Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Water Body Extraction Method
2.3.2. Water Body Area Calculation
2.3.3. Rate of Change in the Lake Area
2.3.4. Trend Analysis Methods
2.3.5. Verification of Accuracy
3. Results
3.1. Verification Results
3.2. Spatial and Temporal Change of Typical Lakes in Sichuan Province
3.2.1. The Temporal and Spatial Change in the Lake Area
3.2.2. Characteristics of Drought and Wet Season Area Changes
3.2.3. Variable Characteristics of Different Lake Types
3.3. Impact of Climate on Lake Area Changes
3.4. Impact of Human Activities on Changes in the Lake Area
4. Discussion
4.1. Driving Forces for Changes in Lake Dynamics
4.2. Ecological Impacts
4.3. Uncertainties and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, X.K.; Lu, X.X. Drastic change in China’s lakes and reservoirs over the past decades. Sci. Rep. 2014, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopacek, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet. Change 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Li, G.; Liang, J.; Yu, D.; Aishan, T.; Zhang, F.; Yang, J.; Abuldmiti, A.; Liu, J. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena 2019, 177, 189–201. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Duan, S.Q. Lakes as sentinels of climate change on the Tibetan Plateau. All Earth 2021, 33, 161–165. [Google Scholar] [CrossRef]
- Yang, Z.C.; Dai, X.A.; Wang, Z.K.; Gao, X.J.; Qu, G.; Li, W.L.; Li, J.Z.; Lu, H.; Wang, Y.L. The dynamics of Paiku Co lake area in response to climate change. J. Water Clim. Change 2022, 13, 2725–2746. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Piao, S.; Bolch, T.; Xie, H.; Chen, D.; Gao, Y.; O’Reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Hanson, Z.J.; Zwart, J.A.; Jones, S.E.; Hamlet, A.F.; Bolster, D. Projected changes of regional lake hydrologic characteristics in response to 21st century climate change. Inland Waters 2021, 11, 335–350. [Google Scholar] [CrossRef]
- Li, W.L.; Zhao, B.; Xu, Q.; Scaringi, G.; Lu, H.Y.; Huang, R.Q. More frequent glacier-rock avalanches in Sedongpu gully are blocking the Yarlung Zangbo River in eastern Tibet. Landslides 2022, 19, 589–601. [Google Scholar] [CrossRef]
- Zhu, C.; Li, J.; Zhang, X.; Luo, J. BostenWater Resource Dynamic Detection and Feature Analysis in Recent 40 Years by Remote Sensing. J. Nat. Resour. 2015, 30, 106–114. [Google Scholar]
- Liu, W.; Xie, C.; Zhao, L.; Li, R.; Liu, G.; Wang, W.; Liu, H.; Wu, T.; Yang, G.; Zhang, Y.; et al. Rapid expansion of lakes in the endorheic basin on the Qinghai-Tibet Plateau since 2000 and its potential drivers. Catena 2021, 197, 104942. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Y.; Du, M.; Wang, S.; He, C.; Luo, T.; Wu, J.; Zhang, J.; Yang, K. The Long-Time Variation of Lake in Typical Desert Area and Its Human and Climate Change Causes: A Case Study of the Hongjian Nur. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 416–425. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Li, C.A.; He, Q.; Wang, S.; Wang, L. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978–2018. J. Hydrol. 2020, 587, 124954. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Liu, Z.; Li, L. Monitoring and driving force analysis of spatial and temporal change of water area of Hongjiannao Lake from 1973 to 2019. Ecol. Inform. 2021, 61, 101230. [Google Scholar] [CrossRef]
- Mi, J.; Zhang, M.; Zhu, Z.C.; Vuik, V.; Wen, J.H.; Gao, H.K.; Bouma, T.J. Morphological wave attenuation of the nature-based flood defense: A case study from Chongming Dongtan Shoal, China. Sci. Total Environ. 2022, 831, 154813. [Google Scholar] [CrossRef]
