Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Scheme
2.3. Specimen Preparation and Test Method
3. Results and Analyses
3.1. Apparent Pattern after Failure
3.2. Mechanical Characteristics
3.2.1. Unconfined Compressive Strength
3.2.2. Stress–Strain Curves
3.2.3. Deformation Modulus
3.3. Moisture Content
3.4. Soil pH
4. Discussion
5. Conclusions
- (1)
- The number of cracks in the two treated soils increases as the organic content rises and the binder content decreases. The 28-day cracks are more than 7-day cracks, and CG-treated soils are more likely to shed big lumps compared to PC-treated soils.
- (2)
- The unconfined compressive strength qu and deformation modulus E50 of stabilized soils increase with the curing age and binder content, but the reduction of OM content. When increasing the OM content from 0 to 6%, the strength of CG-treated soils decreases by 68% at different curing ages, while that of PC-treated soils decrease by 24%. The E50 of PC-treated soil is approximately 22~73 times qu, while the E50 of CG-treated soil shows a linear increase with qu (E50 = 43.18 qu).
- (3)
- The moisture content of the two treated soils increases as the OM content grows, but it decreases with the curing age and binder content. The soil pH increases as the OM content and binder content increase, but it declines with the curing age. After 56 days, the CG-treated soils had a moisture content of less than 15% and a pH of 9~10, but the moisture content and pH of the PC stabilized soils were about 15% and 11, respectively.
- (4)
- The strength of CG-treated organic-rich soil is attenuated compared to PC-treated soils, meeting the foundation treatment with low-strength requirements. The extension of curing age will reduce the attenuation rate of CG-treated soils but will increase that of PC-treated soils. The low-calcium activator is recommended for stabilizing organic-rich soils.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saride, S.; Puppala, A.J.; Chikyala, S.R. Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Appl. Clay Sci. 2013, 85, 39–45. [Google Scholar] [CrossRef]
- Ghareh, S.; Kazemian, S.; Shahin, M. Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study. Geomech. Eng. 2020, 21, 337–348. [Google Scholar] [CrossRef]
- Wüst, R.A.; Bustin, R.; Lavkulich, L.M. New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 2003, 53, 133–163. [Google Scholar] [CrossRef]
- Acharya, M.P.; Hendry, M.T. A Formulation for Estimating the Compression of Fibrous Peat Using Three Parameters. Int. J. Géoméch. 2019, 19, 04018187. [Google Scholar] [CrossRef]
- Konkol, J.; Międlarz, K.; Bałachowski, L. Geotechnical characterization of soft soil deposits in Northern Poland. Eng. Geol. 2019, 259, 105187. [Google Scholar] [CrossRef]
- Pan, C.; Xie, X.; Gen, J.; Wang, W. Effect of stabilization/solidification on mechanical and phase characteristics of organic river silt by a stabilizer. Constr. Build. Mater. 2020, 236, 117538. [Google Scholar] [CrossRef]
- Wang, S.; He, X.; Gong, S.; Cai, G.; Lang, L.; Ma, H.; Niu, Z.; Zhou, F. Influence Mechanism of Fulvic Acid on the Strength of Cement-Solidified Dredged Sludge. Water 2022, 14, 2616. [Google Scholar] [CrossRef]
- Du, J.; Zheng, G.; Liu, B.; Jiang, N.-J.; Hu, J. Triaxial behavior of cement-stabilized organic matter–disseminated sand. Acta Geotech. 2020, 16, 211–220. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Z.; Sun, X.; Cao, Z. Laboratory tests on enhancing strength of cement stabilized organic soil with addition of phosphor gypsum and calcium aluminate cement. J. Southeast Univ. 2017, 33, 8. [Google Scholar] [CrossRef]
- Tremblay, H.; Duchesne, J.; Locat, J.; Leroueil, S. Influence of the nature of organic compounds on fine soil stabilization with cement. Can. Geotech. J. 2002, 39, 535–546. [Google Scholar] [CrossRef]
