The Impact of the Watershed Use Changes on the Water Chemistry of the Shallow, Urban Lake—A Case Study of Lake Mielenko (Pomeranian Lakeland, Poland)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Water Sample Collection and Analysis
3. Results and Discussion
3.1. Changes in Chemical Parameters
3.2. Changes in Physical Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sojka, M.; Choiński, A.; Ptak, M.; Siepak, M. The variability of lake water chemistry in the Bory Tucholskie National Park (Northern Poland). Water 2020, 12, 394. [Google Scholar] [CrossRef]
- Zhang, X.; Feagley, S.E.; Day, J.W.; Conner, W.H.; Hesse, I.D.; Rybczyk, J.M.; Hundall, H. A water chemistry assessment of water remediation in a natural swamp. J. Environ. Qual. 2000, 29, 1960–1968. [Google Scholar] [CrossRef]
- Nielsen, A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Bjerring, R.; Olsen, J.E.; Jeppesen, E. Watershead land use effects on lake quality in Denmark. Ecol. Appl. 2012, 22, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Motew, M.; Chen, X.; Booth, E.G.; Carpenter, S.R.; Pinkas, P.; Zipper, S.C.; Loheide, S.P.; Donner, S.D.; Tsuruta, K.; Vadas, P.A.; et al. The influence of legacy P on lake water quality in a Midwastern agricultural watershed. Ecosystems 2017, 20, 1468–1482. [Google Scholar] [CrossRef]
- Markewitz, D.; Davidson, E.A.; de Figueiredo, R.; Victoria, R.L.; Krusche, A.V. Control of cation concentrations in stream waters by surface soil processes in an Amazonian Watershed. Nature 2001, 410, 802–805. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnem plain, Northest China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Banks, E.W.; Simmons, C.T.; Love, A.J.; Shand, P. Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment. Implications for regional scale water quantity and quality. J. Hydrol. 2011, 404, 30–49. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, Z.; Wang, J. Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China. J. Geochem. Explor. 2014, 136, 118–126. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Wu, T.; Yao, B.; Ni, Z. Assessing the influence of compounding factors to the water level variation of Erhai Lake. Water 2021, 13, 29. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, J.; Zhang, B.; Gong, J. Impact of transferred water on the hydrochemistry and water quality of surface water and ground water in Baiyangdian Lake, North China. Geosci. Front. 2021, 12, 101086. [Google Scholar] [CrossRef]
- Kopáček, J.; Hejzlar, J.; Kaňa, J.; Norton, S.A.; Stuchlik, E. Effects of acidic deposition on in-lake phosphorus availability: A lesson from lakes recovering from acidification. Environ. Sci. Technol. 2015, 49, 2895–2903. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy metals in bottom sediments of reservoirs in the Lowland area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water 2019, 11, 56. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Samal, N.R.; Roy, P.K.; Roy, M.B. Electrical conductivity of lake water and environmental monitoring—A case study of Rudrasagar Lake. J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 66–71. [Google Scholar] [CrossRef]
- Mackey, E.B.; Feuchtmayr, M.M.; Deville, M.M.; Thackeray, S.J.; Callaghan, N.; Marshall, M.; Rhodes, G.; Yates, C.A.; Johnes, P.J.; Maberly, S.C. Dissolved organic nutrient uptake by riverine phytoplankton varies along a gradient of nutrient enrichment. Sci. Total Environ. 2020, 722, 137837. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, M.; Borowiak, D.; Nowiński, K. Spatial differentiation and multiannual dynamics of water conductivity in lakes of the Suwałki Landscape Park. Water 2020, 12, 1277. [Google Scholar] [CrossRef]
- Casey, R.E.; Lev, S.M.; Snodgrass, J.W. Stormwater ponds as a source of long-term surface and ground water salinisation. Urban Water J. 2013, 10, 145–153. [Google Scholar] [CrossRef]
- Behbahani, A.; Ryan, R.J.; McKenzie, R. Impact of salinity on the dynamics of fine particles and their associated metals during stormwater management. Sci. Total Environ. 2021, 777, 146135. [Google Scholar] [CrossRef]
- Novotny, E.; Sander, A.R.; Mohseni, O.; Stefan, H.G. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 2009, 45, 12. [Google Scholar] [CrossRef]
- Available online: https://sip.lex.pl/legal-acts/departmental-journals/introduction-winter-maintenance-roads-35934482 (accessed on 29 August 2022). (In Polish).
- Kondracki, J.A. Regional Geography of Poland; PWN: Warsaw, Poland, 2011. (In Polish) [Google Scholar]
- Bajkiewicz-Grabowska, E.; Magnuszewski, A. Guide to Exercise of General Hydrology; PWN: Warsaw, Poland, 2009; pp. 1–196. (In Polish) [Google Scholar]
- Kaca, E. Measurements of water flow volume and mass of substance contained in it, and its uncertainty on the example of fish ponds. Water Environ. Rural Areas 2003, 13, 31–57. (In Polish) [Google Scholar]
- Tibco Software Inc. STATISTICA, version 13.3; Tibco Software Inc.: Palo Alto, CA, USA, 2021.