- Zhang, M.; Dai, Z.; Bouma, T.J.; Bricker, J.; Townend, I.; Wen, J.; Zhao, T.; Cai, H. Tidal-flat reclamation aggravates potential risk from storm impacts. Coast. Eng. 2021, 166, 103868. [Google Scholar] [CrossRef]
- Khazaei, B.; Khatami, S.; Alemohammad, S.H.; Rashidi, L.; Wu, C.S.; Madani, K.; Kalantari, Z.; Destouni, G.; Aghakouchak, A. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 2019, 569, 203–217. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Z.; Jia, Q.; Mamat, A.; Guan, H. Multi-Source Remote Sensing Data for Lake Change Detection in Xinjiang, China. Atmosphere 2022, 13, 713. [Google Scholar] [CrossRef]
- Xiao, Q.; Yang, K.; Hong, L. Remote sensing monitoring and temporal-spatial analysis of surface water body area changes of lakes on the Yunnan-Guizhou Plateau over the past 30 years. J. Lake Sci. 2018, 30, 1083–1096. [Google Scholar]
- Fraker, M.E.; Sinclair, J.S.; Frank, K.T.; Hood, J.M.; Ludsin, S.A. Temporal scope influences ecosystem driver-response relationships: A case study of Lake Erie with implications for ecosystem-based management. Sci. Total Environ. 2022, 813, 152473. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Nover, D.; Sahu, N.; Chen, Y. An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990–2019 and exploratory factor analyses. J. Hydrol. 2021, 593, 125905. [Google Scholar] [CrossRef]
- Fuentealba, M.; Bahamondez, C.; Sarricolea, P.; Meseguer-Ruiz, O.; Latorre, C. The 2010–2020 ‘megadrought’ drives reduction in lake surface area in the Andes of central Chile (32 degrees–36 degrees S). J. Hydrol.-Reg. Stud. 2021, 38, 100952. [Google Scholar] [CrossRef]
- Ji, M.; Tang, J.; Gao, X.; Yang, Y.; Wu, Z. Analysis of Spatiotemporal Changes and Driving Factors of Poyang Lake Area Based on Google Earth Engine. J. China Hydrol. 2021, 41, 40–47. [Google Scholar]
- Liao, W.; Chen, Y.; Zhao, X.; Wen, X. Analysis of lake and lake shoreline evolution in Hubei province in recent 30 years based on Google Earth Engine. Hubei Agric. Sci. 2021, 60, 46–54, 59. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, T.; Zeng, P.; Zhang, X.; Che, Y. Surface water change characteristics of Taihu Lake from 1984–2018 based on Google Earth Engine. Chin. J. Appl. Ecol. 2020, 31, 3163–3172. [Google Scholar] [CrossRef]
- Lu, T.; Shao, C.; Ren, X.; Ma, H.; Wang, L. Spatio-temporal Changes of Water Area in Songtao Reservoir from 1990 to 2019 Based on Google Earth Engine. Sci. Technol. Eng. 2021, 21, 11472–11479. [Google Scholar]
- Weekley, D.; Li, X. Tracking Multidecadal Lake Water Dynamics with Landsat Imagery and Topography/Bathymetry. Water Resour. Res. 2019, 55, 8350–8367. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Wei, X.; Hu, Y.; Li, Y.; Meng, L. Long-term spatiotemporal changes of surface water and its influencing factors in the mainstream of Han River, China. J. Hydrol.-Reg. Stud. 2022, 40, 101009. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Cheng, W.; Qian, X.; Li, S.; Ma, H.; Liu, D.; Liu, F.; Liang, J.; Hu, J. Research and application of PIE-Engine Studio for spatiotemporal remote sensing cloud computing platform. Natl. Remote Sens. Bull. 2022, 26, 335–347. [Google Scholar]
- Sichuan Provincial Water Resources Department. Available online: http://slt.sc.gov.cn/scsslt/ (accessed on 22 July 2022).
- PIE-Engine Remote Sensing and Geographic Information Cloud Service Platform. Available online: https://engine.piesat.cn/dataset-list/ (accessed on 15 July 2022).
- Global Surface Water Explorer. Available online: http://global-surface-water.appspot.com/ (accessed on 24 July 2022).
