Soil-Gas Diffusivity-Based Characterization of Variably Saturated Agricultural Topsoils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Data
2.2. Methods
2.3. Soil-Gas Diffusivity Modeling
2.3.1. Unimodal Dp/Do Predictive Models
2.3.2. Bimodal (Two-Region) Dp/Do Models
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil-Gas Diffusivity
3.2. Gas-Phase Tortuosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Breon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Qiu, J. China cuts methane emissions from rice fields. Nature 2009. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Microbial Diversity and Community Composition in Rice–Fish Co-Culture and Rice Monoculture Farming System. Biology 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Lv, J.Z.; Wang, J.; Ahmad, S.; Farooq, S.; Ali, S.; Zhou, X.B. Regulation of Soil Microbial Community Structure and Biomass to Mitigate Soil Greenhouse Gas Emission. Front. Microbiol. 2022, 13, 868862. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, T.; Liu, Y.; Zhang, X.; Li, L.; Pan, G. Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis. Agric. Water Manag. 2018, 213, 1028–1035. [Google Scholar] [CrossRef]
- Liao, B.; Wu, X.; Yu, Y.; Luo, S.; Hu, R.; Lu, G. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation. Sci. Total Environ. 2019, 698, 134212. [Google Scholar] [CrossRef]
- Toma, Y.; Takechi, Y.; Inoue, A.; Nakaya, N.; Hosoya, K.; Yamashita, Y.; Adachi, M.; Kono, T.; Hideto, U. Early mid-season drainage can mitigate greenhouse gas emission from organic rice farming with green manure application. Soil Sci. Plant Nutr. 2021, 67, 482–492. [Google Scholar] [CrossRef]
- Abdalla, M.; Jones, M.; Smith, P.; Williams, M. Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use Manag. 2009, 25, 376–388. [Google Scholar] [CrossRef]
- Resurreccion, A.C.; Moldrup, P.; Kawamoto, K.; Yoshikawa, S.; Rolston, D.E.; Komatsu, T. Variable pore connectivity factor model for gas diffusivity in unsaturated, aggregated soil. Vadose Zone J. 2008, 7, 397–405. [Google Scholar] [CrossRef]
- Resurreccion, A.C.; Moldrup, P.; Kawamoto, K.; Hamamoto, S.; Rolston, D.E.; Komatsu, T. Hierarchical, bimodal model for gas diffusivity in aggregated, unsaturated soils. Soil Sci. Soc. Am. J. 2010, 74, 481–491. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Hunt, A.G. Universal scaling of gas diffusion in porous media. Water Resour. Res. 2014, 50, 2242–2256. [Google Scholar] [CrossRef]
- Jayarathne, J.R.R.N.; Chamindu Deepagoda, T.K.K.; Clough, T.J.; Nasvi, M.; Thomas, S.; Elberling, B.; Smits, K.; Kankanamge, C.D.T. Gas-Diffusivity based characterization of aggregated agricultural soils. Soil Sci. Soc. Am. J. 2020, 84, 387–398. [Google Scholar] [CrossRef]
- Durner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 1994, 30, 211–223. [Google Scholar] [CrossRef]
- Jayarathne, J.; Chamindu Deepagoda, T.K.K.; Clough, T.J.; Thomas, S.; Elberling, B.; Smits, K.M. Effect of aggregate size distribution on soil moisture, soil-gas diffusivity, and N2O emissions from a pasture soil. Geoderma 2020, 383, 114737. [Google Scholar] [CrossRef]
