Early Warning and Joint Regulation of Water Quantity and Quality in the Daqing River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Materials
2.3. Method
3. Results and Discussion
3.1. Model Calibration and Verification
3.2. Water Quantity and Water Quality Early Warning
3.2.1. Water Quantity Early Warning
3.2.2. Water-Quality Early Warning
3.3. Joint Regulation of Water Quantity and Quality
3.3.1. Ensuring the Base Flow with Standard Water Quality
3.3.2. Optimize NH3-N Annual Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SUB | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High-flow years | 1 | 1.20 | 1.08 | 0.76 | 3.34 | 1.96 | 0.43 | 18.23 | 10.21 | 6.87 | 3.92 | 2.38 | 1.02 |
2 | 5.59 | 5.04 | 3.55 | 15.52 | 9.13 | 1.98 | 84.80 | 47.47 | 31.95 | 18.22 | 11.06 | 4.77 | |
3 | 1.42 | 1.28 | 0.90 | 3.93 | 2.31 | 0.50 | 21.49 | 12.03 | 8.10 | 4.62 | 2.80 | 1.21 | |
4 | 7.31 | 6.58 | 4.63 | 20.28 | 11.93 | 2.58 | 110.78 | 62.02 | 41.73 | 23.80 | 14.45 | 6.23 | |
5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
6 | 4.28 | 3.86 | 2.71 | 11.88 | 6.99 | 1.51 | 64.92 | 36.35 | 24.46 | 13.95 | 8.47 | 3.65 | |
7 | 10.52 | 9.48 | 6.67 | 29.18 | 17.16 | 3.72 | 159.41 | 89.24 | 60.06 | 34.24 | 20.79 | 8.96 | |
8 | 5.60 | 5.04 | 3.55 | 15.53 | 9.13 | 1.98 | 84.84 | 47.49 | 31.96 | 18.22 | 11.07 | 4.77 | |
9 | 1.44 | 1.30 | 0.91 | 3.99 | 2.35 | 0.51 | 21.80 | 12.21 | 8.21 | 4.68 | 2.84 | 1.23 | |
10 | 7.64 | 6.88 | 4.84 | 21.20 | 12.47 | 2.70 | 115.80 | 64.83 | 43.62 | 24.87 | 15.10 | 6.51 | |
11 | 19.34 | 17.42 | 12.26 | 53.66 | 31.56 | 6.84 | 293.12 | 164.10 | 110.43 | 62.97 | 38.23 | 16.48 | |
12 | 15.04 | 13.55 | 9.53 | 41.73 | 24.54 | 5.32 | 227.94 | 127.61 | 85.87 | 48.97 | 29.73 | 12.81 | |
13 | 11.06 | 9.96 | 7.01 | 30.68 | 18.05 | 3.91 | 167.60 | 93.83 | 63.14 | 36.00 | 21.86 | 9.42 | |
14 | 14.50 | 13.07 | 9.19 | 40.24 | 23.67 | 5.13 | 219.80 | 123.05 | 82.81 | 47.22 | 28.67 | 12.35 | |
15 | 1.81 | 1.63 | 1.15 | 5.01 | 2.95 | 0.64 | 27.39 | 15.33 | 10.32 | 5.88 | 3.57 | 1.54 | |
16 | 11.92 | 10.74 | 7.56 | 33.08 | 19.46 | 4.21 | 180.74 | 101.18 | 68.09 | 38.83 | 23.57 | 10.16 | |
17 | 20.32 | 18.31 | 12.88 | 56.39 | 33.17 | 7.18 | 308.05 | 172.46 | 116.06 | 66.17 | 40.18 | 17.31 | |
18 | 5.47 | 4.93 | 3.47 | 15.19 | 8.93 | 1.93 | 82.96 | 46.44 | 31.25 | 17.82 | 10.82 | 4.66 | |
19 | 8.14 | 7.33 | 5.16 | 22.59 | 13.29 | 2.88 | 123.39 | 69.08 | 46.49 | 26.51 | 16.09 | 6.94 | |
20 | 9.25 | 8.34 | 5.86 | 25.67 | 15.10 | 3.27 | 140.24 | 78.51 | 52.83 | 30.13 | 18.29 | 7.88 | |
21 | 2.31 | 2.08 | 1.46 | 6.41 | 3.77 | 0.82 | 34.99 | 19.59 | 13.18 | 7.52 | 4.56 | 1.97 | |
22 | 5.56 | 5.01 | 3.53 | 15.44 | 9.08 | 1.97 | 84.33 | 47.21 | 31.77 | 18.12 | 11.00 | 4.74 | |
23 | 32.77 | 29.53 | 20.77 | 90.94 | 53.49 | 11.59 | 496.77 | 278.11 | 187.15 | 106.72 | 64.79 | 27.92 | |
24 | 2.26 | 2.04 | 1.43 | 6.28 | 3.70 | 0.80 | 34.32 | 19.21 | 12.93 | 7.37 | 4.48 | 1.93 | |
25 | 39.67 | 35.75 | 25.14 | 110.08 | 64.75 | 14.02 | 601.39 | 336.67 | 226.56 | 129.19 | 78.44 | 33.80 | |
26 | 1.34 | 1.21 | 0.85 | 3.73 | 2.19 | 0.48 | 20.37 | 11.41 | 7.68 | 4.38 | 2.66 | 1.15 | |
27 | 1.69 | 1.52 | 1.07 | 4.68 | 2.75 | 0.60 | 25.57 | 14.31 | 9.63 | 5.49 | 3.34 | 1.44 | |
28 | 6.60 | 5.94 | 4.18 | 18.30 | 10.76 | 2.33 | 99.97 | 55.97 | 37.66 | 21.48 | 13.04 | 5.62 | |