- Dai, X.A.; Yang, X.P.; Wang, M.L.; Gao, Y.; Liu, S.H.; Zhang, J.M. The Dynamic Change of Bosten Lake Area in Response to Climate in the Past 30 Years. Water 2020, 12, 4. [Google Scholar] [CrossRef]
- Yan, H.; Li, Q.; Sun, C.; Yuan, Y.; Li, D. Criterion for Determining the Onset and End of the Rainy Season in Southwest China. Chin. J. Atmos. Sci. 2013, 37, 1111–1128. [Google Scholar]
- Jiazila, B.; Li, W.; Sun, C.; Zuo, J.; Zhang, R.; Liu, J. Characteristics of Wet and Dry Seasons in Southwest China During 1961–2014. Progress. Inquisitiones Mutat. Clim. 2017, 13, 103–116. [Google Scholar]
- Nie, X.; Liu, R.; Du, S. A Kind of Water Extraction Model Based on Empirical Normalized Difference Water Index. Beijing Surv. Mapp. 2017, 5, 41–45. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 5, 589–595. [Google Scholar]
- Pci, Y.A.N.; Youjing, Z.; Yuan, Z. A Study on Information Extraction of Water Enhanced Water Index (EWI) and GIS System in Semi-arid Regions with the Based Noise Remove Techniques. Remote Sens. Inf. 2007, 6, 62–67. [Google Scholar]
- Zhang, Q.; Wu, B.; Yang, Y. Extraction of Open Water in Rugged Area with A Novel Slope Adjusted Water Index. Remote Sens. Inf. 2018, 33, 98–107. [Google Scholar]
- Cao, R.; Li, C.; Liu, L.; Wang, J.; Yan, G. Extracting Miyun reservoir’s water area and monitoring its change based on a revised normalized different water index. Sci. Surv. Mapp. 2008, 2, 158–160. [Google Scholar]
- Feng, D. Study on information extraction of water body with a new water index (NWI). Sci. Surv. Mapp. 2009, 34, 155–157. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Dai, X.A.; Fan, W.J.; Shan, Y.F.; Gao, Y.; Liu, C.; Nie, R.H.; Zhang, D.H.; Li, W.L.; Zhang, L.F.; Sun, X.J.; et al. LAI-Based Phenological Changes and Climate Sensitivity Analysis in the Three-River Headwaters Region. Remote Sens. 2022, 14, 3748. [Google Scholar] [CrossRef]
- Hazarika, J.; Goswami, K. Non-parametric Methods in the Analysis of Hydroclimatic Variables. Thail. Statist. 2021, 19, 420–436. [Google Scholar]
- Zhang, Z.; Chang, J.; Xu, C.-Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Study on the Characteristics of Lake Morphological Change and Sustainable Tourism Development of Horse Lake in Leibo County. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2018. [Google Scholar]
- Deng, C. Study on the Change of Habitat Quality of Qionghai Wetland under the Influence of Human Activities. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2019. [Google Scholar]
- Li, Y.; Xu, H.; Liu, D. Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006. Acta Meteorol. Sin. 2009, 67, 122–132. [Google Scholar] [CrossRef]
- Zhou, Q.; Kang, L.; Jiang, X.; Liu, Y. Relationship Between Heavy Rainfall and Altitude in Mountainous Areas of Sichuan Basin. Meteorol. Mon. 2019, 45, 811–819. [Google Scholar]
- Zheng, H.Y.; Jin, W.C.; Lee, K.S.; Oh, S.N. A Study on Air Temperature-reducing Effects by Irrigation Reservoir. J. Korea Soc. Environ. Restor. Technol. 2010, 13, 32–39. [Google Scholar]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Dai, X.A.; Chen, S.Q. Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China. J. Arid Land 2020, 12, 865–886. [Google Scholar] [CrossRef]