- Kolay, P.K.; Rahman, A. Physico-geotechnical properties of peat and its stabilisation. Proc. Inst. Civ. Eng.—Ground Improv. 2016, 169, 206–216. [Google Scholar] [CrossRef]
- Wang, D.; Xu, W. Experimental study on long-term strength and deformation properties of solidified sediments. J. Cent. South. Univ. (Sci. Technol.) 2013, 44, 332–339. [Google Scholar]
- Cai, G.H.; Du, Y.J.; Liu, S.Y.; Singh, D.N. Physical properties, electrical resistivity, and strength characteristics of carbonated silty soil admixed with reactive magnesia. Can. Geotech. J. 2015, 52, 1699–1713. [Google Scholar] [CrossRef]
- Farfan, J.; Fasihi, M.; Breyer, C. Trends in the global cement industry and opportunities for long-term sustainable CCU potential for Power-to-X. J. Clean. Prod. 2019, 217, 821–835. [Google Scholar] [CrossRef]
- Miraki, H.; Shariatmadari, N.; Ghadir, P.; Jahandari, S.; Tao, Z.; Siddique, R. Clayey soil stabilization using alkali-activated volcanic ash and slag. J. Rock Mech. Geotech. Eng. 2021, 14, 576–591. [Google Scholar] [CrossRef]
- Wang, L.; Yu, K.; Li, J.-S.; Tsang, D.C.; Poon, C.S.; Yoo, J.-C.; Baek, K.; Ding, S.; Hou, D.; Dai, J.-G. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem. Eng. J. 2018, 351, 418–427. [Google Scholar] [CrossRef]
- Feng, Y.-S.; Du, Y.-J.; Xia, W.-Y.; Reddy, K.R. Pilot-scale field investigation of ex situ solidification/stabilization of soils with inorganic contaminants using two novel binders. Acta Geotech. 2019, 15, 1467–1480. [Google Scholar] [CrossRef]
- Lang, L.; Chen, B.; Li, N. Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization. Mar. Georesources Geotechnol. 2020, 39, 659–669. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Puppala, A.J. Suppressing Ettringite-Induced Swelling of Gypseous Soil by Using Magnesia-Activated Ground Granulated Blast-Furnace Slag. J. Geotech. Geoenviron. Eng. 2020, 146, 06020008. [Google Scholar] [CrossRef]
- Zhang, Y.; Ong, Y.J.; Yi, Y. Comparison between CaO- and MgO-activated ground granulated blast-furnace slag (GGBS) for stabilization/solidification of Zn-contaminated clay slurry. Chemosphere 2021, 286, 131860. [Google Scholar] [CrossRef]
- Cai, G.; Zhou, Y.; Poon, C.; Li, J.S. Physical and mechanical performance of quicklime-activated GGBS stabilized Hong Kong marine sediment with high water content. Rock Soil Mech. 2022, 43, 327–336. [Google Scholar] [CrossRef]
- Celik, E.; Nalbantoglu, Z. Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng. Geol. 2013, 163, 20–25. [Google Scholar] [CrossRef]
- Dash, S.K.; Hussain, M. Lime Stabilization of Soils: Reappraisal. J. Mater. Civ. Eng. 2012, 24, 707–714. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Shao, Y.; Gong, X.; Xu, R. Experimental study on stabilization of humus-containing soft soil. J. Zhejiang Univ. (Eng. Sci.) 2007, 41, 1472–1476. [Google Scholar]
- Wang, S.-L.; Baaj, H. Treatment of weak subgrade materials with cement and hydraulic road binder (HRB). Road Mater. Pavement Des. 2020, 22, 1756–1779. [Google Scholar] [CrossRef]
- Lv, L.; Song, L.; Liao, H.; Li, H.Z. Size effect on uniaxial compressive strength of red bed soft rock. J. Yangtze River Sci. Res. Inst. 2016, 33, 78–82. [Google Scholar] [CrossRef]
- Cai, G.-H.; Zhou, Y.-F.; Poon, C.S.; Li, J.-S. Engineering performance and microstructure characteristics of natural marine sediment stabilized with quicklime-activated GGBS under different lime proportions. Mar. Georesour. Geotechnol. 2022, 1–15. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Lang, L.; Liu, N.; Chen, B. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Constr. Build. Mater. 2019, 230, 116971. [Google Scholar] [CrossRef]