29 | 3.30 | 2.97 | 2.09 | 9.15 | 5.38 | 1.17 | 49.96 | 27.97 | 18.82 | 10.73 | 6.52 | 2.81 | |
30 | 15.25 | 13.74 | 9.66 | 42.31 | 24.89 | 5.39 | 231.16 | 129.41 | 87.09 | 49.66 | 30.15 | 12.99 | |
31 | 0.16 | 0.15 | 0.10 | 0.46 | 0.27 | 0.06 | 2.49 | 1.39 | 0.94 | 0.53 | 0.32 | 0.14 | |
32 | 36.90 | 33.25 | 23.39 | 102.39 | 60.22 | 13.04 | 559.33 | 313.13 | 210.72 | 120.15 | 72.95 | 31.44 | |
33 | 5.15 | 4.64 | 3.26 | 14.29 | 8.40 | 1.82 | 78.06 | 43.70 | 29.41 | 16.77 | 10.18 | 4.39 | |
34 | 5.31 | 4.78 | 3.36 | 14.72 | 8.66 | 1.88 | 80.42 | 45.02 | 30.30 | 17.28 | 10.49 | 4.52 | |
35 | 1.51 | 1.36 | 0.96 | 4.20 | 2.47 | 0.53 | 22.92 | 12.83 | 8.63 | 4.92 | 2.99 | 1.29 | |
Normal-flow years | 1 | 1.18 | 1.14 | 1.15 | 1.44 | 3.79 | 0.52 | 9.44 | 15.29 | 13.09 | 4.99 | 2.16 | 0.85 |
2 | 5.48 | 5.28 | 5.33 | 6.69 | 17.61 | 2.40 | 43.91 | 71.14 | 60.86 | 23.20 | 10.06 | 3.95 | |
3 | 1.39 | 1.34 | 1.35 | 1.70 | 4.46 | 0.61 | 11.13 | 18.03 | 15.42 | 5.88 | 2.55 | 1.00 | |
4 | 7.16 | 6.90 | 6.96 | 8.74 | 23.01 | 3.14 | 57.37 | 92.93 | 79.51 | 30.30 | 13.14 | 5.16 | |
5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | |
6 | 4.19 | 4.04 | 4.08 | 5.12 | 13.49 | 1.84 | 33.62 | 54.46 | 46.60 | 17.76 | 7.70 | 3.03 | |
7 | 10.30 | 9.93 | 10.02 | 12.58 | 33.11 | 4.52 | 82.55 | 133.73 | 114.42 | 43.61 | 18.91 | 7.43 | |
8 | 5.48 | 5.28 | 5.33 | 6.69 | 17.62 | 2.41 | 43.93 | 71.17 | 60.89 | 23.21 | 10.06 | 3.95 | |
9 | 1.41 | 1.36 | 1.37 | 1.72 | 4.53 | 0.62 | 11.29 | 18.29 | 15.65 | 5.96 | 2.59 | 1.02 | |
10 | 7.48 | 7.21 | 7.28 | 9.14 | 24.05 | 3.28 | 59.97 | 97.14 | 83.11 | 31.68 | 13.74 | 5.40 | |
11 | 18.93 | 18.25 | 18.43 | 23.13 | 60.89 | 8.31 | 151.80 | 245.90 | 210.39 | 80.18 | 34.77 | 13.66 | |
12 | 14.72 | 14.19 | 14.33 | 17.99 | 47.35 | 6.46 | 118.04 | 191.22 | 163.61 | 62.35 | 27.04 | 10.63 | |
13 | 10.83 | 10.44 | 10.54 | 13.22 | 34.82 | 4.75 | 86.80 | 140.60 | 120.30 | 45.85 | 19.88 | 7.81 | |
14 | 14.20 | 13.69 | 13.82 | 17.34 | 45.66 | 6.23 | 113.83 | 184.39 | 157.76 | 60.13 | 26.07 | 10.25 | |
15 | 1.77 | 1.71 | 1.72 | 2.16 | 5.69 | 0.78 | 14.18 | 22.98 | 19.66 | 7.49 | 3.25 | 1.28 | |
16 | 11.67 | 11.25 | 11.36 | 14.26 | 37.54 | 5.12 | 93.60 | 151.62 | 129.73 | 49.44 | 21.44 | 8.42 | |
17 | 19.90 | 19.18 | 19.37 | 24.31 | 63.99 | 8.73 | 159.53 | 258.43 | 221.11 | 84.27 | 36.54 | 14.36 | |
18 | 5.36 | 5.17 | 5.22 | 6.55 | 17.23 | 2.35 | 42.96 | 69.59 | 59.54 | 22.69 | 9.84 | 3.87 | |
19 | 7.97 | 7.68 | 7.76 | 9.74 | 25.63 | 3.50 | 63.90 | 103.52 | 88.57 | 33.75 | 14.64 | 5.75 | |
20 | 9.06 | 8.73 | 8.82 | 11.07 | 29.13 | 3.98 | 72.63 | 117.65 | 100.66 | 38.36 | 16.64 | 6.54 | |
21 | 2.26 | 2.18 | 2.20 | 2.76 | 7.27 | 0.99 | 18.12 | 29.36 | 25.12 | 9.57 | 4.15 | 1.63 | |
22 | 5.45 | 5.25 | 5.30 | 6.65 | 17.52 | 2.39 | 43.67 | 70.75 | 60.53 | 23.07 | 10.00 | 3.93 | |
23 | 32.09 | 30.93 | 31.23 | 39.20 | 103.20 | 14.08 | 257.26 | 416.75 | 356.56 | 135.89 | 58.93 | 23.16 | |
24 | 2.22 | 2.14 | 2.16 | 2.71 | 7.13 | 0.97 | 17.77 | 28.79 | 24.63 | 9.39 | 4.07 | 1.60 | |
25 | 38.85 | 37.45 | 37.81 | 47.45 | 124.93 | 17.05 | 311.44 | 504.51 | 431.65 | 164.51 | 71.34 | 28.03 | |
26 | 1.32 | 1.27 | 1.28 | 1.61 | 4.23 | 0.58 | 10.55 | 17.09 | 14.62 | 5.57 | 2.42 | 0.95 | |
27 | 1.65 | 1.59 | 1.61 | 2.02 | 5.31 | 0.72 | 13.24 | 21.45 | 18.35 | 6.99 | 3.03 | 1.19 | |
