Study on Change of the Glacier Mass Balance and Its Response to Extreme Climate of Urumqi Glacier No.1 in Tianshan Mountains in Recent 41 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Glacier Mass Balance Data
2.2.2. Meteorological Data
2.3. Methods
2.3.1. Extreme Climate Index
2.3.2. Mann-Kendall Trend Test
2.3.3. Correlation Analysis
3. Results
3.1. Glacier Mass Balance
3.1.1. Annual Glacier Mass Balance
3.1.2. Seasonal Glacier Mass Balance
3.2. Change Characteristics of Extreme Climate Events
3.3. Correlation between Glacier Mass Balance and Extreme Climate
3.3.1. Correlation between Annual Glacier Mass Balance and Extreme Climate
3.3.2. Correlation between Seasonal Glacier Mass Balance and Extreme Climate
4. Discussion
4.1. Dynamic Change of Glacier Mass Balance
4.2. Response of Glacier Mass Balance to Extreme Climate
5. Conclusions
- (1)
- From 1980 to 2020, the mass balance of UG1 showed a downward trend, and the mass loss intensified. The accumulated mass balance value was −19,776 mm w.e., and the average annual value was −482 mm w.e.a−1 in the 41 years studied. The mutation analysis showed that the mutation point occurred around 1994, and the mass balance of UG1 was more negative after 1994. The glacier mass balance in the second stage (1994–2020) was about twice that in the first stage (1980–1993). In the same period, the mass balance changes of UG1 were different in different seasons. The summer mass balance had a large inter-annual change and a significant downward trend. The average annual mass balance was −696 mm w.e.a−1. The inter-annual change of the winter mass balance was small and showed a slight upward trend, and the average annual mass balance was 154 mm w.e.a−1.
- (2)
- From 1980 to 2020, in the extreme climate index changes in the region where UG1 is located, only TX90p and TX10p changed significantly, and the change trends of the two were opposite. TX90p showed a notable increase trend and TX10p showed a marked decrease trend. The extreme precipitation index changed prominently and showed an increase trend. From 1994 to 2020, only TX10p and DTR showed a distinct decrease trend in extreme temperature indices, while only SDII showed a noteworthy increase trend in extreme precipitation.
- (3)
- From 1980 to 2020, the glacier mass balance was substantially correlated with the extreme temperature indices (TX90p, TXx) but not with the extreme precipitation indices. On the seasonal scale, the summer mass balance was dramatically correlated with the extreme temperature indices (TX90p, TX10p, TXx) but not the extreme precipitation index. The correlation coefficient between glacier mass balance and the extreme precipitation index R95p and winter precipitation was between 0.36 and 0.40 (p < 0.05), but there was no marked correlation between winter mass balance and extreme temperature indices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Wang, F.T.; Li, H.L.; Xu, C.H.; Wang, P.Y.; Zhou, P.; Yue, X.Y. Science and Long-term Monitoring of Continen-tal-type Glaciers in Arid Region in China. Bull. Chin. Acad. Sci. 2018, 33, 1381–1390. [Google Scholar]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Author Correction: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2020, 577, E9. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Li, S.; Zhao, H.; Yu, W.; Yao, T.; Liu, S.; Wang, N.; Yang, W.; You, C.; Wang, W.; Wu, G.; et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull. 2019, 64, 2770–2782. [Google Scholar] [CrossRef]
