Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Sample Pretreatment
2.3. Chemical Analysis
2.3.1. The Elemental and MFN Concentrations
2.3.2. pH-Dependent Leaching Experiments
2.3.3. Sequential Extraction
2.3.4. XPS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of FMNs in Soils
Samples | Fe | Mn | Al | Si | Mg | K | P | Ti | As | Reference |
---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | % | ||
FMNs (n = 16) | 19.52 ± 2.61 | 2.33 ± 3.52 | 13.09 ± 2.41 | 7.66 ± 2.40 | 0.07 ± 0.03 | 0.040 ± 0.04 | 2.10 ± 0.53 | 7.31 ± 1.07 | 0.19 ± 0.049 | This study |
(13.82–22.50) | (0.35–13.50) | (8.70–16.58) | (5.77–12.78) | (0.04–0.14) | (0.02–0.14) | (1.37–3.30) | (5.52–10.43) | (0.081–0.232) | ||
Corresponding soils (n = 16) | 9.13 ± 2.40 | 1.65 ± 1.36 | 13.74 ± 2.98 | 19.66 ± 2.55 | 0.25 ± 0.16 | 0.31 ± 0.35 | 1.23 ± 0.68 | 16.49 ± 7.11 | 0.044 ± 0.01 | This study |
(6.08–12.41) | (0.01–4.98) | (8.52–16.68) | (16.54–25.24) | (0.08–0.73) | (0.108–1.544) | (0.43–2.32) | (9.65–29.85) | (0.028–0.061) | ||
Lateritic subsoil | 12.82 | 7.05 | 14.81 | 14.93 | 0.12 | 0.14 | 0.61 | 20.71 | 0.29 | [33] |
FMNs | 29.24 | 10.07 | 6.64 | 6.86 | 0.13 | 0.27 | 1.40 | 8.88 | 1.25 | [33] |
FMNs | 8.11 | 6.41 | 2.84 | 29.6 | 0.236 | 0.449 | / | / | 0.023 | [15] |
Average upper crustal composition (AUCC) | 3.91 | 0.77 | 8.15 | 31.14 | 1.50 | 2.32 | 0.65 | 5.12 | 0.005 | [26] |
Background soil (Guangxi) | 2.90 | 0.30 | 7.09 | 33.86 | 0.28 | 0.95 | / | / | 0.015 | [34] |
Background soil (China) | 3.28 | 0.60 | 6.67 | 30.39 | 1.09 | 2.08 | 0.52 | 4.30 | 0.010 | [21] |
Enrichment factor * | 2.14 | 1.41 | 0.95 | 0.39 | 0.28 | 0.13 | 1.71 | 0.44 | 4.27 | / |
Fe | Mn | Si | Al | Mg | Ca | Na | K | P | Ti | As | |
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | 1 | ||||||||||
Mn | 0.284 | 1 | |||||||||
Si | −0.783 ** | 0.209 | 1 | ||||||||
Al | −0.806 ** | −0.653 ** | 0.284 | 1 | |||||||
Mg | 0.478 | 0.774 ** | 0.148 | −0.853 ** | 1 | ||||||
Ca | −0.319 | 0.474 | 0.576 * | −0.002 | 0.447 | 1 | |||||
Na | 0.409 | 0.802 ** | 0.167 | −0.767 ** | 0.964 ** | 0.573 * | 1 | ||||
K | 0.371 | 0.719 ** | 0.244 | −0.801 ** | 0.956 ** | 0.374 | 0.908 ** | 1 | |||
P | 0.749 ** | 0.509 * | −0.229 | −0.914 ** | 0.892 ** | 0.146 | 0.812 ** | 0.845 ** | 1 | ||
Ti | 0.164 | 0.032 | 0.076 | −0.355 | 0.380 | −0.175 | 0.334 | 0.586 * | 0.456 | 1 | |
As | 0.985 ** | 0.265 | −0.832 ** | −0.746 ** | 0.392 | −0.378 | 0.333 | 0.295 | 0.670 ** | 0.137 | 1 |
3.2. Geochemical Fractions of As in FMNs
3.3. Bioavailability of As in FMNs and Its Environmental Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibert, O.; Pablo, J.; Cortina, J.; Ayora, C. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures. Environ. Geochem. Health 2010, 32, 373–378. [Google Scholar] [CrossRef]
- Wu, C.; Cui, M.Q.; Xue, S.G.; Li, W.C.; Huang, L.; Jiang, X.X.; Qian, Z.Y. Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Environ. Sci. Pollut. Res. 2018, 25, 20792–20801. [Google Scholar] [CrossRef]
