
Countries | GTI Ranks | GTI Scores | EPI Ranks | EPI Scores |
---|---|---|---|---|
Afghanistan | 1 | 9.109 | 81 | 43.60 |
Iraq | 2 | 8.511 | 169 | 27.80 |
Somalia | 3 | 8.398 | - | - |
Burkina Faso | 4 | 8.270 | 127 | 35.50 |
Syrian Arab Republic | 5 | 8.250 | - | - |
Nigeria | 6 | 8.233 | 162 | 28.30 |
Mali | 7 | 8.152 | 159 | 28.50 |
Niger | 8 | 7.856 | 110 | 37.70 |
Pakistan | 9 | 7.825 | 176 | 24.60 |
Cameroon | 10 | 7.432 | 153 | 30.20 |
Mozambique | 11 | 7.432 | 144 | 31.70 |
Arab Republic of Egypt | 12 | 6.932 | 127 | 35.50 |
Descriptive Statistics | CO2 | C | Y | T | W |
---|---|---|---|---|---|
Mean | 1.395252 | 1.0075 | 4.665195 | 2.576063 | 1.838436 |
Std. Dev. | 0.293419 | 0.255401 | 0.594076 | 1.101034 | 0.137764 |
Skewness | 0.340281 | 0.423847 | 0.170735 | −0.710841 | −0.583402 |
Kurtosis | 2.092095 | 2.306816 | 1.745824 | 2.334072 | 2.297026 |
Jarque–Bera | 12.39176 | 7.275595 | 8.26200 | 18.72217 | 17.86020 |
Tests | CO | Y | t | W | C |
---|---|---|---|---|---|
Breusch–Pagan LM | 469.003 | 765.58 | 421.81 | 1143.39 | 297.51 |
Pesaran scaled LM | 38.89 | 66.70 | 33.92 | 102.72 | 22.53 |
Bias-corrected scaled LM | 38.86 | 66.69 | 33.915 | 102.71 | 22.52 |
Pesaran CD | 14.54 | 17.45 | 18.88 | 21.58 | 12.38 |
Level | IPS | CIPS | First Differences | IPS | CIPS | Decision |
---|---|---|---|---|---|---|
y | 1.714 | 1.05 | dy | −12.25 | −13.88 | I(1) |
t | 1.446 | 1.45 | dt | −10.89 | −12.85 | I(1) |
w | −0.76 | −0.76 | dfdi | −9.92 | −10.78 | I(1) |
co | −1.31 | −0.85 | dco | −15.8 | −16.96 | I(1) |
c | 1.982 | −1.56 | dc | −20.63 | −28.12 | I(1) |
DF_Rho Test | DF_t_Rho Test | DF_Rho_Star Test | DF_t_Rho_Star Test |
---|---|---|---|
−5.65 | −8.77 | −10.67 | −3.674 |
Panel Statistics (within) | Group Statistics (between) | ||
---|---|---|---|
Panel variance (v; Variance ratio) | 5.45 | ||
Panel ρ statistics (Panel Rho statistic) | −5.81 | Group ρ (Rho statistic) | −4.58 |
Panel PP statistic | −10.16 | Group PP statistic | −5.893 |
Panel ADF | −10.197 | Group PP (parametric) | −5.774 |
Dependent Variable/Independent Variable | F | F * | Findep | F *indep | t | T * | Cointegration Status | |
---|---|---|---|---|---|---|---|---|
(y/co, c, w, t) | 17.51 | 14.28 | 13.89 | 9.16 | -4.82 | -4.22 | Cointegration | Jarque–Bera: 2.84 Ramsey RESET: 0.25 ARCH method: 1.07 Q-statistics: 1.00 |
(c/co, y, w, t) | 9.15 | 8.64 | 3.14 | 4.44 | −3.94 | −3.22 | Degenerate 1 | |
(co/y, c, w, t) | 13.92 | 12.87 | 10.65 | 10.61 | −3.57 | −4.44 | Degenerate 2 | |
(t/y, c, co, w) | 3.78 | 3.96 | 2.16 | 1.43 | −3.01 | −2.12 | No-cointegration | |
(w/y, c, co, t) | 4.19 | 3.82 | 7.55 | 6.44 | −3.88 | −4.11 | Degenerate 2 |
