Adsorption of Pesticides Using Wood-Derived Biochar and Granular Activated Carbon in a Fixed-Bed Column System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Equipments
2.3. Fixed-Bed Column Experiment
- Ci = initial pesticides’ concentration (µg L−1),
- Cf = final pesticides’ concentration (µg L−1),
- V = volume of the solution, and
- W = weight of the adsorbent (g).
2.4. Thomas Model
2.5. Yoon–Nelson Model
2.6. Analytical Method
2.6.1. Extraction of Pesticides
2.6.2. GC–MS Chromatography
2.7. Quality Control and Statistical Analysis
3. Results and Discussion
3.1. Characterization of Adsorbent Material
3.1.1. Fourier-Transform Infrared (FTIR) Spectroscopy
3.1.2. Scanning Electron Microscopy (SEM)
3.1.3. X-ray Diffraction (XRD)
3.2. Column Adsorption Experiment
Impact of Bed Height (BH)
3.3. Physical Properties of AC and BCH
3.4. Impact of Initial Concentration (Ci)
3.5. Impact of Flow Rate (Q)
3.6. Modeling
3.6.1. Thomas Model
3.6.2. Yoon–Nelson Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Dorschner, K.; Kunkel, D.; Braverman, M. Agricultural pesticide registration in the United States. In Sustainable Management of Arthropod Pests of Tomato; Academic Press: Cambridge, MA, USA, 2018; pp. 343–350. [Google Scholar]
- Kudsk, P.; Jørgensen, L.N.; Ørum, J.E. Pesticide Load—A new Danish pesticide risk indicator with multiple applications. Land Use Policy 2018, 70, 384–393. [Google Scholar] [CrossRef]
- Ippolito, A.; Fait, G. Pesticides in surface waters: From edge-of-field to global modelling. Curr. Opin. Environ. Sustain. 2019, 36, 78–84. [Google Scholar] [CrossRef]
- Vimal, V.; Patel, M.; Mohan, D. Aqueous carbofuran removal using slow pyrolyzed sugarcane bagasse biochar: Equilibrium and fixed-bed studies. RSC Adv. 2019, 9, 26338–26350. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.S.; Gowda, G.B.; Adak, T.; Guru-Pirasanna-Pandi, G.; Patil, N.B.; Annamalai, M.; Rath, P.C. Pesticides Occurrence in Water Sources and Decontamination Techniques. In Pesticides; IntechOpen: London, UK, 2022. [Google Scholar]
- Khan, M.I.; Shoukat, M.A.; Cheema, S.A.; Arif, H.N.; Niazi, N.K.; Azam, M.; Qadri, R. Use contamination and exposure of pesticides in Pakistan: A review. Pak. J. Agric. Sci. 2020, 57, 131–149. [Google Scholar]
- Levio-Raiman, M.; Schalchli, H.; Briceño, G.; Bornhardt, C.; Tortella, G.; Rubilar, O.; Diez, M.C. Performance of an optimized fixed-bed column packed with an organic biomixture to remove atrazine from aqueous solution. Environ. Technol. Innov. 2020, 21, 101263. [Google Scholar] [CrossRef]
- Tomlin, C.D.S. (Ed.) The Pesticide Manual—World Compendium, 11th ed.; British Crop Protection Council: Surrey, UK, 1997; p. 459. [Google Scholar]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Marican, A.; Durán-Lara, E.F. A review on pesticide removal through different processes. Environ. Sci. Pollut. Res. 2018, 25, 2051–2064. [Google Scholar] [CrossRef]
- Humbert, H.; Gallard, H.; Suty, H.; Croué, J.P. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Res. 2008, 42, 1635–1643. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Tan, L.S.; Shukor, S.A. Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J. Hazard. Mater. 2008, 151, 71–77. [Google Scholar] [CrossRef]
- Goodwin, L.; Carra, I.; Campo, P.; Soares, A. Treatment options for reclaiming wastewater produced by the pesticide industry. Int. J. Water Wastewater Treat. 2017, 4, 2381–5299. [Google Scholar]
