The Role of Turbulent Coherent Structures on Microalgal Mixing for Nutrient Removal in Jet and Paddlewheel Raceway Ponds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Culture, Anaerobic Digestate of Piggery Effluent (ADPE), and Growth Media
2.2. Experimental Setup and Cultivation Conditions
2.3. Data and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moheimani, N.R.; Webb, J.P.; Borowitzka, M.A. Bioremediation and Other Potential Applications of Coccolithophorid Algae: A Review. Algal Res. 2012, 1, 120–133. [Google Scholar] [CrossRef]
- Ishika, T.; Bahri, P.A.; Laird, D.W.; Moheimani, N.R. The Effect of Gradual Increase in Salinity on the Biomass Productivity and Biochemical Composition of Several Marine, Halotolerant, and Halophilic Microalgae. J. Appl. Phycol. 2018, 30, 1453–1464. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Vadiveloo, A.; Bahri, P.A.; Parlevliet, D.; Moheimani, N.R. Treating Anaerobically Digested Piggery Effluent (ADPE) Using Microalgae in Thin Layer Reactor and Raceway Pond. J. Appl. Phycol. 2019, 31, 2311–2319. [Google Scholar] [CrossRef]
- Moheimani, N.R.; Isdepsky, A.; Lisec, J.; Raes, E.; Borowitzka, M.A. Coccolithophorid Algae Culture in Closed Photobioreactors. Biotechnol. Bioeng. 2011, 108, 2078–2087. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Ayre, J.M.; Moheimani, N.R.; Ubi, B.E.; Ogbonna, J.C. Growth Comparison of Microalgae in Tubular Photobioreactor and Open Pond for Treating Anaerobic Digestion Piggery Effluent. Algal Res. 2016, 17, 268–276. [Google Scholar] [CrossRef]
- Salim, S.; Pattiaratchi, C.; Tinoco, R.; Coco, G.; Hetzel, Y.; Wijeratne, S.; Jayaratne, R. The Influence of Turbulent Bursting on Sediment Resuspension under Unidirectional Currents. Earth Surf. Dyn. 2017, 5, 399–415. [Google Scholar] [CrossRef]
- Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows; Technical Bulletins No. 1026, September 1950; United States Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1950. [Google Scholar]
- Velikanov, M.A. Dynamics of Alluvial Streams; State Publishing House for Theoretical and Technical Literature: Moscow, Russia, 1955; Volume 2. [Google Scholar]
- Yalin, M.S. An Expression for Bed-Load Transportation. J. Hydraul. Div. 1963, 89, 221–250. [Google Scholar] [CrossRef]
- Ling, C.-H. Criteria for Incipient Motion of Spherical Sediment Particles. J. Hydraul. Eng. 1995, 121, 472–478. [Google Scholar] [CrossRef]
- Bagnold, R.A. The flow of cohesionless grains in fluids. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1956, 249, 235–297. Available online: https://royalsocietypublishing.org/doi/10.1098/rsta.1956.0020 (accessed on 30 July 2022).