28 | 6.46 | 6.22 | 6.28 | 7.89 | 20.77 | 2.83 | 51.77 | 83.87 | 71.76 | 27.35 | 11.86 | 4.66 | |
29 | 3.23 | 3.11 | 3.14 | 3.94 | 10.38 | 1.42 | 25.88 | 41.92 | 35.86 | 13.67 | 5.93 | 2.33 | |
30 | 14.93 | 14.39 | 14.53 | 18.24 | 48.02 | 6.55 | 119.71 | 193.92 | 165.91 | 63.23 | 27.42 | 10.77 | |
31 | 0.16 | 0.15 | 0.16 | 0.20 | 0.52 | 0.07 | 1.29 | 2.09 | 1.79 | 0.68 | 0.30 | 0.12 | |
32 | 36.13 | 34.83 | 35.16 | 44.13 | 116.19 | 15.86 | 289.66 | 469.22 | 401.46 | 153.01 | 66.35 | 26.07 | |
33 | 5.04 | 4.86 | 4.91 | 6.16 | 16.21 | 2.21 | 40.42 | 65.48 | 56.03 | 21.35 | 9.26 | 3.64 | |
34 | 5.19 | 5.01 | 5.06 | 6.35 | 16.71 | 2.28 | 41.65 | 67.47 | 57.72 | 22.00 | 9.54 | 3.75 | |
35 | 1.48 | 1.43 | 1.44 | 1.81 | 4.76 | 0.65 | 11.87 | 19.23 | 16.45 | 6.27 | 2.72 | 1.07 | |
Low-flow years | 1 | 1.70 | 1.79 | 0.50 | 1.52 | 1.49 | 1.51 | 18.96 | 13.32 | 11.53 | 3.99 | 0.55 | 1.50 |
2 | 7.91 | 8.34 | 2.35 | 7.08 | 6.95 | 7.01 | 88.19 | 61.94 | 53.63 | 18.54 | 2.56 | 6.98 | |
3 | 2.01 | 2.11 | 0.60 | 1.79 | 1.76 | 1.78 | 22.35 | 15.70 | 13.59 | 4.70 | 0.65 | 1.77 | |
4 | 10.34 | 10.89 | 3.07 | 9.25 | 9.08 | 9.16 | 115.21 | 80.91 | 70.07 | 24.23 | 3.34 | 9.12 | |
5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | |
6 | 6.06 | 6.38 | 1.80 | 5.42 | 5.32 | 5.37 | 67.52 | 47.42 | 41.06 | 14.20 | 1.96 | 5.34 | |
7 | 14.88 | 15.67 | 4.41 | 13.31 | 13.07 | 13.19 | 165.79 | 116.43 | 100.83 | 34.86 | 4.81 | 13.12 | |
8 | 7.92 | 8.34 | 2.35 | 7.08 | 6.95 | 7.02 | 88.23 | 61.97 | 53.66 | 18.55 | 2.56 | 6.98 | |
9 | 2.04 | 2.14 | 0.60 | 1.82 | 1.79 | 1.80 | 22.68 | 15.93 | 13.79 | 4.77 | 0.66 | 1.79 | |
10 | 10.81 | 11.38 | 3.21 | 9.67 | 9.49 | 9.58 | 120.43 | 84.58 | 73.24 | 25.32 | 3.49 | 9.53 | |
11 | 27.36 | 28.81 | 8.12 | 24.47 | 24.02 | 24.25 | 304.85 | 214.10 | 185.40 | 64.11 | 8.85 | 24.12 | |
12 | 21.28 | 22.41 | 6.31 | 19.03 | 18.68 | 18.85 | 237.06 | 166.49 | 144.17 | 49.85 | 6.88 | 18.76 | |
13 | 15.64 | 16.47 | 4.64 | 13.99 | 13.74 | 13.86 | 174.31 | 122.42 | 106.01 | 36.65 | 5.06 | 13.79 | |
14 | 20.52 | 21.61 | 6.09 | 18.35 | 18.02 | 18.18 | 228.60 | 160.54 | 139.03 | 48.07 | 6.63 | 18.09 | |
15 | 2.56 | 2.69 | 0.76 | 2.29 | 2.24 | 2.27 | 28.49 | 20.01 | 17.32 | 5.99 | 0.83 | 2.25 | |
16 | 16.87 | 17.77 | 5.00 | 15.09 | 14.81 | 14.95 | 187.97 | 132.01 | 114.32 | 39.53 | 5.46 | 14.87 | |
17 | 28.75 | 30.28 | 8.53 | 25.71 | 25.25 | 25.48 | 320.38 | 225.00 | 194.85 | 67.37 | 9.30 | 25.35 | |
18 | 7.74 | 8.15 | 2.30 | 6.92 | 6.80 | 6.86 | 86.28 | 60.59 | 52.47 | 18.14 | 2.50 | 6.83 | |
19 | 11.52 | 12.13 | 3.42 | 10.30 | 10.11 | 10.21 | 128.33 | 90.13 | 78.05 | 26.99 | 3.72 | 10.15 | |
20 | 13.09 | 13.79 | 3.88 | 11.71 | 11.49 | 11.60 | 145.85 | 102.43 | 88.70 | 30.67 | 4.23 | 11.54 | |
21 | 3.27 | 3.44 | 0.97 | 2.92 | 2.87 | 2.89 | 36.39 | 25.56 | 22.13 | 7.65 | 1.06 | 2.88 | |
22 | 7.87 | 8.29 | 2.34 | 7.04 | 6.91 | 6.98 | 87.71 | 61.60 | 53.34 | 18.44 | 2.55 | 6.94 | |
23 | 46.37 | 48.83 | 13.76 | 41.47 | 40.72 | 41.09 | 516.65 | 362.84 | 314.21 | 108.64 | 14.99 | 40.88 | |
24 | 3.20 | 3.37 | 0.95 | 2.86 | 2.81 | 2.84 | 35.69 | 25.07 | 21.71 | 7.51 | 1.04 | 2.82 | |
25 | 56.13 | 59.11 | 16.65 | 50.20 | 49.29 | 49.74 | 625.45 | 439.25 | 380.38 | 131.52 | 18.15 | 49.49 | |
26 | 1.90 | 2.00 | 0.56 | 1.70 | 1.67 | 1.69 | 21.19 | 14.88 | 12.89 | 4.46 | 0.61 | 1.68 | |