- Chidambaram, R. Application of rice husk nanosorbents containing 2, 4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J. Taiwan Inst. Chem. Eng. 2016, 63, 318–326. [Google Scholar]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef]
- Santacruz, G.; Bandala, E.R.; Torres, L.G. Chlorinated pesticides (2, 4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. J. Environ. Sci. Health 2005, 40, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.; Doulia, D. Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: A review. Sep. Purif. Rev. 2006, 35, 97–191. [Google Scholar] [CrossRef]
- Ohno, K.; Minami, T.; Matsui, Y.; Magara, Y. Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: Desorption and oxon formation. Water Res. 2008, 42, 1753–1759. [Google Scholar] [CrossRef]
- Domingues, V.; Alves, A.; Cabral, M.; Delerue-Matos, C. Sorption behaviour of bifenthrin on cork. J. Chromatogr. 2005, 1069, 127–132. [Google Scholar] [CrossRef]
- Kitous, O.; Cheikh, A.; Lounici, H.; Grib, H.; Pauss, A.; Mameri, N. Application of the electrosorption technique to remove Metribuzin pesticide. J. Hazard. Mater. 2009, 161, 1035–1039. [Google Scholar] [CrossRef]
- Castro, C.S.; Guerreiro, M.C.; Gonçalves, M.; Oliveira, L.C.; Anastácio, A.S. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J. Hazard. Mater. 2009, 164, 609–614. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, A.; Joseph, P.E. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes. Bull. Environ. Contam. Toxicol. 2008, 80, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Ignatowicz, K. Selection of sorbent for removing pesticides during water treatment. J. Hazard. Mater. 2009, 169, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Tsui, L.; Roy, W.R. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution. Bioresour. Technol. 2008, 99, 5673–5678. [Google Scholar] [CrossRef] [PubMed]
- Danish, M.; Sulaiman, O.; Rafatullah, M.; Hashim, R.; Ahmad, A. Kinetics for the removal of paraquat dichloride from aqueous solution by activated date (Phoenix dactylifera) stone carbon. J. Dispers. Sci. Technol. 2010, 31, 248–259. [Google Scholar] [CrossRef]
- Hameed, B.H.; Salman, J.M.; Ahmad, A.L. Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 2009, 163, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Guo, M.; Chow, T.; Bennett, D.N.; Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 2010, 181, 121–126. [Google Scholar] [CrossRef]
- Hu, R.; Huang, X.; Huang, J.; Li, Y.; Zhang, C.; Yin, Y.; Cui, F. Long-and short-term health effects of pesticide exposure: A cohort study from China. PLoS ONE 2015, 10, e0128766. [Google Scholar] [CrossRef]
- Saleh, T.A.; Gupta, V.K. Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res. 2012, 19, 1224–1228. [Google Scholar] [CrossRef]
- Varjani, S.; Kumar, G.; Rene, E.R. Developments in biochar application for pesticide remediation: Current knowledge and future research directions. J. Environ. Manag. 2019, 232, 505–513. [Google Scholar] [CrossRef]
- Sotelo, J.L.; Rodríguez, A.; Álvarez, S.; García, J. Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem. Eng. Res. Des. 2012, 90, 967–974. [Google Scholar] [CrossRef]
- Sotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; Galán, J.; García, J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. J. 2014, 240, 443–453. [Google Scholar] [CrossRef]
- Mohammad, S.G.; Ahmed, S.M. Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media. Int. J. Ind. Chem. 2017, 8, 121–132. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N.; Purakayastha, T.J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.S.; Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Chen, B. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environ. Sci. Technol. 2013, 47, 8759–8768. [Google Scholar] [CrossRef]