- Pauer, J.J.; Auer, M.T. Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Res. 2000, 34, 1247–1254. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Zhou, Z.; Coo, X.; Zhou, Y. Coupling between nitrification and denitrification as well as its effect on phosphorus release in sediments of Chinese shallow lake. Water 2019, 11, 1809. [Google Scholar] [CrossRef]
- Müller, B.; Thoma, R.; Baumann, K.B.; Callbeck, C.M.; Schubert, C.J. Nitrogen removal processes in lakes of different trophic states from on-site measurements and historic data. Aquat. Sci. 2021, 83, 37. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Wong, M.T. Impact of increased chloride concentration on nitrifying activated sludge cultures. J. Environ. Eng. 2004, 130, 2. [Google Scholar] [CrossRef]
- Pokojska, U.; Bednarek, R. Geochemistry of Landscape; UMK: Toruń, Poland, 2012; pp. 1–391. (In Polish) [Google Scholar]
- Grochowska, J.; Brzozowska, R.; Łopata, M. Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods. Water Sci. Technol. 2013, 68, 234–239. [Google Scholar] [CrossRef]
- Berthold, M.; Wulff, R.; Reiff, V.; Karsten, U.; Nausch, G.; Schumann, R. Magnitude and influence of atmospheric phosphorus deposition on the Southern Baltic Sea Coast over 23 years: Implication for coasted waters. Environ. Sci. Eur. 2019, 31, 27. [Google Scholar] [CrossRef]
- Amos, H.H.; Miniat, C.h.F.; Lynch, J.; Compton, J.; Templer, P.H.; Sprague, L.; Shaw, D.; Burns, D.; Rea, A.; Whitall, D.; et al. What goes up must come down: Integrating air and water quality monitoring for nutrients. Environ. Sci. Technol. 2018, 52, 11441–11448. [Google Scholar] [CrossRef]
- Dojlido, J. Chemistry of Surface Water; Economy and Environment: Białystok, Poland, 1995; pp. 1–195. (In Polish) [Google Scholar]
- Migaszewski, Z.M.; Gałuszka, A. Basics of Environmental Geochemistry; Scientific and Technical Publishing: Warsaw, Poland, 2007; pp. 1–574. (In Polish) [Google Scholar]
- Kolada, A.; Soszka, H.; Cydzik, D.; Gołub, M. Abiotic typology of Polish lakes. Limnologica 2005, 35, 145–150. [Google Scholar] [CrossRef]
- Marszelewski, W. Changes in Abiotic Conditions in the Lakes of North-Eastern Poland; UMK: Toruń, Poland, 2005; pp. 1–356. (In Polish) [Google Scholar]
- Sapek, A. Chlorides in water bodies of rural areas. Water-Environ.-Rural Areas 2008, 8, 263–281. (In Polish) [Google Scholar]
- Shapiro, J. The relation of humic color to iron in natural waters. Verh. Int. Ver. Limnol. 1966, 16, 477–484. [Google Scholar] [CrossRef]
- Maślanka, W.; Lange, W. Atypical conductivity distribution in the lakes of Pomeranian Lakeland. In Proceedings of the Materials of the 4th Limnology Conference “Natural and Anthropogenic Transformation of Lakes”, Olsztyn-Zalesie, Poland, 18–20 September 2000; pp. 59–69. (In Polish). [Google Scholar]
- Jankowski, A.; Rzętała, M. Problems of Reservoir Retention Using in Conditions of Strong Anthropopressure; UAM: Poznań, Poland, 1997. (In Polish) [Google Scholar]
Parameter | Value |
---|---|
Surface water table | 7.8 ha |
Water volume | 102.9 thousand m3 |
Maximum depth | 1.9 m |
Average depth | 1.3 m |
Relative depth | 0.0068 |
Depth index | 0.68 |
Maximum length | 460 m |
Maximum width | 252 m |
Elongation | 1.8 |
Average width | 170 m |
Length of shoreline | 1314 m |
Shoreline development | 1.3 |
Variables | Flow (L/s) | EC (µS/cm) | pH | NO3 (mg/L) | PO4 (mg/L) | Ca (mg/L) | Cl (mg/L) | Fe (mg/L) | Mn (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|