- Kline, S.J.; Reynolds, W.C.; Schraub, F.A.; Runstadler, P.W. The Structure of Turbulent Boundary Layers. J. Fluid Mech. 1967, 30, 741–773. [Google Scholar] [CrossRef]
- Robinson, S.K. Coherent Motions in the Turbulent Boundary Layer. Annu. Rev. Fluid Mech. 1991, 23, 601–639. [Google Scholar] [CrossRef]
- Cao, Z.; Xi, H.; Zhang, X. Turbulent Bursting-Based Diffusion Model for Suspended Sediment in Open Channel Flows. J. Hydraul. Res. 1996, 34, 457–472. [Google Scholar] [CrossRef]
- Grass, A.J. Transport of Fine Sand on a Flat Bed: Turbulence and Suspension Mechanics. In Transport, Erosion and Deposition of Sediment in Turbulent Streams; Institute of Hydrodynamic and Hydraulic Engineering, Technical University of Denmark: Lyngby, Denmark, 1974; Volume 48, pp. 33–34. [Google Scholar]
- Falco, R.E. A Coherent Structure Model of the Turbulent Boundary Layer and Its Ability to Predict Reynolds Number Dependence. Philos. Trans. R. Soc. Lond. Ser. Phys. Eng. Sci. 1991, 336, 103–129. [Google Scholar] [CrossRef]
- Kaftori, D.; Hetsroni, G.; Banerjee, S. Particle Behavior in the Turbulent Boundary Layer. I. Motion, Deposition, and Entrainment. Phys. Fluids 1995, 7, 1095–1106. [Google Scholar] [CrossRef]
- Nelson, J.M.; Shreve, R.L.; McLean, S.R.; Drake, T.G. Role of Near-Bed Turbulence Structure in Bed Load Transport and Bed Form Mechanics. Water Resour. Res. 1995, 31, 2071–2086. [Google Scholar] [CrossRef]
- Ninto, Y.; Garcia, M.H. Experiments on Particle—Turbulence Interactions in the near–Wall Region of an Open Channel Flow: Implications for Sediment Transport. J. Fluid Mech. 1996, 326, 285–319. [Google Scholar] [CrossRef]
- Cellino, M.; Lemmin, U. Influence of Coherent Flow Structures on the Dynamics of Suspended Sediment Transport in Open-Channel Flow. J. Hydraul. Eng. 2004, 130, 1077–1088. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, Y.; Zhang, Y.; Xu, H.; Li, F. Experimental Study of the Quantitative Impact of Flow Turbulence on Algal Growth. Water 2021, 13, 659. [Google Scholar] [CrossRef]
- Eltanahy, E.; Salim, S.; Vadiveloo, A.; Verduin, J.J.; Pais, B.; Moheimani, N.R. Comparison between Jet and Paddlewheel Mixing for the Cultivation of Microalgae in Anaerobic Digestate of Piggery Effluent (ADPE). Algal Res. 2018, 35, 274–282. [Google Scholar] [CrossRef]
- Ali, H.; Cheema, T.; Park, C. Determination of the Structural Characteristics of Microalgal Cells Walls under the Influence of Turbulent Mixing Energy in Open Raceway Ponds. Energies 2018, 11, 388. [Google Scholar] [CrossRef]
- Ayre, J.M.; Moheimani, N.R.; Borowitzka, M.A. Growth of Microalgae on Undiluted Anaerobic Digestate of Piggery Effluent with High Ammonium Concentrations. Algal Res. 2017, 24, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Indrayani, I. Isolation and Characterization of Microalgae with Commercial Potential. Ph.D. Thesis, Murdoch University, Murdoch, Australia, 2017. [Google Scholar]
- Parsheh, M.; Smith, J.; Strutner, S.; Radaelli, G. Systems, Methods, and Media for Circulating Fluid in an Algae Cultivation Pond. US876 9867B2.
- Raes, E.J.; Isdepsky, A.; Muylaert, K.; Borowitzka, M.A.; Moheimani, N.R. Comparison of Growth of Tetraselmis in a Tubular Photobioreactor (Biocoil) and a Raceway Pond. J. Appl. Phycol. 2014, 26, 247–255. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Levin, V.; Hunt, J.C.R.; Phillips, O.M.; Williams, D. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1991, 434, 9–13. [Google Scholar] [CrossRef]