27 | 2.39 | 2.51 | 0.71 | 2.13 | 2.10 | 2.12 | 26.59 | 18.68 | 16.17 | 5.59 | 0.77 | 2.10 | |
28 | 9.33 | 9.83 | 2.77 | 8.34 | 8.19 | 8.27 | 103.97 | 73.02 | 63.23 | 21.86 | 3.02 | 8.23 | |
29 | 4.66 | 4.91 | 1.38 | 4.17 | 4.10 | 4.13 | 51.96 | 36.49 | 31.60 | 10.93 | 1.51 | 4.11 | |
30 | 21.58 | 22.72 | 6.40 | 19.30 | 18.95 | 19.12 | 240.41 | 168.84 | 146.21 | 50.55 | 6.98 | 19.02 | |
31 | 0.23 | 0.24 | 0.07 | 0.21 | 0.20 | 0.21 | 2.59 | 1.82 | 1.57 | 0.54 | 0.08 | 0.20 | |
32 | 52.21 | 54.98 | 15.49 | 46.69 | 45.84 | 46.27 | 581.70 | 408.53 | 353.78 | 122.32 | 16.88 | 46.02 | |
33 | 7.29 | 7.67 | 2.16 | 6.52 | 6.40 | 6.46 | 81.18 | 57.01 | 49.37 | 17.07 | 2.36 | 6.42 | |
34 | 7.51 | 7.91 | 2.23 | 6.71 | 6.59 | 6.65 | 83.64 | 58.74 | 50.87 | 17.59 | 2.43 | 6.62 | |
35 | 2.14 | 2.25 | 0.63 | 1.91 | 1.88 | 1.90 | 23.84 | 16.74 | 14.50 | 5.01 | 0.69 | 1.89 |
References
- Sun, T.; Cheng, W.Q.; Bo, Q.Y.; Meng, X.; Liang, D. Analysis on historical flood and countermeasures in prevention and control of flood in Daqing River Basin. Environ. Res. 2021, 196, 110895. [Google Scholar]
- Li, S.C.; Zhao, Y.L.; Xiao, W.; Yue, W.Z.; Wu, T. Optimizing ecological security pattern in the coal resource-based city: A case study in Shuozhou City, China. Ecol. Indic. 2021, 130, 108026. [Google Scholar] [CrossRef]
- Chanapathi, T.; Thatikonda, S. Fuzzy-based regional water quality index for surface water quality assessment. J. Hazard. Toxic Radioact. Waste 2019, 23, 04019010. [Google Scholar] [CrossRef]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jaberi, S.; Bourrié, G. Water quality indices: Challenges and application limits in the literature. Water 2019, 11, 361. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Homaei, F.; Farhadi, H. Reliability assessment of water quality index based on guidelines of national sanitation foundation in natural streams: Integration of remote sensing and data-driven models. Artif. Intell. Rev. 2021, 54, 4619–4651. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Niazmardi, S. A Novel Multiple-Kernel Support Vector Regression Algorithm for Estimation of Water Quality Parameters. Nat. Resour. Res. 2021, 30, 3761–3775. [Google Scholar] [CrossRef]
- Jamei, M.; Ahmadianfar, I.; Chu, X.; Yaseen, Z.M. Prediction of surface water total dissolved solids using hybridized wavelet-multigene genetic programming: New approach. J. Hydrol. 2020, 589, 125335. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Ghaemi, A. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Environ. Monit. Assess. 2019, 191, 380. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Ghaemi, A.; Emamgholizadeh, S. Prediction of water quality parameters using evolutionary computing-based formulations. Int. J. Environ. Sci. Technol. 2018, 16, 6377–6396. [Google Scholar] [CrossRef]
- Lee, J.; Chae, K.J. A systematic protocol of microplastics analysis from their identification to quantification in water environment: A comprehensive review. J. Hazard. Water 2020, 403, 124049. [Google Scholar] [CrossRef]
- Gumbo, A.D.; Kapangaziwiri, E.; Chikoore, H.; Pienaar, H.; Mathivha, F. Assessing water resources availability in headwater sub-catchments of Pungwe River Basin in a changing climate. J. Hydrol. 2021, 35, 100827. [Google Scholar] [CrossRef]