2013 | Mean | 0.783 | 461 | 7.80 | 0.947 | 0.057 | 44.2 | 36 | 1.718 | 1.020 |
SD | 0.651 | 17 | 0.095 | 0.349 | 0.023 | 3.4 | 1 | 0.398 | 0.125 | |
Maximum | 1.932 | 485 | 7.92 | 1.240 | 0.078 | 40.2 | 38 | 2.150 | 1.200 | |
Minimum | 0.185 | 439 | 7.65 | 0.300 | 0.031 | 40.5 | 35 | 1.050 | 0.900 | |
AnLo (kg/y) | - | - | - | 23.4 | 1.4 | 1091.4 | 884.0 | 42.5 | 25.2 | |
2019 | Mean | 0.303 | 2264 | 8.52 | 0.641 | 0.142 | 83.3 | 532 | 0.880 | 1.050 |
SD | 0.055 | 272 | 0.025 | 0.132 | 0.014 | 3.8 | 39 | 0.010 | 0.010 | |
Maximum | 0.360 | 2470 | 8.54 | 0.794 | 0.152 | 86.0 | 574 | 0.890 | 1.060 | |
Minimum | 0.250 | 1956 | 8.49 | 0.564 | 0.125 | 79.0 | 495 | 0.870 | 1.040 | |
AnLo (kg/y) | - | - | - | 6.1 | 1.4 | 795.9 | 5081.0 | 8.4 | 10.0 | |
2020 | Mean | 0.910 | 3669 | 7.95 | 0.341 | 0.089 | 80.7 | 124 | 1.229 | 1.171 |
SD | 0.908 | 995 | 0.376 | 0.101 | 0.032 | 41.0 | 588 | 0.273 | 0.384 | |
Maximum | 2.300 | 5452 | 8.31 | 0.508 | 0.141 | 156.1 | 2000 | 1.780 | 2.000 | |
Minimum | 0.080 | 2371 | 7.17 | 0.150 | 0.051 | 37.0 | 570 | 0.920 | 0.700 | |
AnLo (kg/y) | - | - | - | 9.8 | 2.6 | 2315.9 | 35,585.0 | 35.3 | 33.6 | |
2021 | Mean | 1.662 | 2146 | 7.70 | 0.177 | 0.033 | 68.2 | 574 | 0.685 | 0.840 |
SD | 1.781 | 1591 | 0.092 | 0.116 | 0.026 | 28.4 | 479 | 0.626 | 0.606 | |
Maximum | 3.600 | 3978 | 7.76 | 0.320 | 0.062 | 102.8 | 1125 | 1.540 | 1.400 | |
Minimum | 0.150 | 768 | 7.57 | 0.059 | 0.009 | 42.8 | 154 | 0.400 | 0.140 | |
AnLo (kg/y) | - | - | - | 9.3 | 1.8 | 3574.6 | 30,111.2 | 35.9 | 44.0 |
Variable | F Value | p Value | Years Which Differed Significantly from 2013 (Before Inflow of Stormwater with Pollution from the Road Salts Disposal) |
---|---|---|---|
NO3 | 9.3925 | <0.001 | 2021 |
PO4 | 4.7270 | <0.001 | 2020; 2021 |
Ca | 9.0366 | <0.001 | 2019, 2021 |
Cl | 343.7683 | <0.001 | 2019, 2020, 2021 |
Fe | 7.3686 | <0.001 | 2020, 2021 |
Mn | 1.5363 | <0.001 | no statistically significant differences |
Reaction | 4.8187 | <0.001 | 2020, 2021 |
EC | 99.8546 | <0.001 | 2019, 2020, 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grochowska, J.K.; Augustyniak-Tunowska, R.; Łopata, M.; Płachta, A.; Kowalski, H.; Karczmarczyk, R. The Impact of the Watershed Use Changes on the Water Chemistry of the Shallow, Urban Lake—A Case Study of Lake Mielenko (Pomeranian Lakeland, Poland). Water 2022, 14, 2943. https://doi.org/10.3390/w14192943
Grochowska JK, Augustyniak-Tunowska R, Łopata M, Płachta A, Kowalski H, Karczmarczyk R. The Impact of the Watershed Use Changes on the Water Chemistry of the Shallow, Urban Lake—A Case Study of Lake Mielenko (Pomeranian Lakeland, Poland). Water. 2022; 14(19):2943. https://doi.org/10.3390/w14192943
Chicago/Turabian StyleGrochowska, Jolanta Katarzyna, Renata Augustyniak-Tunowska, Michał Łopata, Anna Płachta, Hubert Kowalski, and Rafał Karczmarczyk. 2022. "The Impact of the Watershed Use Changes on the Water Chemistry of the Shallow, Urban Lake—A Case Study of Lake Mielenko (Pomeranian Lakeland, Poland)" Water 14, no. 19: 2943. https://doi.org/10.3390/w14192943
APA StyleGrochowska, J. K., Augustyniak-Tunowska, R., Łopata, M., Płachta, A., Kowalski, H., & Karczmarczyk, R. (2022). The Impact of the Watershed Use Changes on the Water Chemistry of the Shallow, Urban Lake—A Case Study of Lake Mielenko (Pomeranian Lakeland, Poland). Water, 14(19), 2943. https://doi.org/10.3390/w14192943