- Chen, Y. Study on Lakeside Land Problems and Its Influencing Factors in Sancha Lake, City of Jianyang. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2016. [Google Scholar]
- Yang, R. Research on Countermeasure of Eco-environmental protection and Pollution Prevention of Shengzhong Reservoir. Sichuan Environ. 2010, 29, 34–42. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Liang, C.; Wei, X.; Yao, Y. Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China. Agric. Ecosyst. Environ. 2022, 323, 107677. [Google Scholar] [CrossRef]
- Qiao, C.; Sun, J. Remote Sensing Monitoring of Water Body Area Changes in Lugu Lake in Recent 45 Years. J. Anhui Agric. Sci. 2020, 48, 95–99. [Google Scholar]
- Wang, H.; Kong, X.; Luo, J.; Li, P.; Xie, T.; Yi, X.; Wang, F.; Xiao, J. A Novel Approach for Monitoring the Ecoenvironment of Alpine Wetlands using Big Geospatial Data and Cloud Computing. Adv. Meteorol. 2022, 2022, 7451173. [Google Scholar] [CrossRef]
- Elias, E.; Seifu, W.; Tesfaye, B.; Girmay, W. Impact of land use/cover changes on lake ecosystem of Ethiopia central rift valley. Cogent Food Agric. 2019, 5, 1595876. [Google Scholar] [CrossRef]
- Yao, Y.Z.; Tian, H.Q.; Kalin, L.; Pan, S.F.; Friedrichs, M.A.M.; Wang, J.; Li, Y. Contrasting stream water temperature responses to global change in the Mid-Atlantic Region of the United States: A process-based modeling study. J. Hydrol. 2021, 601, 126633. [Google Scholar] [CrossRef]
- Sun, R.; Yao, P.; Wang, W.; Yue, B.; Liu, G. Assessment of Wetland Ecosystem Health in the Yangtze and Amazon River Basins. Isprs Int. J. Geo-Inf. 2017, 6, 81. [Google Scholar] [CrossRef]
- Duan, Z.; Gao, H.; Tang, R.; Song, B. Analysis and Protection Countermeasures of Wetland Resources in Sichuan Province. J. Anhui Agric. Sci. 2015, 43, 129–131. [Google Scholar] [CrossRef]
- Zelelew, S.A.; Abebe, W.B.; Amsalu, T. Land-use cover change impact on Cranes nesting space in the Lake Tana Biosphere Reserve area, Blue Nile Basin. Wetl. Ecol. Manag. 2021, 29, 495–505. [Google Scholar] [CrossRef]
- Ran, J.; Xiang, R.; Li, J.; Xiao, K.; Zheng, B. Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan-Guizhou Plateau, China. Water 2022, 14, 2451. [Google Scholar] [CrossRef]
- Zheng, L.; An, Z.; Chen, X.; Liu, H. Changes in Water Environment in Erhai Lake and Its Influencing Factors. Water 2021, 13, 1362. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, J.; Huang, C. Research on Protective Development of Tourism Resource of Qionghai Lake Wetland. J. Anhui Agric. Sci. 2014, 42, 12160–12161, 12295. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, D.; Wen, X.; Chen, B.; Shen, D. Investigation of dynamic lake changes in Zhuonai Lake-Salt Lake Basin, Hoh Xil, using remote sensing images in response to climate change (1989–2018). J. Water Clim. Change 2021, 12, 2199–2216. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
Dataset | Time Range | Satellites and Sensors | Resolution |
---|---|---|---|
Landsat 5 Collection 2 Top of Atmosphere | 2000–2011 | TM | 30 m |
Landsat 7 Top of Atmosphere | 2000–2021 | ETM+ | 30 m |