- Allen, S.K.; Zhang, G.; Wang, W.; Yao, T.; Bolch, T. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Sci. Bull. 2019, 64, 435–445. [Google Scholar] [CrossRef]
- Xing, W.C.; Li, Z.Q.; Zhang, H.; Zhang, M.J.; Liang, P.B. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geogr. Sin. 2017, 72, 56–67. [Google Scholar]
- Huai, B.; Wang, Y.; Li, Z.; Sun, W.; Wang, X. Glacier changes and its effect on water resources in Urumqi River Basin, Tianshan Mountains, China, from 1964 to 2014. Arab. J. Geosci. 2018, 11, 716. [Google Scholar] [CrossRef]
- Cai, X.; Li, Z.; Zhang, H.; Xu, C. Vulnerability of glacier change in the Tianshan Mountains region of China. J. Geogr. Sci. 2021, 31, 1469–1489. [Google Scholar] [CrossRef]
- Li, Z.Q.; Li, H.L.; Xu, C.H.; Jia, Y.F.; Wang, F.T.; Wang, P.Y.; Yue, X.Y. 60-year changes and mechanisms of Urumqi Glacier No.1 in the eastern Tianshan of China, Central Asia. Sci. Cold Arid. Reg. 2020, 12, 380–388. [Google Scholar]
- Bolch, T.; Kulkarni, A.V.; Kb, A.; Huggel, C.; Stoffel, M. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Ren, Z.G.; Zhang, M.J.; Wang, S.J.; Zhu, X.F.; Dong, L.; Fang, Q. Changes in precipitation extremes in south china during 1961–2011. Acta Geogr. Sin. 2014, 69, 640–649. [Google Scholar]
- Deng, H.; Chen, Y.; Li, Y. Glacier and snow variations and their impacts on regional water resources in mountains. J. Geogr. Sci. 2019, 29, 84–100. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, P.; Li, Z.; Jin, S.; Xu, C.; Liu, S.; Zhang, Z.; Xu, L. An application of three different field methods to monitor changes in Urumqi Glacier No. 1, Chinese Tien Shan, during 2012–18. J. Glaciol. 2021, 68, 41–53. [Google Scholar] [CrossRef]
- Gao, J.; Jiao, K.; Wu, S. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Zhou, M.; Song, X.Q.; Tian, Y.C.; Luo, G.J.; Li, H.W.; Cao, Y.; Li, Q.; et al. Extreme climate evolution and its impact on NPP and NDVI in Yinjiang River basin in recent 60 years. Acta Ecol. Sin. 2022, 42, 960–981. [Google Scholar]
- Zhao, A.; Zhang, A.; Liu, X.; Cao, S. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2017, 132, 555–567. [Google Scholar] [CrossRef]
- Chen, K.; Ge, G.; Bao, G.; Bai, L.; Tong, S.; Bao, Y.; Chao, L. Impact of Extreme Climate on the NDVI of Different Steppe Areas in Inner Mongolia, China. Remote Sens. 2022, 14, 1530. [Google Scholar] [CrossRef]
- Grunewald, K.; Scheithauer, J. Europe’s southernmost glaciers: Response and adaptation to climate change. J. Glaciol. 2010, 56, 129–142. [Google Scholar] [CrossRef]
- Stocker-Waldhuber, M.; Fischer, A.; Keller, L.; Morche, D.; Kuhn, M. Funnel-shaped surface de-pressions-Indicator or accelerant of rapid glacier disintegration? A case study in the Tyrolean Alps. Geomorphology 2017, 287, 58–72. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Azam, M.F.; Wagnon, P.; Vincent, C.; Ramanathan, A.; Linda, A.; Singh, V.B. Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann. Glaciol. 2014, 55, 69–80. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Schneider, C.; Li, H.; Hamm, A.; Jin, S.; Xu, C.; Li, H.; Yue, X.; Yang, M. A Test Study of an Energy and Mass Balance Model Application to a Site on Urumqi Glacier No. 1, Chinese Tian Shan. Water 2020, 12, 2865. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, M.J.; Wang, F.T.; Li, Z.Q. Atmospheric nitrogen deposition in the glacier regions of Northwest China: A case study of Glacier No.1 at the headwaters of Urumqi River, Tianshan Mountains. Acta Ecol. Sin. 2012, 32, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Zhao, J.; Li, Z.; Zhang, M.; Fan, J.; Wang, L.; Wang, P. Spatial and temporal variations of the surface albedo and other factors influencing Urumqi Glacier No. 1 in Tien Shan, China. J. Glaciol. 2017, 63, 899–911. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; Wang, F.; Li, H.; Wang, W.; Wang, L.I.N. Using an ultra-long-range terrestrial laser scanner to monitor the net mass balance of Urumqi Glacier No. 1, eastern Tien Shan, China, at the monthly scale. J. Glaciol. 2017, 63, 792–802. [Google Scholar] [CrossRef]