- Chanpiwat, P.; Hensawang, S.; Suwatvitayakorn, P.; Ponsin, M. Risk assessment of bioaccessible arsenic and cadmium exposure through rice consumption in local residents of the Mae Tao Sub-district, Northwestern Thailand. Environ. Geochem. Health 2019, 41, 343–356. [Google Scholar] [CrossRef]
- Antman, K.H. Introduction: The history of arsenic trioxide in cancer therapy. Oncologist 2001, 6, 1–2. [Google Scholar] [CrossRef]
- Gasparatos, D. Sequestration of heavy metals from soil with Fe–Mn concretions and nodules. Environ. Chem. Lett. 2013, 11, 1–9. [Google Scholar] [CrossRef]
- Duan, Y.H.; Gan, Y.Q.; Wang, Y.X.; Liu, C.X.; Yu, K.; Deng, Y.M.; Zhao, K.; Dong, C.J. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China. Sci. Total Environ. 2017, 607–608, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.F.; Pichler, T. Competitive adsorption of As(III), As(V), Sb(III) and Sb(V) onto ferrihydrite in multi-component systems: Implications for mobility and distribution. J. Hazard. Mater. 2017, 330, 142–148. [Google Scholar] [CrossRef]
- Gasparatos, D.; Haidouti, C.; Tarenidis, D. Characterization of iron oxides in Fe–rich concretions from an imperfectly drained Greek soil: A study by selective–dissolution techniques and X–ray diffraction. Arch. Agron. Soil Sci. 2005, 50, 485–493. [Google Scholar] [CrossRef]
- Bose, P.; Sharma, A. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Res. 2002, 36, 4916–4926. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the Soil Environment: A Review. Adv. Agron. 1998, 64, 149–195. [Google Scholar]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Remediation of Arsenic-Contaminated Soils by Iron Amendments: A Review. Crit. Rev. Environ. Ence Technol. 2010, 40, 93–115. [Google Scholar] [CrossRef]
- Kim, J.Y.; Davis, A.P.; Kim, K.W. Stabilization of Available Arsenic in Highly Contaminated Mine Tailings Using Iron. Environ. Sci. Technol. 2003, 37, 189–195. [Google Scholar] [CrossRef]
- Moore, T.J.; Rightmire, C.M.; Vempati, R.K. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution. Soil Sediment Contam. 2000, 9, 375–405. [Google Scholar] [CrossRef]
- Ettler, V.; Chren, M.; Mihaljevič, M.; Drahota, P.; Kříbek, B.; Veselovský, F.; Sracek, O.; Vaněk, A.; Penížek, V.; Komárek, M.; et al. Characterization of Fe–Mn concentric nodules from luvisol irrigated by mine water in a semi–arid agricultural area. Geoderma 2017, 299, 32–42. [Google Scholar] [CrossRef]
- Ji, W.B.; Yang, Z.F.; Yu, T.; Yang, Q.; Wen, Y.B.; Wu, T.S. Potential ecological risk assessment of heavy metals in the Fe–Mn nodules in the karst area of Guangxi, Southwestern China. Bull. Environ. Contam. Toxicol. 2021, 106, 51–56. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-a case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef]
- Wang, H.T.; Liu, R.M.; Wang, Q.R.; Xu, F.; Men, C.; Shen, Z. Bioavailability and risk assessment of arsenic in surface sediments of the Yangtze River estuary. Mar. Pollut. Bull. 2016, 113, 125–131. [Google Scholar] [CrossRef]