Landsat 8 Top of Atmosphere | 2013–2021 | OLI, TIRS | 30 m |
JRC Global Surface Water Mapping Layers, v1.4 | 2020 | 30 m | |
TPDC/China 1 km Precipitation (Monthly) | 2001–2019 | 1 km | |
TPDC/China 1 km Avg Temperature (Monthly) | 2001–2019 | 1 km | |
Annual China Land Cover Dataset | 2000–2019 | 30 m |
Satellite | Green/μm | NIR/μm | MIR/μm |
---|---|---|---|
Landsat-5 | 0.52–0.60 | 0.76–0.90 | 1.55–1.75 |
Landsat-7 | 0.52–0.60 | 0.76–0.90 | 1.55–1.75 |
Landsat-8 | 0.53–0.60 | 0.85–0.89 | 1.56–1.67 |
Lugu Lake | Qionghai Lake | Ma Lake | Three Forks Lake | Luban Reservoir | Shengzhong Reservoir | |
---|---|---|---|---|---|---|
Overall Accuracy | 96.00% | 97.00% | 98.00% | 89.00% | 90.00% | 93.47% |
Kappa Coefficient | 0.92 | 0.94 | 0.96 | 0.78 | 0.8 | 0.87 |
Lakes | Year | ENDWI | AWEIsh/MNDWI/Supervised Classification 1 | Difference of Areas 2 |
---|---|---|---|---|
Lugu Lake | 2000 | 52.72 | 49.33 | 3.39 |
2005 | 50.72 | 49.51 | 1.21 | |
2010 | 50.28 | 49.40 | 0.88 | |
2015 | 49.56 | 49.50 | 0.06 | |
Ma Lake | 2005 | 6.60 | 6.98 | −0.38 |
2011 | 6.56 | 6.97 | −0.41 | |
2017 | 6.77 | 6.86 | −0.09 | |
Qionghai Lake | 2004 | 26.06 | 27.29 | −1.23 |
2010 | 25.74 | 27.36 | −1.62 | |
2013 | 26.24 | 26.85 | −0.61 | |
2017 | 25.90 | 27.23 | −1.33 |
Lakes | Time | Test | Trend | ||
---|---|---|---|---|---|
Sen’s Slope 1 | p 2 | Z 3 | |||
LGL | Drought | −0.042 | 0.037 | −2.084 | Decreasing significantly |
Wet | −0.060 | 0.005 | −2.808 | Decreasing significantly | |
Annual | −0.068 | 0.0003 | −3.654 | Decreasing significantly | |
QHL | Drought | −0.007 | 0.487 | −0.695 | Decreasing |
Wet | −5.00 × 10−4 | 0.976 | −0.030 | Decreasing | |
Annual | −0.007 | 0.607 | −0.514 | Decreasing | |
ML | Drought | 0.00045455 | 0.832 | 0.212 | Increasing |
Wet | 0.002 | 0.717 | 0.363 | Increasing | |
Annual | 0.001 | 0.739 | 0.333 | Increasing | |
TFL | Drought | −0.040 | 0.381 | −0.876 | Decreasing |
Wet | 0.042 | 0.566 | 0.574 | Increasing | |
Annual | 0.010 | 0.880 | 0.151 | Increasing | |
LBR | Drought | 0.011 | 0.566 | 0.574 | Increasing |
Wet | −0.013 | 0.740 | −0.332 | Decreasing | |
Annual | −0.009 | 0.740 | −0.332 | Decreasing | |
SZR | Drought | 0.563 | 0.010 | 2.567 | Increasing significantly |
Wet | 0.653 | 0.020 | 2.325 | Increasing significantly | |
Annual | 0.668 | 0.007 | 2.688 | Increasing significantly |
Name | Longitude | Latitude | Elevation | Lake Areas (km²) | Changes | |
---|---|---|---|---|---|---|
(E) | (N) | (m) | 2000 | 2020 | (%) | |
Lugu Lake (LGL) | 100.78 | 27.71 | 2659 | 52.72 | 49.83 | −5.482 |
Qionghai Lake (QHL) | 102.31 | 27.82 | 1475 | 26.53 | 26.51 | −0.075 |
Ma Lake (ML) | 103.78 | 28.41 | 1079 | 6.75 | 6.85 | 1.481 |
Three Forks Lake (TFL) | 104.28 | 30.28 | 420 | 19.78 | 21.02 | 6.269 |
Luban Reservoir (LBR) | 105.01 | 30.91 | 424 | 12.41 | 11.85 | −4.512 |
Shengzhong Reservoir (SZR) | 105.65 | 31.54 | 385 | 35.04 | 42.71 | 21.889 |
Lake | Time | Precipitation | Trend | Temperature | Trend | ||||
---|---|---|---|---|---|---|---|---|---|
Slope | Z | p | Slope | Z | p | ||||
Lugu Lake | Drought | −0.80 | −1.72 | 0.09 | Decreasing | −0.01 | −0.62 | 0.54 | Decreasing |