- Korytny, L.M. The basin concept: From hydrology to nature management. Geogr. Nat. Resour. 2017, 38, 111–121. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Vangelis, H. Water Resources and Environment. Water Resour. Manag. 2018, 32, 4813–4817. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, F.; Huang, K.; Zhang, H.C.; Yu, J.; Alan, Y.H. System Dynamics-Multiple Objective Optimization Model for Water Resource Management: A Case Study in Jiaxing City, China. Water 2021, 13, 671. [Google Scholar] [CrossRef]
- Georgakakos, A.P.; Marks, D.H. A new method for the real-time operation of reservoir systems. Water Resour. Res. 1987, 23, 1376–1390. [Google Scholar] [CrossRef]
- Brmus, N. Scientific Allocation of Water Resources; Water Conservancy and Electric Power Press: Beijing, China, 1983. [Google Scholar]
- Apaydin, H.; Feizi, H.; Sattari, M.T.; Colak, M.S.; Shamshirband, S.; Chau, K.W. Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting. Water 2020, 12, 1500. [Google Scholar] [CrossRef]
- Thuc, D.P.; Edoardo, B.; Rodney, A.S. Critical review of system dynamics modelling applications for water resources planning and management. Clean. Environ. Syst. 2021, 2, 100031. [Google Scholar]
- Obeysekera, J.; Barnes, J.; Nungesser, M. Climate Sensitivity Runs and Regional Hydrologic Modeling for Predicting the Response of the Greater Florida Everglades Ecosystem to Climate Change. Environ. Manag. 2015, 55, 749–762. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Singh, V.P.; Shi, P.; Sun, P. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction. J. Hydrol. 2017, 554, 635–645. [Google Scholar] [CrossRef]
- Singh, V.P. Hydrologic modeling: Progress and future directions. Geosci. Lett. 2018, 5, 15–33. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Nabizadeh, E.; Mahamadpur, O. Optimization of water quantity and quality in Mahabad River by SWAT model. Res. Mar. Sci. 2017, 2, 112–129. [Google Scholar]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Review of studies on hydrological modelling in Malaysia. Model. Earth Syst. Environ. 2018, 4, 1577–1605. [Google Scholar] [CrossRef]
- Ma, C.K.; Sun, L.; Liu, S.Y.; Shao, M.A.; Luo, Y. Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. J. Arid Land 2015, 7, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.P.; Zhang, J.Y.; Wang, G.Q.; Jin, J.L.; Liu, C.S.; Liu, Y.L.; He, R.M.; Bao, Z.X. Uncertainty Analysis of SWAT Modeling in the Lancang River Basin Using Four Different Algorithms. Water 2021, 13, 341. [Google Scholar] [CrossRef]
- Mousavi, R.; Ahmadizadeh, M.; Marofi, S. A Multi-GCM Assessment of the Climate Change Impact on the Hydrology and Hydropower Potential of a Semi-Arid Basin (A Case Study of the Dez Dam Basin, Iran). Water 2018, 10, 1458. [Google Scholar] [CrossRef]
- Mao, F.; Shen, Z.Y. Assessment of the Impacts of Land Use Change on Non-Point Source Loading under Future Climate Scenarios Using the SWAT Model. Water 2021, 13, 874. [Google Scholar]
- Franciane, M.D.S.; Rodrigo, P.D.O.; Frederico, F.M. Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê river basin, São Paulo, Brazil. J. Hydrol. 2020, 29, 100685. [Google Scholar]
- Das, B.; Singh, A.; Panda, S.N.; Yasuda, H. Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy 2015, 42, 527–537. [Google Scholar] [CrossRef]