- Chamindu Deepagoda, T.K.K.; Smits, K.M.; Ramirez, J.; Moldrup, P. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Kreba, S.; Coyne, M.S.; McCulley, R.L.; Wendroth, O.O. Spatial and Temporal Patterns of Carbon Dioxide Flux in Crop and Grass Land-Use Systems. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Chamindu Deepagoda, T.K.K.; Moldrup, P.; Schjønning, P.; de Jonge, L.W.; Kawamoto, K.; Komatsu, T. Density-Corrected Models for Gas Diffusivity and Air Permeability in Unsaturated Soil. Vadose Zone J. 2011, 10, 226–238. [Google Scholar] [CrossRef]
- Taylor, S.A. Oxygen Diffusion in Porous Media as a Measure of Soil Aeration. Soil Sci. Soc. Am. J. 1950, 14, 55–61. [Google Scholar] [CrossRef]
- Schjønning, P. A Laboratory Method for Determination of Gas Diffusion in Soil; Report S1773; Danish Institute of Plant and Soil Sci Science: Tjele, Denmark, 1985; (In Danish with English Summary). [Google Scholar]
- Currie, J.A. Gaseous diffusion in porous media. Part 2. Dry granular materials. Br. J. Appl. Phys. 1960, 11, 318–324. [Google Scholar] [CrossRef]
- Shanujah, M.; Deepagoda, C.; Smits, K.M.; Shreedharan, V.; Paramrswaran, T.G.; Babu, G.L.S. Gas diffusivity-based characterization of aggregated soils linking to methane migration in shallow subsurface. Vadose Zone J. 2021, 20, e20135. [Google Scholar] [CrossRef]
- Ball, B.C. Modelling of soil pores as tubes using gas permeabilities, gas diffusivities and water release. Eur. J. Soil Sci. 1981, 32, 465–481. [Google Scholar] [CrossRef]
- Kristensen, A.H.; Thorbjørn, A.; Jensen, M.P.; Pedersen, M.; Moldrup, P. Gas-phase diffusivity and tortuosity of structured soils. J. Contam. Hydrol. 2010, 115, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Deepagoda, T.C.; Lopez, J.C.C.; Møldrup, P.; De Jonge, L.W.; Tuller, M. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media. J. Hydrol. 2013, 502, 120–127. [Google Scholar] [CrossRef]
- Millington, R.J. Gas Diffusion in Porous Media. Science 1959, 130, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Moldrup, P.; Olesen, T.; Gamst, J.; Schjønning, P.; Yamaguchi, T.; Rolston, D.E. Predicting the gas diffusion coefficient in repacked soil: Water induced linear reduction model. Soil Sci. Soc. Am. J. 2000, 64, 158. [Google Scholar] [CrossRef]
- Moldrup, P.; Deepagoda, T.C.; Hamamoto, S.; Komatsu, T.; Kawamoto, K.; Rolston, D.E.; de Jonge, L.W. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil. Vadose Zone J. 2013, 12, 1–11. [Google Scholar] [CrossRef]
- Buckingham, E. Contributions to Our Knowledge of the Aeration of Soils; U.S. Department of Agriculture, Bureau of Soils: Washington, DC, USA, 1904.
Soil | Vegetation | Soil Type | Soil Texture | Bulk Density | Organic Matter | Total Porosity | Reference | ||
---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | Mg m−3 | (kg kg−1) | (cm3 cm−3) | ||||
Intact Soils | |||||||||