- Zhu, J.; Tuo, Q.; Deng, W.; Rao, C.Y.; Liu, H.X. Model of compressive strength of cured organic soil solidified by magnesium cement com-plex curing agent. J. Zhejiang. Univ. (Eng. Sci.) 2019, 53, 2168–2174. [Google Scholar] [CrossRef]
- Zhu, J.-F.; Tao, Y.-L.; Xu, R.-Q.; Yang, H.; Pan, B.-J. Investigation on the optimal formulation and mechanism of marine organic silt improved with magnesium-cement-based stabilizer. Constr. Build. Mater. 2022, 341, 127233. [Google Scholar] [CrossRef]
- Yu, H.; Yi, Y.; Unluer, C. Heat of hydration, bleeding, viscosity, setting of Ca(OH)2-GGBS and MgO-GGBS grouts. Constr. Build. Mater. 2020, 270, 121839. [Google Scholar] [CrossRef]
Property | Natural Moisture Content, w/% | Liquid Limit, wL/% | Plastic Limit, wP/% | Plasticity Index, IP/% | Specific Gravity, GS | Grain Size Distribution/% | pH | ||
---|---|---|---|---|---|---|---|---|---|
<5 μm | 5–75 μm | >75 μm | |||||||
Value | 29.2 | 41.4 | 20.7 | 20.7 | 2.67 | 17.4 | 69.4 | 13.2 | 7.85 |
Materials | MgO | Al2O3 | CaO | SiO2 | Fe2O3 | SO3 | K2O | TiO2 |
---|---|---|---|---|---|---|---|---|
Silty clay | 1.22 | 10.22 | 6.41 | 71.76 | 3.57 | 0.27 | 2.16 | 0.65 |
CaO | 2.62 | 0.71 | 94.00 | 1.59 | 0.14 | 0.67 | 0.09 | - |
GGBS | 6.01 | 10.70 | 34.00 | 34.50 | 1.03 | 1.64 | 0.60 | 0.95 |
PC | 5.9 | 5.53 | 62.0 | 18.3 | 2.69 | 4.31 | 0.69 | 0.18 |
No. | Binder | Binder Content/% | Organic Matter Content/% | Curing Age/d |
---|---|---|---|---|
PCB20O0 | PC | 20 | 0 | 7/28/56 |
PCB20O3 | PC | 20 | 3 | 7/28/56 |
PCB20O6 | PC | 20 | 6 | 7/28/56 |
CGB20O0 | CaO + GGBS | 20 | 0 | 7/28/56 |
CGB20O3 | CaO + GGBS | 20 | 3 | 7/28/56 |
CGB20O6 | CaO + GGBS | 20 | 6 | 7/28/56 |
PCB10O6 | PC | 10 | 6 | 7/28/56 |
PCB15O6 | PC | 15 | 6 | 7/28/56 |
PCB20O6 | PC | 20 | 6 | 7/28/56 |
PCB25O6 | PC | 25 | 6 | 7/28/56 |
CGB10O6 | CaO + GGBS | 10 | 6 | 7/28/56 |
CGB15O6 | CaO + GGBS | 15 | 6 | 7/28/56 |
CGB20O6 | CaO + GGBS | 20 | 6 | 7/28/56 |
CGB25O6 | CaO + GGBS | 25 | 6 | 7/28/56 |
Sample No. | Deformation Modulus, E50 (MPa) | ||
---|---|---|---|
7-Day Curing | 28-Day Curing | 56-Day Curing | |
PCB20O0 | 114.24 | 148.79 | 455.01 |
PCB20O3 | 99.55 | 122.95 | 417.99 |
PCB20O6 | 95.48 | 124.65 | 279.41 |
CGB20O0 | 204.30 | 253.05 | 256.93 |
CGB20O3 | 69.00 | 115.90 | 152.27 |
CGB20O6 | 26.52 | 55.79 | 137.96 |
PCB10O6 | 33.83 | 49.29 | 149.82 |
PCB15O6 | 73.19 | 122.10 | 248.48 |
PCB20O6 | 95.48 | 124.65 | 279.41 |
PCB25O6 | 162.09 | 196.08 | 350.85 |
CGB10O6 | 15.01 | 36.39 | 97.67 |
CGB15O6 | 29.13 | 56.90 | 113.68 |
CGB20O6 | 26.52 | 55.79 | 137.96 |
CGB25O6 | 51.40 | 91.35 | 139.47 |
Reference | Organic | Organic Content/% | Binder | Binder Content/% | Moisture Content/% | Curing Age/d |
---|---|---|---|---|---|---|
This study | Sodium humate | 0~6 | CaO + GGBS, PC | 20 | 30 | 7/28 |
[26] | Natural organic | 4.54~7.86 | PC | 10 | 15.9~24.21 | 7/28 |
[30] | Humic acid | 0~4.5 | PC + lime + nano-SiO2 | 15 | 70 | 28 |
[31] | Humic acid | 0~9 | Mg-based cement | 15 | 60 | 7 |
[32] | Humic acid | 0~12 | Mg-based cement | 15 | 60 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Cai, G.; Wang, S.; Qin, H.; Zhang, C.; Li, J. Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC. Water 2022, 14, 3053. https://doi.org/10.3390/w14193053
Zhong Y, Cai G, Wang S, Qin H, Zhang C, Li J. Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC. Water. 2022; 14(19):3053. https://doi.org/10.3390/w14193053
Chicago/Turabian StyleZhong, Yuqing, Guanghua Cai, Shiquan Wang, Huajin Qin, Caihong Zhang, and Jiangshan Li. 2022. "Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC" Water 14, no. 19: 3053. https://doi.org/10.3390/w14193053
APA StyleZhong, Y., Cai, G., Wang, S., Qin, H., Zhang, C., & Li, J. (2022). Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC. Water, 14(19), 3053. https://doi.org/10.3390/w14193053