- Zarghami, M.; Safari, N.; Szidarovszky, F.; Islam, S. Nonlinear Interval Parameter Programming Combined with Cooperative Games: A Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework. Water Resour. Manag. 2015, 29, 4285–4303. [Google Scholar] [CrossRef]
- Nematian, J. An Extended Two-stage Stochastic Programming Approach for Water Resources Management under Uncertainty. J. Environ. Inform. 2016, 27, 72–84. [Google Scholar] [CrossRef]
- Perciac, O.M. Optimal operation of regional system with diverse water quality sources. J. Water Res. Plan. Manag. 1997, 123, 105–115. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Pourmand, E.; Mahjouri, N. A fuzzy multi-stakeholder multi-criteria methodology for water allocation and reuse in metropolitan areas. Environ. Monit. Assess. 2018, 190, 444. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; He, L.; Lu, H.W. An environmental fairness-based optimisation model for the decision-support of joint control over the water quantity and quality of a river basin. J. Hydrol. 2016, 535, 366–376. [Google Scholar] [CrossRef]
- Kahil, M.T.; Dinar, A.; Albiac, J. Cooperative water management and ecosystem protection under scarcity and drought in arid and semiarid regions. Water Resour. Econ. 2016, 13, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Feng, M. Joint risk of water quantity and quality in water sources of water diversion project. J. Northwest. A F Univ. (Nat. Sci. Ed.) 2016, 44, 228–234. [Google Scholar]
- Zegpi, M.; Fernandez, B. Hydrological model for urban catchments–analytical development using copulas and numerical solution. Hydrol. Sci. J. 2010, 55, 1123–1136. [Google Scholar] [CrossRef]
- Guo, A.; Chang, J.; Wang, Y.; Li, Y. Variation characteristics of rainfall-runoff relationship and driving factors analysis in Jinghe River Basin in nearly 50 years. Trans. Chin. Soc. Agric. Eng. 2015, 31, 165–171. [Google Scholar]
- Lv, J.; Shen, B.; Li, H.; Jiang, Y. Study on the runoff response to climate change-a case study of source region of the Yellow River. J. Hydroelectr. Eng. 2015, 34, 191198. [Google Scholar]
- Li, F.; Zheng, Q. Probabilistic modelling of flood events using the entropy copula. Adv. Water Resour. 2016, 97, 233–240. [Google Scholar] [CrossRef]
- Debele, S.E.; Bogdanowicz, E.; Strupczewski, W.G. The impact of seasonal flood peak dependence on annual maxima design quantiles. Hydrol. Sci. J. 2017, 62, 1603–1617. [Google Scholar] [CrossRef]
- Yang, R.; Wu, S.Q.; Gao, X.P.; Zhang, C. A vine copula-based study on identification of multivariate water environmental risk under different connectivity of rivers and lakes. J. Hydraul. Eng. 2020, 51, 606–616. [Google Scholar]
- Yu, R.; Yang, R.; Zhang, C.; Špoljar, M.; Kuczyńska-Kippen, N.; Sang, G. A Vine Copula-based modeling for identification of multivariatewater pollution risk in an Interconnected River System Network. Water 2020, 12, 2741. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, C. Earlywarning of water quality degradation: A copula-based bayesian network model for highly efficient water quality risk assessment. J. Environ. Manag. 2021, 292, 112749. [Google Scholar] [CrossRef]
- Arya, F.K.; Zhang, L. Copula-based Markov process for forecasting and analyzing risk of water quality time series. J. Hydrol. Eng. 2017, 22, 04017005. [Google Scholar] [CrossRef]