Ambewela, SL | pasture | Sandy loam | 54.1 | 39.5 | 6.3 | 0.72 (0.02) | 0.07 | 0.70 | This study |
Peradeniya, SL | pasture | Sandy loam | 72.1 | 25.1 | 2.8 | 1.33 (0.05) | 0.096 | 0.46 | [14] |
Lexington, UK | pasture | Silt loam | 7.3 | 67.3 | 25.4 | 1.51(0.06) | 0.05 | 0.43 | [16] |
Peradeniya, SL | cultivated | Sandy loam | 82.0 | 6.5 | 11.5 | 1.42 | 0.046 | 0.47 | [14] |
Kurunegala, SL | cultivated | Sandy clay loam | 70.6 | 9.2 | 20.2 | 1.20 (0.018) | 0.027 | 0.54 | This study |
Polonnaruwa, SL | cultivated | Sandy clay loam | 61.2 | 16.9 | 21.9 | 1.20 (0.02) | 0.043 | 0.53 | This study |
Repacked Soils | |||||||||
Peradeniya-1, SL | pasture | Sandy loam | 72.1 | 25.1 | 2.8 | 1.10 (0.05) | 0.10 | 0.57 | [14] |
Peradeniya-2, SL | pasture | Sandy loam | 72.1 | 25.1 | 2.8 | 1.30 (0.05) | 0.10 | 0.57 | [14] |
Nishi-Tokyo, JP | pasture | Silt loam | NA± | NA | NA | 0.62 (0.05) | NA | 0.74 | [17] |
Peradeniya, SL | cultivated | Sandy loam | 82.0 | 6.5 | 11.5 | 1.42 | 0.046 | 0.47 | [14] |
Nishi-Tokyo, JP | cultivated | Silty loam | NA± | NA | NA | 0.62 (0.05) | NA | 0.74 | [17] |
Kandy, SL | cultivated | Sandy loam | 61.5 | 20.5 | 18.0 | 1.05 (0.01) | 0.037 | 0.57 | This study |
Dp/Do Model | Equation |
---|---|
Buckingham (1904) | |
Millington (1959) | |
MQ (1961) | |
WLR-Marshall (Moldrup et al., 2000) | |
SWLR (Moldrup et al., 2000) |
Dp/Do Model | Peradeniya-1, SL | Peradeniya-2, SL | Nishi-Tokyo, JP | Temuka, NZ | Wakanui, NZ | Templeton, NZ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
d = 1.0 g cm−3 | d = 1.3 g cm−3 | |||||||||||
RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | |
Buckingham (1904) | 0.0437 | −0.029 | 0.0594 | −0.0468 | 0.0804 | 0.0083 | 0.011 | −0.0088 | 0.0179 | −0.0137 | 0.00384 | −0.0027 |
Penman (1940) | 0.0534 | 0.0462 | 0.0418 | 0.0365 | 0.0815 | 0.0749 | 0.0351 | 0.0288 | 0.0173 | 0.0085 | 0.03979 | 0.0355 |
Marshal (1959) | 0.0454 | 0.0324 | 0.0293 | 0.0127 | 0.116 | 0.0751 | 0.0121 | 0.0052 | 0.0083 | −0.0057 | 0.01424 | 0.01064 |
Millington (1959) | 0.0738 | 0.0615 | 0.0522 | 0.0421 | 0.1401 | 0.1063 | 0.023 | 0.0149 | 0.0098 | −0.0001 | 0.02517 | 0.02033 |
MQ (1960) | 0.0569 | 0.0244 | 0.0392 | −0.0014 | 0.1228 | 0.0431 | 0.0085 | −0.0058 | 0.0155 | −0.0122 | 0.00352 | −0.00001 |
MQ (1961) | 0.0755 | −0.0133 | 0.0697 | −0.0468 | 0.1489 | −0.0122 | 0.0189 | −0.0146 | 0.0234 | −0.0169 | 0.00997 | −0.00761 |
WLR-Marshall | 0.0504 | −0.0072 | 0.0525 | −0.0337 | 0.1195 | 0.0072 | 0.0145 | −0.0116 | 0.0206 | −0.0154 | 0.0065 | −0.00524 |
SWLR | 0.0499 | −0.0122 | 0.0545 | −0.0367 | 0.1127 | −0.0123 | 0.0156 | −0.0124 | 0.0214 | −0.0158 | 0.00715 | −0.00572 |
Two Region | 0.0165 | 0.0023 | 0.0115 | 0.001 | 0.0168 | 0.0036 | 0.0034 | 0.0009 | 0.0046 | −0.0021 | 0.00419 | 0.00108 |
Dp/Do Model | Pasture Soils | Cultivated Soils | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peradeniya-1, SL | Peradeniya-2, | Nishi-Tokyo, JP | Peradeniya, SL | Nishi-Tokyo, JP | Kandy, SL | |||||||