- Wang, H.B.; Xu, J.M.; Mario, A.G.; Shi, Z.L.; Li, S.F.; Zang, S.Y. Arsenic concentration, speciation, and risk assessment in sediments of the Xijiang River basin, China. Environ. Monit. Assess 2019, 191, 663–674. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Wen, Y.B.; Li, W.; Yang, Z.F.; Zhang, Q.Z.; Ji, J.F. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Huu, H.H.; Rudy, S.; Valérie, C.; Elvira, V.; Tom, V.G.; Tan, V.T. Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in cam river-mouth (Vietnam) under influence of pH and oxidation. Sci. Total Environ. 2012, 435–436, 487–498. [Google Scholar]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Domy, C.A.; Lombic, E.; Adrianod, D.C. Arsenic speciation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Tan, W.F.; Liu, F.; Feng, X.H.; Huang, Q.Y.; Li, X.Y. Adsorption and redox reactions of heavy metals on Fe–Mn nodules from chinese soils. J. Colloid Interface Sci. 2005, 284, 600–605. [Google Scholar] [CrossRef]
- Palumbo, B.; Bellanca, A.; Neri, R.; Roe, M.J. Trace metal partitioning in Fe–Mn nodules from Sicilian soils, Italy. Chem. Geol. 2001, 173, 257–269. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, R. Composition of the continental crust. In The Crust. Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar]
- Tan, W.F.; Liu, F.; Li, Y.H.; Hu, H.Q.; Huang, Q.Y. Elemental composition and geochemical characteristics of iron–manganese nodules in main soils of China. Pedosphere 2006, 16, 72–81. [Google Scholar] [CrossRef]
- Szymański, W.; Skiba, M.; Błachowski, A. Mineralogy of Fe–Mn nodules in Albeluvisols in the Carpathian Foothills. Poland. Geoderma 2014, 218, 102–110. [Google Scholar] [CrossRef]
- Yu, X.L.; Lu, S.G. Micrometer-scale internal structure and element distribution of Fe-Mn nodules in Quaternary red earth of Eastern China. J. Soils Sediments 2016, 16, 621–633. [Google Scholar] [CrossRef]
- Ettler, V.; Tomášová, Z.; Komárek, M.; Mihaljevič, M.; Šebek, O.; Michálková, Z. The pH dependent long–term stability of amorphous manganese oxide in smelter–polluted soils: Implication for chemical stabilization of metals and metalloids. J. Hazard. Mater. 2015, 286, 386–394. [Google Scholar] [CrossRef]
- Manceau, A.; Tamura, N.; Celestre, R.S.; Alastair, A.M.; Nicolas, G.; Garrison, S.; Howard, A.P. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin. Environ. Sci. Technol. 2003, 37, 75–80. [Google Scholar] [CrossRef]
- Nesbitt, H.; Canning, G.; Bancroft, G. XPS study of reductive dissolution of 7 Å-birnessite by H3AsO3, with constraints on reaction mechanism. Geochim. Cosmochim. Acta 1998, 62, 2097–2110. [Google Scholar] [CrossRef]
- Neaman, A.; Mouélé, F.; Trolard, F.; Bourrié, G. Improved methods for selective dissolution of Mn oxides: Applications for studying trace element associations. Appl. Geochem. 2004, 19, 973–979. [Google Scholar] [CrossRef]
- Zheng, G.D. Factors Influencing the Distribution and Accumulation of Heavy Metals in Topsoil Across Beibu Gulf of Guangxi. Master’s Dissertation, China University of Geosciences, Beijing, China, 2016; pp. 17–18. [Google Scholar]