- Thomson, R.E.; Emery, W.J. Chapter 2-Data Processing and Presentation. In Data Analysis Methods in Physical Oceanography, 3rd ed.; Thomson, R.E., Emery, W.J., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 187–218. ISBN 978-0-12-387782-6. [Google Scholar]
- French, J.R.; Clifford, N.J. Characteristics and ‘Event-Structure’ of near-Bed Turbulence in a Macrotidal Saltmarsh Channel. Estuar. Coast. Shelf Sci. 1992, 34, 49–69. [Google Scholar] [CrossRef]
- Kularatne, S.; Pattiaratchi, C. Turbulent Kinetic Energy and Sediment Resuspension Due to Wave Groups. Cont. Shelf Res. 2008, 28, 726–736. [Google Scholar] [CrossRef]
- Biron, P.M.; Robson, C.; Lapointe, M.F.; Gaskin, S.J. Comparing Different Methods of Bed Shear Stress Estimates in Simple and Complex Flow Fields. Earth Surf. Process. Landf. 2004, 29, 1403–1415. [Google Scholar] [CrossRef]
- Kim, S.-C.; Friedrichs, C.T.; Maa, J.P.-Y.; Wright, L.D. Estimating Bottom Stress in Tidal Boundary Layer from Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2000, 126, 399–406. [Google Scholar] [CrossRef]
- Pope, N.D.; Widdows, J.; Brinsley, M.D. Estimation of Bed Shear Stress Using the Turbulent Kinetic Energy Approach—A Comparison of Annular Flume and Field Data. Cont. Shelf Res. 2006, 26, 959–970. [Google Scholar] [CrossRef]
- Lu, S.S.; Willmarth, W.W. Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer. J. Fluid Mech. 1973, 60, 481. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Fu, X.; Wang, G. Quantification of the Bed Load Effects on Turbulent Open-Channel Flows. J. Geophys. Res. Earth Surf. 2016, 121, 767–789. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Sumer, B.M.; Oguz, B. Particle Motions near the Bottom in Turbulent Flow in an Open Channel. J. Fluid Mech. 1978, 86, 109–127. [Google Scholar] [CrossRef]
- Sumer, B.M.; Deigaard, R. Particle Motions near the Bottom in Turbulent Flow in an Open Channel. Part 2. J. Fluid Mech. 1981, 109, 311–337. [Google Scholar] [CrossRef]
- Heathershaw, A.D.; Thorne, P.D. Sea-Bed Noises Reveal Role of Turbulent Bursting Phenomenon in Sediment Transport by Tidal Currents. Nature 1985, 316, 339–342. [Google Scholar] [CrossRef]
- Drake, T.G.; Shreve, R.L.; Dietrich, W.E.; Whiting, P.J.; Leopold, L.B. Bedload Transport of Fine Gravel Observed by Motion-Picture Photography. J. Fluid Mech. 1988, 192, 193–217. [Google Scholar] [CrossRef]
- NiNo, Y.; Lopez, F.; Garcia, M. Threshold for Particle Entrainment into Suspension. Sedimentology 2003, 50, 247–263. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, H.; Zhao, L.; Cao, Y. Implications of Intermittent Turbulent Bursts for Sediment Resuspension in a Coastal Bottom Boundary Layer: A Field Study in the Western Yellow Sea, China. Mar. Geol. 2009, 263, 87–96. [Google Scholar] [CrossRef]
- Schmeeckle, M.W. The Role of Velocity, Pressure, and Bed Stress Fluctuations in Bed Load Transport over Bed Forms: Numerical Simulation Downstream of a Backward-Facing Step. Earth Surf. Dyn. 2015, 3, 105–112. [Google Scholar] [CrossRef]
- Wallace, J.M.; Eckelmann, H.; Brodkey, R.S. The Wall Region in Turbulent Shear Flow. J. Fluid Mech. 1972, 54, 39–48. [Google Scholar] [CrossRef]
- Willmarth, W.W.; Lu, S.S. Structure of the Reynolds Stress near the Wall. J. Fluid Mech. 1972, 55, 65–92. [Google Scholar] [CrossRef]
- Diplas, P.; Dancey, C.L.; Celik, A.O.; Valyrakis, M.; Greer, K.; Akar, T. The Role of Impulse on the Initiation of Particle Movement Under Turbulent Flow Conditions. Science 2008, 322, 717–720. Available online: https://www.science.org/doi/10.1126/science.1158954 (accessed on 30 July 2022). [CrossRef] [PubMed] [Green Version]