Wet | −0.15 | −0.62 | 0.54 | Decreasing | 0.02 | 1.91 | 0.06 | Increasing | |
Qionghai Lake | Drought | −0.58 | −1.91 | 0.06 | Decreasing | −0.01 | −0.49 | 0.63 | Decreasing |
Wet | 1.26 | 1.78 | 0.07 | Increasing | 0.03 | 1.98 | 0.05 | Increasing significantly | |
Ma Lake | Drought | −0.38 | −0.75 | 0.46 | Decreasing | −0.01 | −0.23 | 0.82 | Decreasing |
Wet | 1.75 | 1.98 | 0.05 | Increasing significantly | 0.02 | 1.20 | 0.23 | Increasing | |
Three Forks Lake | Drought | −0.39 | −0.75 | 0.46 | Decreasing | −0.01 | −1.07 | 0.28 | Decreasing |
Wet | 2.37 | 2.89 | 0.00 | Increasing significantly | 0.02 | 1.85 | 0.06 | Increasing | |
Luban Reservoir | Drought | −0.42 | −1.07 | 0.28 | Decreasing | −0.01 | −1.07 | 0.28 | Decreasing |
Wet | 2.26 | 3.15 | 0.00 | Increasing significantly | 0.01 | 0.62 | 0.54 | Increasing | |
Shengzhong Reservoir | Drought | −0.25 | −0.94 | 0.35 | Decreasing | −0.03 | −1.72 | 0.09 | Decreasing |
Wet | 1.43 | 2.30 | 0.02 | Increasing significantly | −0.01 | −0.49 | 0.63 | Decreasing |
Lakes | Time | Precipitation | Temperature | ||||
---|---|---|---|---|---|---|---|
R | p | Sig | R | p | Sig | ||
Lugu Lake | wet | 0.31 | 0.18 | −0.53 | 0.02 | *(1) | |
drought | 0.23 | 0.34 | 0.27 | 0.24 | |||
Qionghai Lake | wet | 0.11 | 0.65 | 0.15 | 0.52 | ||
drought | 0.15 | 0.53 | −0.39 | 0.09 | |||
Ma Lake | wet | 0.55 | 0.01 | * | −0.07 | 0.78 | |
drought | 0.29 | 0.22 | 0.09 | 0.71 | |||
Three Forks Lake | wet | 0.32 | 0.17 | −0.34 | 0.15 | ||
drought | −0.07 | 0.77 | −0.04 | 0.86 | |||
Luban Reservoir | wet | 0.29 | 0.21 | −0.32 | 0.17 | ||
drought | 0.15 | 0.53 | −0.12 | 0.63 | |||
Shengzhong Reservoir | wet | 0.42 | 0.07 | 0.01 | 0.96 | ||
drought | −0.20 | 0.39 | −0.24 | 0.31 |
Lake | 2000 (km²) | 2020 (km²) | Proportion of Total Area in 2000 | Proportion of Total Area in 2020 |
---|---|---|---|---|
Lugu Lake | 52.72 | 49.83 | 34.4% | 31.4% |
Qionghai Lake | 26.53 | 26.51 | 17.3% | 16.7% |
Ma Lake | 6.75 | 6.85 | 4.4% | 4.3% |
Three Forks Lake | 19.78 | 21.02 | 12.9% | 13.2% |
Luban Reservoir | 12.41 | 11.85 | 8.1% | 7.5% |
Shengzhong Reservoir | 35.04 | 42.71 | 22.9% | 26.9% |
Total | 153.23 | 158.77 | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Dai, X.; Wang, M.; Lan, Y.; Qu, G.; Shan, Y.; Ren, J.; Li, W.; Liang, S.; Wang, Y.; et al. Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China. Water 2022, 14, 2816. https://doi.org/10.3390/w14182816
Liu W, Dai X, Wang M, Lan Y, Qu G, Shan Y, Ren J, Li W, Liang S, Wang Y, et al. Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China. Water. 2022; 14(18):2816. https://doi.org/10.3390/w14182816
Chicago/Turabian StyleLiu, Wenxin, Xiaoai Dai, Meilian Wang, Yan Lan, Ge Qu, Yunfeng Shan, Jiashun Ren, Weile Li, Shuneng Liang, Youlin Wang, and et al. 2022. "Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China" Water 14, no. 18: 2816. https://doi.org/10.3390/w14182816
APA StyleLiu, W., Dai, X., Wang, M., Lan, Y., Qu, G., Shan, Y., Ren, J., Li, W., Liang, S., Wang, Y., & Liu, D. (2022). Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China. Water, 14(18), 2816. https://doi.org/10.3390/w14182816