- Qin, Y.; Elizabeth, C.; Grant, M.K.; Julian, M.A.; Keith, S.R. China’s energy-water nexus—Assessment of the energy sector’s compliance with the “3 Red Lines” industrial water policy Energy Policy. Energy Policy 2015, 82, 131–143. [Google Scholar] [CrossRef]
- Chao, H.P.; Lee, J.F.; Cary, T.C. Corrigendum to “Determination of the Henry’s law constants of low volatility compounds via the measured air-phase transfer coeffic. Water Res. 2017, 120, 238–244. [Google Scholar] [CrossRef]
- Choi, J.R.; Chung, I.M.; Jeung, S.J.; Choo, K.S.; Oh, C.H.; Kim, B.S. Development and Verification of the Available Number of Water Intake Days in Ungauged Local Water Source Using the SWAT Model and Flow Recession Curves. Water 2021, 13, 1511. [Google Scholar] [CrossRef]
- Hoshin, V.G.; Harald, K.; Koray, K.Y.; Guillermo, F.M. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Suresh, M.; Laxmi, P.D.; Deepak, A. Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part I: Model Development). Water 2021, 13, 1546. [Google Scholar]
- Gao, Y.Q.; Yuan, Y.; Wang, H.Z.; Zhang, Z.X.; Ye, L. Analysis of impacts of polders on flood processes in Qinghai River Basin, China, using the HEC-RAS model. Water Sci. Technol.-Water Supply 2018, 18, 1852–1860. [Google Scholar] [CrossRef]
- Conant, B., Jr.; Robinson, C.E.; Hinton, M.J.; Russell, H.A.J. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. J. Hydrol. 2019, 574, 609–627. [Google Scholar] [CrossRef]
- Li, W.H.; Zhou, Y.D.; Deng, Z.J. The Effectiveness of “River Chief System” Policy: An Empirical Study Based on Environmental Monitoring Samples of China. Water 2021, 13, 1988. [Google Scholar] [CrossRef]
- Gong, Y.X.; Ji, X.; Hong, X.C.; Cheng, S.S. Correlation Analysis of Landscape Structure and Water Quality in Suzhou National Wetland Park, China. Water 2021, 13, 2075. [Google Scholar] [CrossRef]
- Huang, J.C.; Zhang, Y.J.; Bing, H.J.; Peng, J.; Dong, F.F.; Gao, J.F.; George, B.A. Characterizing the river water quality in China: Recent progress and on-going challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef]
- Megan, S.; John, R.; Kevin, M.; Rachael, S.; Robin, E.; David, W.; Jane, W. Targeting for pollutant reductions in the Great Barrier Reef River catchments. Environ. Sci. Policy 2018, 89, 365–377. [Google Scholar]
- Li, P.; Xu, G.C.; Lu, K.X. Runoff change and sediment source during rainstorms in an ecologically constructed watershed on the Loess Plateau, China. Sci. Total Environ. 2019, 664, 968–974. [Google Scholar] [CrossRef]
Data Types | Initial Source Data | Processing Suitable to the Model/Study | ||
---|---|---|---|---|
Processing | Data Display | |||
Basic data for SWAT | DEM | ASTER GDEM V3 | \ | |
Land use | Remote sensing monitoring data of land use status in China in 2010 | Reclassification, land-use grid data, land-use index table | \ | |
Soil type | Harmonized World Soil Database (HWSD), China Soil Data Set (v1.1) | Soil-distribution grid file, soil parameter database, soil-type index table | \ | |
Meteorology | Daily scale data of National Meteorological Data Service Center (v3.0) | Weather generator parameters (R language programming calculation) | Daily scale data of precipitation, temperature, wind speed, relative humidity, and sunshine intensity from 1 January 2011 to 31 December 2017 | |