Dependent Variable: y | ||||||
---|---|---|---|---|---|---|
Variables | OLS | FMOLS | PFBARDL | |||
Coefficient | t | Coefficient | t | Coefficient | t | |
lc | 0.332979 | 9.684104 | 0.072643 | 2.1143 | 0.374 | 2.125 |
lw | 0.138482 | 4.222339 | 0.387407 | 1.885 | 0.18602 | 10.32565 |
lco | 0.0169597 | 2.157204 | 0.001985 | 2.053101 | 0.0190947 | 2.492193 |
lt | −0.25593 | 1.75619 | −0.40125 | 2.344869 | −0.2818 | 3.435183 |
dc | 1.6798 | 3.169 | ||||
dw | −0.3589 | 2.13 | ||||
dco | 0.058314 | 2.55 | ||||
dt | −0.404114 | 1.85 | ||||
ecm | −0.153038 | 3.26 | ||||
Fourier 1 | 0.000992 | 2.0167 | ||||
Fourier 2 | −0.00018 | 2.0072 | ||||
R2 | 0.65 | 0.77 | 0.66 | |||
Adjusted R2 | 0.62 | 0.71 | 0.59 |
3.04817 0.1493 | 12.647 0.35275 | 2.275 0.305 | 0.6089 8.648 | 0.1176 2.3755 |
Causality Direction | ||||
c → co | y → co | t → co | co → w | c → y |
2.3585 1.5956 | 4.9548 8.6312 | 2.33685 0.1766 | 6.2843 1.784 | 0.1772 2.1728 |
Causality Direction | ||||
t → c | ↔ | t → y | w → y | t → w |
WhncN,T | ||||
8.2693 1.5844 | 9.0907 1.5039 | 8.65417 0.3215 | 0.634 6.546 | 0.246 8.123 |
Causality Direction | ||||
c → co | y → co | t → co | co → w | c → y |
WhncN,T | ||||
8.246 1.263 | 13.436 1.4759 | 10.1036 1.563 | 24.8806 2.0823 | 1.718 9.9845 |
Causality Direction | ||||
t → c | w → c | t → y | w → y | t → w |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bildirici, M.E.; Lousada, S.; Yılmaz Genç, S. Terrorism, Freshwater, and Environmental Pollution: Evidence of Afghanistan, Burkina Faso, Iraq, Arab Republic of Egypt, Cameroon, Mali, Mozambique, Niger, Nigeria, Somalia, Syrian Arab Republic, and Pakistan. Water 2022, 14, 2684. https://doi.org/10.3390/w14172684
Bildirici ME, Lousada S, Yılmaz Genç S. Terrorism, Freshwater, and Environmental Pollution: Evidence of Afghanistan, Burkina Faso, Iraq, Arab Republic of Egypt, Cameroon, Mali, Mozambique, Niger, Nigeria, Somalia, Syrian Arab Republic, and Pakistan. Water. 2022; 14(17):2684. https://doi.org/10.3390/w14172684
Chicago/Turabian StyleBildirici, Melike E., Sérgio Lousada, and Sema Yılmaz Genç. 2022. "Terrorism, Freshwater, and Environmental Pollution: Evidence of Afghanistan, Burkina Faso, Iraq, Arab Republic of Egypt, Cameroon, Mali, Mozambique, Niger, Nigeria, Somalia, Syrian Arab Republic, and Pakistan" Water 14, no. 17: 2684. https://doi.org/10.3390/w14172684
APA StyleBildirici, M. E., Lousada, S., & Yılmaz Genç, S. (2022). Terrorism, Freshwater, and Environmental Pollution: Evidence of Afghanistan, Burkina Faso, Iraq, Arab Republic of Egypt, Cameroon, Mali, Mozambique, Niger, Nigeria, Somalia, Syrian Arab Republic, and Pakistan. Water, 14(17), 2684. https://doi.org/10.3390/w14172684