d = 1.0 g cm−3 | SL | |||||||||||
d = 1.3 g cm−3 | ||||||||||||
RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | |
Buckingham (1904) | 0.0437 | −0.029 | 0.0594 | −0.0468 | 0.0804 | 0.0083 | 0.011 | −0.0088 | 0.0179 | −0.0137 | 0.00384 | −0.0027 |
Millington (1959) | 0.0738 | 0.0615 | 0.0522 | 0.0421 | 0.1401 | 0.1063 | 0.023 | 0.0149 | 0.0098 | −0.0001 | 0.02517 | 0.02033 |
MQ (1961) | 0.0755 | −0.0133 | 0.0697 | −0.0468 | 0.1489 | −0.0122 | 0.0189 | −0.0146 | 0.0234 | −0.0169 | 0.00997 | −0.00761 |
WLR-Marshall | 0.0504 | −0.0072 | 0.0525 | −0.0337 | 0.1195 | 0.0072 | 0.0145 | −0.0116 | 0.0206 | −0.0154 | 0.0065 | −0.00524 |
SWLR | 0.0499 | −0.0122 | 0.0545 | −0.0367 | 0.1127 | −0.0123 | 0.0156 | −0.0124 | 0.0214 | −0.0158 | 0.00715 | −0.00572 |
Soil | Sample Status | Vegetation Type | Characterization of Two-Region Soil-Gas Diffusivity Model(Equations (6) and (7)) | ||||
---|---|---|---|---|---|---|---|
wo | α1 | β1 | w1 | α2 | |||
Ambewela, SL | Intact | pasture | 0 | 0.41 | 0.99 | 1.0 | 0 |
Peradeniya, SL | pasture | 0.05 | 0.14 | 1.10 | 0.43 | 0.09 | |
Lexington, UK | pasture | 0.005 | 0.35 | 1.50 | 1.0 | 0 | |
Peradeniya, SL | cultivated | 0.002 | 0.26 | 1.40 | 1.0 | 0 | |
Kurunegala, SL | cultivated | 0.2 | 0.47 | 3.01 | 1.0 | 0 | |
Polonnaruwa, SL | cultivated | 0.01 | 0.20 | 2.13 | 1.0 | 0 | |
Peradeniya-1, SL | Repacked | pasture | 0.05 | 0.26 | 2.05 | 0.73 | 0.06 |
Peradeniya-2, SL | pasture | 0.10 | 0.21 | 1.60 | 0.55 | 0.056 | |
Nishi-Tokyo, JP | pasture | 0.06 | 0.20 | 2.13 | 0.53 | 0.15 | |
Peradeniya, SL | cultivated | 0.05 | 0.23 | 2.50 | 0.70 | 0.08 | |
Nishi-Tokyo, JP | cultivated | 0.06 | 0.22 | 1.36 | 0.48 | 0.11 | |
Kandy, SL | cultivated | 0.05 | 0.13 | 3.74 | 0.58 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeysinghe, A.M.S.N.; Lakshani, M.M.T.; Amarasinghe, U.D.H.N.; Li, Y.; Deepagoda, T.K.K.C.; Fu, W.; Fan, J.; Yang, T.; Ma, X.; Clough, T.; et al. Soil-Gas Diffusivity-Based Characterization of Variably Saturated Agricultural Topsoils. Water 2022, 14, 2900. https://doi.org/10.3390/w14182900
Abeysinghe AMSN, Lakshani MMT, Amarasinghe UDHN, Li Y, Deepagoda TKKC, Fu W, Fan J, Yang T, Ma X, Clough T, et al. Soil-Gas Diffusivity-Based Characterization of Variably Saturated Agricultural Topsoils. Water. 2022; 14(18):2900. https://doi.org/10.3390/w14182900
Chicago/Turabian StyleAbeysinghe, A. M. S. N., M. M. T. Lakshani, U. D. H. N. Amarasinghe, Yuan Li, T. K. K. Chamindu Deepagoda, Wei Fu, Jun Fan, Ting Yang, Xiaoyi Ma, Tim Clough, and et al. 2022. "Soil-Gas Diffusivity-Based Characterization of Variably Saturated Agricultural Topsoils" Water 14, no. 18: 2900. https://doi.org/10.3390/w14182900
APA StyleAbeysinghe, A. M. S. N., Lakshani, M. M. T., Amarasinghe, U. D. H. N., Li, Y., Deepagoda, T. K. K. C., Fu, W., Fan, J., Yang, T., Ma, X., Clough, T., Elberling, B., & Smits, K. (2022). Soil-Gas Diffusivity-Based Characterization of Variably Saturated Agricultural Topsoils. Water, 14(18), 2900. https://doi.org/10.3390/w14182900