- Jusoh, A.; Lam, S.S.; Hartini, W.J.H.; Ali, N.A. Removal of pesticide in agricultural runoff using granular-activated carbon: A simulation study using a fixed-bed column approach. Desalin. Water Treat. 2014, 52, 861–866. [Google Scholar] [CrossRef]
- Bahrami, M.; Amiri, M.J.; Beigzadeh, B. Adsorption of 2, 4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Water Sci. Technol. 2018, 78, 1812–1821. [Google Scholar] [CrossRef]
- Yahaya, N.K.E.M.; Abustan, I.; Latiff, M.F.P.M.; Bello, O.S.; Ahmad, M.A. Fixed-bed column study for Cu (II) removal from aqueous solutions using rice husk based activated carbon. Int. J. Eng. Technol. 2011, 11, 248–252. [Google Scholar]
- Ahmad, A.A.; Hameed, B.H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 2010, 175, 298–303. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, N.; Ramulu, T.S.; Sahoo, S.K.; Das, S.N.; Chaudhury, G.R. Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J. Hazard. Mater. 2009, 161, 1427–1435. [Google Scholar] [CrossRef]
- Calero, M.; Hernáinz, F.; Blázquez, G.; Tenorio, G.; Martín-Lara, M.A. Study of Cr (III) biosorption in a fixed-bed column. J. Hazard. Mater. 2009, 171, 886–893. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Tansel, B.; Nagarajan, P. SEM study of phenolphthalein adsorption on granular activated carbon. Adv. Environ. Res. 2004, 8, 411–415. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Z.; Wu, B.; Xu, J.; Huo, C.; Li, K.; Chen, H.; Yang, Y.; Li, Y. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization. J. Catal. 2015, 322, 1–13. [Google Scholar] [CrossRef]
- Kazemi, F.; Younesi, H.; Ghoreyshi, A.A.; Bahramifar, N.; Heidari, A. Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed bed column studies. Process Saf. Environ. Prot. 2016, 100, 22–35. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Martınez-Alonso, A.; Suárez-Garcıa, F.; Tascón, J.M.D. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon 2002, 40, 1493–1505. [Google Scholar] [CrossRef]
- Jaouen, G.; Salmain, M. (Eds.) Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Boag, N.M.; Haghgooie, H.; Hassanzadeh, A. Synthesis and dynamic NMR studies of Pt(η5-C5Me5)(CO){C(O)NR2} complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 69, 156–159. [Google Scholar] [CrossRef]
- Paiva, T.C.; Sato, S.; Visconti, A.E.; Castro, L.A. Continuous alcoholic fermentation process in a tower reactor with recycling of flocculating yeast. Appl. Biochem. Biotechnol. 1996, 57, 535–541. [Google Scholar] [CrossRef]
- Kalyani, P.; Anitha, A. Refuse derived energy-tea derived boric acid activated carbon as an electrode material for electrochemical capacitors. Port. Electrochim. Acta 2013, 31, 165–174. [Google Scholar] [CrossRef]
- Kennedy, L.J.; Vijaya, J.J.; Kayalvizhi, K.; Sekaran, G. Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chem. Eng. J. 2007, 132, 279–287. [Google Scholar] [CrossRef]
- Pechyen, C.; Atong, D.; Aht-Ong, D.; Sricharoenchaikul, V. Investigation of pyrolyzed chars from physic nut waste for the preparation of activated carbon. J. Solid Mech. Mater. Eng. 2007, 1, 498–507. [Google Scholar] [CrossRef]
- Takagi, H.; Maruyama, K.; Yoshizawa, N.; Yamadab, Y.; Sato, Y. XRD analysis of carbon stacking structure in coal during heat treatment. J. Fuel 2004, 83, 2427–2433. [Google Scholar] [CrossRef]