- Baumann, Z.; Fisher, N.S. Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete nereis succinea. Environ. Toxicol. Chem. 2011, 30, 747–756. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, J.; Feng, J.; Zhang, Z.; Wu, T. Geochemical speciation and risk assessment of metals in the river sediments from dan river drainage, China. Chem. Ecol. 2016, 32, 221–237. [Google Scholar] [CrossRef]
- Cullen, W.R.; Reimer, K.J. Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713–716. [Google Scholar] [CrossRef]
- Rubinos, D.A.; Iglesias, L.; Francisco, D.F.; María, T.B. Interacting effect of ph, phosphate and time on the release of arsenic from polluted river sediments (anllóns river, spain). Aquat. Geochem. 2011, 17, 281–306. [Google Scholar] [CrossRef]
Samples | F1 | F2 | F3 | F4 | F5 | References |
---|---|---|---|---|---|---|
% | % | % | % | % | ||
Fe–Mn nodules (n = 5) | 0.02 ± 0.01 | 0.09 ± 0.05 | 0.25 ± 0.29 | 0.10 ± 0.07 | 99.54 ± 0.42 | This study |
(0.01–0.04) | (0.04–0.16) | (0.04–0.61) | (0.03–0.19) | (99.00–99.86) | ||
Sediments (n = 18) | 0.18 | 15.91 | 30.27 | 12.38 | 41.25 | [19] |
Name | Start BE | Peak BE | End BE | Height CPS | FWHM eV | Atomic (%) |
---|---|---|---|---|---|---|
As (V) | 49.15 | 45.67 | 41.25 | 762.43 | 2.60 | 83.79 |
As (Ⅲ) | 49.15 | 44.03 | 41.25 | 248.95 | 1.54 | 16.21 |
pH | As | Al | Fe | Mn | ||||
---|---|---|---|---|---|---|---|---|
mg/kg | Dissolution (%) | mg/kg | Dissolution (%) | mg/kg | Dissolution (%) | mg/kg | Dissolution (%) | |
2 | 0.93 | 0.44 | 890.02 | 0.70 | 330.0 | 0.16 | 7.36 | 1.03 |
3 | 0.76 | 0.36 | 120.16 | 0.09 | 14.40 | 0.01 | 5.19 | 0.73 |
4 | 0.07 | 0.04 | 1.24 | <0.01 | 3.44 | <0.01 | 1.77 | 0.25 |
5 | 0.07 | 0.03 | 1.20 | <0.01 | 3.54 | <0.01 | 1.22 | 0.17 |
6 | 0.03 | <0.01 | 0.38 | <0.01 | 1.35 | <0.01 | 1.07 | 0.15 |
7 | nd * | nd | 0.47 | <0.01 | 1.80 | <0.01 | 0.98 | 0.14 |
8 | nd | nd | 0.37 | <0.01 | 3.43 | <0.01 | 0.91 | 0.13 |
9 | 0.06 | 0.03 | 0.32 | <0.01 | 3.38 | <0.01 | 0.82 | 0.11 |
10 | 0.06 | 0.03 | 0.31 | <0.01 | 2.43 | <0.01 | 0.55 | 0.08 |
11 | 0.07 | 0.04 | 1.20 | <0.01 | 2.34 | <0.01 | 0.05 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Ying, R.; Yang, Z.; Hu, Z.; Yang, Q.; Liu, X.; Yu, T.; Wang, L.; Qin, J.; Wu, T. Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi. Water 2022, 14, 3021. https://doi.org/10.3390/w14193021
Ji W, Ying R, Yang Z, Hu Z, Yang Q, Liu X, Yu T, Wang L, Qin J, Wu T. Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi. Water. 2022; 14(19):3021. https://doi.org/10.3390/w14193021
Chicago/Turabian StyleJi, Wenbing, Rongrong Ying, Zhongfang Yang, Zhewei Hu, Qiong Yang, Xu Liu, Tao Yu, Lei Wang, Jianxun Qin, and Tiansheng Wu. 2022. "Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi" Water 14, no. 19: 3021. https://doi.org/10.3390/w14193021
APA StyleJi, W., Ying, R., Yang, Z., Hu, Z., Yang, Q., Liu, X., Yu, T., Wang, L., Qin, J., & Wu, T. (2022). Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi. Water, 14(19), 3021. https://doi.org/10.3390/w14193021