- Diplas, P.; Dancey, C.L. Coherent Flow Structures, Initiation of Motion, Sediment Transport and Morphological Feedbacks in Rivers. In Coherent Flow Structures at Earth’s Surface; John Wiley & Sons, Ltd: Oxford, UK, 2013; pp. 289–307. ISBN 978-1-118-52722-1. [Google Scholar]
- Dey, S. Entrainment Threshold of Loose Boundary Streams. In Experimental Methods in Hydraulic Research; Geoplanet: Earth and Planetary Sciences; Rowinski, P., Ed.; Springer: Berlin/Heidelberg, 2011; Volume 1, pp. 29–48. ISBN 978-3-642-17474-2. [Google Scholar]
Parameter | Value |
---|---|
Ammonia (mg L−1 NH4+-N) | 960–1000 |
Total phosphate (mgL−1 PO4-P) | 25.0–26.5 |
Nitrite (µg L−1 NO2-N) | 8.0–8.5 |
Magnesium (mg L−1 mg) | 165–175 |
Potassium (mg L−1 K) | 530–545 |
Total iron (mg L−1 Fe) | 8.5–9.5 |
Nitrate (mg L−1 NO3-N) | 14.0–14.5 |
Chemical oxygen demand, COD (mg L−1) | 1200–1350 |
Total nitrogen (mg L−1) | 1050–1101 |
Cultivation Period | 21 August 2015–13 December 2015 | |
---|---|---|
Solar irradiance range (W·m−2) | 140–1112 | |
Air temperature range (°C) | 16–34 | |
Daily rainfall range (mm) | 0–27 | |
Raceway pond type | Jet driven | Paddle wheel driven |
Average ammonium removal rates (%) * | 23.5 ± 4.42 | 36.8 ± 3.93 |
Cell density range (×104) | ||
Chlorella sp. | 280–420 | 5–650 |
Cyanobacteria | 400–900 | 80–390 |
Test Run | Time (s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) JNP | 47 | 62 | 112 | 130 | 150 | 202 | 221 | 276 | 302 | 332 | 355 | 408 |
444 | 462 | 510 | 546 | 564 | 582 | 628 | 645 | 660 | 675 | 710 | 752 | |
766 | 797 | 836 | 851 | 900 | 920 | 945 | 990 | 1022 | 1048 | 1075 | 1112 | |
1172 | 1223 | 1263 | 1300 | 1320 | 1353 | 1384 | 1414 | 1437 | 1461 | 1491 | - | |
(b) PWP | 33 | 68 | 88 | 101 | 136 | 186 | 198 | 216 | 270 | 312 | 354 | 384 |
414 | 462 | 480 | 522 | 546 | 558 | 576 | 594 | 642 | 660 | 687 | 715 | |
749 | 762 | 789 | 809 | 834 | 846 | 852 | 885 | 911 | 936 | 972 | 1022 | |
1064 | 1110 | 1188 | 1217 | 1254 | 1285 | 1325 | 1332 | 1362 | 1398 | 1440 | 1465 |
Time Occupied (in %) | Momentum Flux (in %) | Algae Mixing Flux (in %) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ejection | Sweep | Up Acc | Down Dec | Ejection | Sweep | Up Acc | Down Dec | Ejection | Sweep | Up Acc | Down Dec | |
JNP | 33 | 48 | 10 | 9 | 47 | 34 | 11 | 8 | 42 | 31 | 14 | 13 |
PWP | 32 | 41 | 14 | 13 | 45 | 31 | 13 | 11 | 44 | 36 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayed, F.; Salim, S.; Verduin, J.J.; Moheimani, N.R. The Role of Turbulent Coherent Structures on Microalgal Mixing for Nutrient Removal in Jet and Paddlewheel Raceway Ponds. Water 2022, 14, 2824. https://doi.org/10.3390/w14182824
Kayed F, Salim S, Verduin JJ, Moheimani NR. The Role of Turbulent Coherent Structures on Microalgal Mixing for Nutrient Removal in Jet and Paddlewheel Raceway Ponds. Water. 2022; 14(18):2824. https://doi.org/10.3390/w14182824
Chicago/Turabian StyleKayed, Farhana, Sarik Salim, Jennifer J. Verduin, and Navid R. Moheimani. 2022. "The Role of Turbulent Coherent Structures on Microalgal Mixing for Nutrient Removal in Jet and Paddlewheel Raceway Ponds" Water 14, no. 18: 2824. https://doi.org/10.3390/w14182824
APA StyleKayed, F., Salim, S., Verduin, J. J., & Moheimani, N. R. (2022). The Role of Turbulent Coherent Structures on Microalgal Mixing for Nutrient Removal in Jet and Paddlewheel Raceway Ponds. Water, 14(18), 2824. https://doi.org/10.3390/w14182824