- Amiri, M.J.; Abedi-Koupai, J.; Eslamian, S. Adsorption of Hg (II) and Pb (II) ions by nanoscale zero valent iron supported on ostrich bone ash in a fixed-bed column system. Water Sci. Technol. 2017, 76, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Bayat, M.; Alighardashi, A.; Sadeghasadi, A. Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environ. Technol. Innov. 2018, 12, 148–159. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 2014, 237, 352–361. [Google Scholar] [CrossRef]
- Bhaumik, M.; Setshedi, K.; Maity, A.; Onyango, M.S. Chromium (VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep. Purif. Technol. 2013, 110, 11–19. [Google Scholar] [CrossRef]
- Amiri, M.J.; Abedi-Koupai, J.; Jafar Jalali, S.M.; Mousavi, S.F. Modeling of fixed-bed column system of Hg (II) ions on ostrich bone ash/nZVI composite by artificial neural network. J. Environ. Eng. 2017, 143, 04017061. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Zhou, J.; Deng, H.; Frost, R.L. Column adsorption of 2-naphthol from aqueous solution using carbon nanotube-based composite adsorbent. Chem. Eng. J. 2018, 335, 450–457. [Google Scholar] [CrossRef]
- Khajeh Amiri, M.; Ghaemi, A.; Arjomandi, H. Experimental, Kinetics and Isotherm Modeling of Carbon Dioxide Adsorption with 13X Zeolite in a fixed bed column. Iran. J. Chem. Eng. 2019, 16, 54–64. [Google Scholar]
- Omitola, O.B.; Abonyi, M.N.; Akpomie, K.G.; Dawodu, F.A. Adams-Bohart, Yoon-Nelson, and Thomas modeling of the fix-bed continuous column adsorption of amoxicillin onto silver nanoparticle-maize leaf composite. Appl. Water Sci. 2022, 12, 94. [Google Scholar] [CrossRef]
- Nazari, G.; Abolghasemi, H.; Esmaieli, M.; Pouya, E.S. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study. Appl. Surf. Sci. 2016, 375, 144–153. [Google Scholar] [CrossRef]
Sr. No. | Properties | AC | BCH |
---|---|---|---|
1 | Bulk density | 34.4 kg cm−3 | 0.42 g cm−3 |
2 | Particle size | 250 µm | 250 µm |
3 | Solid Density | 2.0–2.1 g cm−3 | 1.66 g cm−3 |
5 | Pore volume | 1.39 nm | 0.03–0.02 nm |
5 | Surface area | 4.25 m2 g−1 | 2000 m2 g−1 |
6 | Water holding capacity | 67.3% | 274.1% |
Thomas Model | |||||||
---|---|---|---|---|---|---|---|
AC | BCH | ||||||
Adsorbate | FR | kTh | q0 | R2 | kTh | q0 | R2 |
Atrazine | 0.5 | 0.00005 | 10.87912 | 0.9427 | 0.0001 | 115.8781 | 0.9637 |
1.0 | 0.00017 | 130.8352 | 0.9253 | 0.0001 | 127.0154 | 0.9148 | |
1.5 | 0.00030 | 165.0312 | 0.9414 | 0.0002 | 127.8269 | 0.9748 | |
Chlorothalanil | 0.5 | 6.67 × 10−5 | 37.84620 | 0.9588 | 0.0001 | 112.8462 | 0.9628 |
1.0 | 0.00011 | 41.67030 | 0.9752 | 0.0001 | 118.1941 | 0.9518 | |
1.5 | 0.00017 | 42.28571 | 0.9783 | 0.0002 | 88.29396 | 0.9544 | |
β-endosulfan | 0.5 | 5.83 × 10−5 | 0.791209 | 0.9353 | 0.0009 | 95.85315 | 0.9389 |
1.0 | 0.00013 | 21.91300 | 0.9837 | 0.0001 | 107.4336 | 0.9464 | |
1.5 | 0.00016 | 33.31731 | 0.9089 | 0.0035 | 223.1044 | 0.9617 | |
α-endosulfan | 0.5 | 5.83 × 10−5 | 10.87912 | 0.9583 | 0.0009 | 67.97678 | 0.9389 |
1.0 | 0.00011 | 12.38100 | 0.9598 | 0.0002 | 81.37762 | 0.9986 | |
1.5 | 0.00018 | 30.27273 | 0.9135 | 0.0004 | 109.6978 | 0.9175 |
AC | BCH | ||||||
---|---|---|---|---|---|---|---|
Adsorbate | Q | KYN | τ | R2 | KYN | τ | R2 |
Atrazine | 0.5 | 0.001 | 2022.3 | 0.9921 | 0.0019 | 1066.368 | 0.9977 |
1 | 0.003 | 558.78 | 0.9889 | 0.0039 | 539.6410 | 0.9873 | |
1.5 | 0.006 | 371.20 | 0.9761 | 0.0064 | 349.2500 | 0.9621 | |
Chlorothalanil | 0.5 | 0.001 | 930.61 | 0.9551 | 0.0021 | 996.5238 | 0.9892 |
1 | 0.003 | 501.57 | 0.9363 | 0.0047 | 490.5106 | 0.9665 | |