- Xie, Z.C.; Liu, C.H. An Introduction to Glaciology; Shanghai Kexuepuji Press: Shanghai, China, 2010; pp. 1–490. [Google Scholar]
- Jia, Y.; Li, Z.; Jin, S.; Xu, C.; Deng, H.; Zhang, M. Runoff Changes from Urumqi Glacier No. 1 over the Past 60 Years, Eastern Tianshan, Central Asia. Water 2020, 12, 1286. [Google Scholar] [CrossRef]
- Vincent, L.A.; Peterson, T.C.; Barros, V.R.; Marino, M.B.; Rusticucci, M.; Carrasco, G.; Ramirez, E.; Alves, L.M.; Ambrizzi, T.; Berlato, M.A.; et al. Observed Trends in Indices of Daily Temperature Extremes in SouthAmerica 1960–2000. J. Clim. 2005, 18, 5011–5023. [Google Scholar] [CrossRef]
- Wang, X.L.; Hou, X.Y. Variation of Normalized Difference Vegetation Index and its response to extreme climate in coastal China during 1982–2014. Geogr. Res. 2005, 18, 5011–5023. [Google Scholar]
- Zongxing, L.; He, Y.; Wang, P.; Theakstone, W.H.; An, W.; Wang, X.; Lu, A.; Zhang, W.; Cao, W. Changes of daily climate extremes in southwestern China during 1961–2008. Glob. Planet. Chang. 2012, 80–81, 255–272. [Google Scholar] [CrossRef]
- Xie, Z.C. Mass balance of glaciers and its relationship with characteristics of glaciers. J. Glaciol. Geocryol. 1980, 2, 1–19. [Google Scholar]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef]
- Mölg, T.; Maussion, F.; Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Chang. 2013, 4, 68–73. [Google Scholar] [CrossRef]
- Peng, J.; Li, Z.; Xu, L.; Ma, Y.; Li, H.; Zhao, W.; Fan, S. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China. J. Arid Land 2022, 14, 455–472. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, C. Global cryospheric disaster at high risk areas: Impacts and trend. Chin. Sci. Bull. 2019, 64, 891–901. [Google Scholar] [CrossRef]
- Shangguan, D.; Ding, Y.; Liu, S.; Xie, Z.; Pieczonka, T.; Xu, J.; Moldobekov, B. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods from Lake Merzbacher in Central Tian Shan Mountains. Geophys. Res. Lett. 2017, 44, 9786–9795. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Zhang, M.; Wang, F.; Li, H. Observed changes in streamflow at the headwaters of the Urumqi River, eastern Tianshan, central Asia. Hydrol. Process. 2009, 24, 217–224. [Google Scholar] [CrossRef]
- Xu, X.; Pan, B.; Hu, E.; Li, Y.; Liang, Y. Responses of two branches of Glacier No. 1 to climate change from 1993 to 2005, Tianshan, China. Quat. Int. 2011, 236, 143–150. [Google Scholar] [CrossRef]
- Mu, J.X.; Li, Z.Q.; Zhang, H.; Xu, C.H.; Jin, S.; Liang, P.B. Mass balance variation of continuous glacier and temperature glacier and their response to climate change in western China: Taking Urumqi Glacier No. 1 and Parlung No. 94 Glacier as examples. Arid. Land Geogr. 2019, 42, 20–28. [Google Scholar]
- Guo, S.B.; Zhang, F.L.; Zhang, Z.T.; Zhou, L.T.; Zhao, J.; Yang, X.G. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China. Sci. Agric. Sin. 2022, 55, 1763–1780. [Google Scholar]
- Chen, Y.; Wang, L.; Zhao, J.H.; Zhang, Y.X.; Zhao, S.S.; Li, W.; Zou, X.K.; Jiang, Y.D.; Shi, S.; Hong, J.L.; et al. Climatic Characteristics and Major Meteorological Events over China in 2021. Mete-Orol. Mon. 2022, 48, 470–478. [Google Scholar]