1.5 | 0.005 | 332.00 | 0.8836 | 0.0065 | 323.3385 | 0.9431 | |
β-endosulfan | 0.5 | 0.001 | 0.0011 | 0.9945 | 0.0022 | 922.8182 | 0.9961 |
1 | 0.003 | 439.72 | 0.9741 | 0.0052 | 457.0962 | 0.9712 | |
1.5 | 0.006 | 254.12 | 0.9552 | 0.0073 | 287.9726 | 0.9505 | |
α-endosulfan | 0.5 | 0.001 | 766.7059 | 0.9912 | 0.0024 | 873.875 | 0.9894 |
1 | 0.003 | 395.1667 | 0.9832 | 0.0045 | 460.6444 | 0.9662 | |
1.5 | 0.006 | 220.5455 | 0.9691 | 0.0086 | 217.6628 | 0.9856 |
Obtained Results | Discussion | |
---|---|---|
FTIR | Aromatic rings were formed due to the carbonization of AC | Puziy et al. [49] reported the same results |
SEM | Adsorbents show smaller cavities and morphologically large surface area | N/A |
XRD | The adsorbents indicates the presence of unlabeled carbon peaks | These results were in good agreement with the data obtained by Kalyania and Anithab [53] |
Impact of bed height (BH) | Adsorption of pesticides was improved and the time of breakthrough was shifted away from the origin with the increase in bed heights | Relevant results were also achieved by Amiri et al. [57], Bahrami et al. [40], Bayat et al. [58] who described that adsorption of pesticides and BT time increases with the rise in height of column bed. |
Impact of initial concentration (Ci) | Breakthrough time shows decrease for both AC and BCH adsorbents when initial concentration of the pesticides increases | The obtained results were in good agreement with Pradhan et al. [6], Bhaumik et al. [60], and Raiman et al. [8], who reported that the increase in inlet concentration resulted in the decrease in pesticides adsorption |
Impact of Flow Rate (Q) | At lower flow rates, the exhaust time and breakthrough were increased | Similar results were obtained by Raiman et al. [8] who reported that an increase in the flow rate resulted in a decrease in pesticides’ adsorption |
Thomas model | Experimental data obtained were best fitted to Thomas’ model due to the higher R2 (0.9986) value | Bharami et al. [40] obtained the same results |
Yoon–Nelson Model | According to higher R2 values (0.9977), illustrate Yoon–Nelson model validity for this study | Relevant results were also given by Bayat et al. [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom; Khan, S.; Ullah, R.; Adil, M.; Waheed, A.; Khan, K.A.; Ghramh, H.A.; Alharby, H.F.; Alzahrani, Y.M.; Alghamdi, S.A.; et al. Adsorption of Pesticides Using Wood-Derived Biochar and Granular Activated Carbon in a Fixed-Bed Column System. Water 2022, 14, 2937. https://doi.org/10.3390/w14192937
Kalsoom, Khan S, Ullah R, Adil M, Waheed A, Khan KA, Ghramh HA, Alharby HF, Alzahrani YM, Alghamdi SA, et al. Adsorption of Pesticides Using Wood-Derived Biochar and Granular Activated Carbon in a Fixed-Bed Column System. Water. 2022; 14(19):2937. https://doi.org/10.3390/w14192937
Chicago/Turabian StyleKalsoom, Sardar Khan, Rafi Ullah, Muhammad Adil, Abdul Waheed, Khalid Ali Khan, Hamed A. Ghramh, Hesham F. Alharby, Yahya M. Alzahrani, Sameera A. Alghamdi, and et al. 2022. "Adsorption of Pesticides Using Wood-Derived Biochar and Granular Activated Carbon in a Fixed-Bed Column System" Water 14, no. 19: 2937. https://doi.org/10.3390/w14192937
APA StyleKalsoom, Khan, S., Ullah, R., Adil, M., Waheed, A., Khan, K. A., Ghramh, H. A., Alharby, H. F., Alzahrani, Y. M., Alghamdi, S. A., Alabdallah, N. M., & Rahim, F. (2022). Adsorption of Pesticides Using Wood-Derived Biochar and Granular Activated Carbon in a Fixed-Bed Column System. Water, 14(19), 2937. https://doi.org/10.3390/w14192937