- Lipczynska-Kochany, E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. Sci. Total Environ. 2018, 640–641, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
Classification | Index | Indicator Name | Definitions |
---|---|---|---|
Extreme temperature index | TX90p (d) | Warm days | Percentage of days when TX > 90th percentile |
TX10p (d) | Cool days | Percentage of days when TX < 10th percentile | |
TXx (°C) | Max temperature | Monthly maximum value of daily maximum temperature | |
TNn (°C) | Min temperature | Monthly minimum value of daily minimum temperature | |
DTR (°C) | Diurnal temperature range | Monthly mean difference between TX and TN | |
Extreme precipitation index | R95p (mm) | Very wet days | Annual total precipitation when RR > 95th percentile |
R99p (mm) | Extremely wet days | Annual total precipitation when RR > 99th percentile | |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as precipitation ≥ 1.0 mm) in the year | |
Others | TM (°C) | Average annual temperature | Annual average temperature |
PRE (mm) | Annual precipitation | Total rainfall in a precipitation |
Index | Change Trend of Extreme Climate Index (Every 10 Years) | ||
---|---|---|---|
1980–2020 | 1980–1993 | 1994–2020 | |
TX90p (d) | 5.632 ** | −3.473 | 5.336 |
TX10p (d) | −3.150 ** | −11.912 | −3.639 ** |
TXx (°C) | 0.377 | −0.925 | 0.618 |
TNn (°C) | 0.581 | −0.857 | 1.553 |
DTR (°C) | −0.012 | 0.068 | −0.042 * |
R95p (mm) | 34.119 ** | 40.363 | 5.374 |
R99p (mm) | 16.442 * | 32.890 | −9.377 |
SDII | 0.393 ** | 0.110 | 0.309 * |
TM (°C) | 0.475 ** | 0.313 | 0.442 * |
PRE (mm) | 45.979 ** | 82.321 | 19.522 |
Index | Change Trend of Extreme Climate Index (Every 10 Years) | ||
---|---|---|---|
1980–2020 | 1980–1993 | 1994–2020 | |
TX90p (d) | −0.672 ** | −0.495 | −0.594 ** |
TX10p (d) | 0.091 | −0.095 | 0.046 |
TXx (°C) | −0.387 * | 0.054 | −0.461 * |
TNn (°C) | 0.122 | 0.274 | 0.112 |
DTR (°C) | −0.098 | −0.113 | −0.116 |
R95p (mm) | −0.054 | −0.0330 | 0.342 |
R99p (mm) | 0.105 | 0.049 | 0.467 * |
SDII | −0.132 | −0.083 | 0.325 |
TM (°C) | −0.560 ** | 0.011 | −0.486 * |
PRE (mm) | −0.049 | 0.136 | 0.357 |
Index | Summer | Winter |
---|---|---|
TX90p (d) | −0.645 ** | −0.054 |
TX10p (d) | 0.485 ** | 0.189 |
TXx (°C) | −0.466 ** | −0.354 |
TNn (°C) | −0.160 | −0.027 |
DTR (°C) | −0.082 | −0.129 |
R95p (mm) | 0.116 | 0.357 * |
R99p (mm) | 0.197 | 0.270 |
SDII | −0.115 | 0.189 |
TM (°C) | −0.802 ** | −0.101 |
PRE (mm) | 0.062 | 0.397 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Xu, L.; Li, Z.; Chen, P.; Luo, Y.; Cao, C. Study on Change of the Glacier Mass Balance and Its Response to Extreme Climate of Urumqi Glacier No.1 in Tianshan Mountains in Recent 41 Years. Water 2022, 14, 2982. https://doi.org/10.3390/w14192982
Peng J, Xu L, Li Z, Chen P, Luo Y, Cao C. Study on Change of the Glacier Mass Balance and Its Response to Extreme Climate of Urumqi Glacier No.1 in Tianshan Mountains in Recent 41 Years. Water. 2022; 14(19):2982. https://doi.org/10.3390/w14192982
Chicago/Turabian StylePeng, Jiajia, Liping Xu, Zhongqin Li, Puchen Chen, Yutian Luo, and Cui Cao. 2022. "Study on Change of the Glacier Mass Balance and Its Response to Extreme Climate of Urumqi Glacier No.1 in Tianshan Mountains in Recent 41 Years" Water 14, no. 19: 2982. https://doi.org/10.3390/w14192982
APA StylePeng, J., Xu, L., Li, Z., Chen, P., Luo, Y., & Cao, C. (2022). Study on Change of the Glacier Mass Balance and Its Response to Extreme Climate of Urumqi Glacier No.1 in Tianshan Mountains in Recent 41 Years. Water, 14(19), 2982. https://doi.org/10.3390/w14192982