Data required for research | Hydrology | Hydrologic yearbook of the Haihe River Basin | Applicable format conversion of SWATCUP2019 | Monthly average flow of each station in the Daqing River Basin from 2006 to 2016 |
Pollutant discharge | Statistics related to pollutant discharge in the Daqing River Basin | Monthly scale data in the Daqing River Basin from 2010 to 2017 |
Stations | Calibration Period | Verification Period | ||
---|---|---|---|---|
R2 | NSE | R2 | NSE | |
Zhangfang_FLOW | 0.61 | 0.56 | 0.72 | 0.52 |
Zijingguan_FLOW | 0.72 | 0.61 | 0.88 | 0.86 |
Fuping_FLOW | 0.76 | 0.7 | 0.84 | 0.72 |
Taitou_NH3-N | 0.66 | 0.61 | 0.7 | 0.69 |
Rainfall Recurrence Intervals | Maximum Daily in Yuxian (mm) | Maximum Daily Rainfall in Lingqiu (mm) |
---|---|---|
Once every 5 years | 46.38 | 56.82 |
Once every 10 years | 53.20 | 65.44 |
Once every 20 years | 62.67 | 71.78 |
Once every 50 years | 81.43 | 77.58 |
Once every 100 years | 102.58 | 80.56 |
Hydrological Stations | Rainfall Recurrence Interval | Rainfall (mm) | Simulated Runoff (m³/s) | Calculated Maximum Runoff (m³/s) | Calculated Maximum Water Level (m) |
---|---|---|---|---|---|
Zijingguan | Once every 5 years | 46.38 | 99.8 | 471.52 | 519.04 |
Once every 10 years | 53.20 | 226.8 | 571.24 | 519.25 | |
Once every 20 years | 62.67 | 571.9 | 923.82 | 519.87 | |
Once every 50 years | 81.43 | 1254.0 | 1970.95 | 521.23 | |
Once every 100 years | 102.58 | 2094.0 | 3899.75 | 522.99 | |
Zhangfang | Once every 5 years | 46.38 | 93.21 | 224.31 | 104.72 |
Once every 10 years | 53.20 | 102 | 234.19 | 104.75 | |
Once every 20 years | 62.67 | 260.6 | 417.81 | 105.15 | |
Once every 50 years | 81.43 | 450.4 | 650.77 | 105.55 | |
Once every 100 years | 102.58 | 762.2 | 1064.75 | 106.12 | |
Fuping | Once every 5 years | 56.82 | 579.94 | 886.10 | 252.65 |
Once every 10 years | 65.44 | 747.01 | 1112.33 | 252.85 | |
Once every 20 years | 71.78 | 834.28 | 1246.03 | 252.95 | |
Once every 50 years | 77.58 | 1133.21 | 1784.84 | 253.32 | |
Once every 100 years | 80.56 | 1582.35 | 2829.58 | 253.85 |
Scenario No. | Rainfall | Intensity of Point-Source Discharge | Scenario No. | Rainfall | Intensity of Point-Source Discharge |
---|---|---|---|---|---|
1 | High-flow years | +50% | 19 | High-flow years | −10% |
2 | Normal-flow years | +50% | 20 | Normal-flow years | −10% |
3 | Low-flow years | +50% | 21 | Low-flow years | −10% |
4 | High-flow years | +40% | 22 | High-flow years | −20% |
5 | Normal-flow years | +40% | 23 | Normal-flow years | −20% |
6 | Low-flow years | +40% | 24 | Low-flow years | −20% |
7 | High-flow years | +30% | 25 | High-flow years | −30% |
8 | Normal-flow years | +30% | 26 | Normal-flow years | −30% |
9 | Low-flow years | +30% | 27 | Low-flow years | −30% |
10 | High-flow years | +20% | 28 | High-flow years | −40% |
11 | Normal-flow years | +20% | 29 | Normal-flow years | −40% |
12 | Low-flow years | +20% | 30 | Low-flow years | −40% |
13 | High-flow years | +10% | 31 | High-flow years | −50% |
14 | Normal-flow years | +10% | 32 | Normal-flow years | −50% |
15 | Low-flow years | +10% | 33 | Low-flow years | −50% |
16 | High-flow years | 0 | |||
17 | Normal-flow years | 0 | |||
18 | Low-flow years | 0 |
Sub-Basins | Runoff (m3/s) | Sub-Basins | Runoff (m3/s) |
---|---|---|---|
1 | 0.16 | 19 | 4.56 |
2 | 1.86 | 20 | 5.27 |
3 | 1.58 | 21 | 4.93 |
4 | 1.60 | 22 | 0.80 |
5 | 0.01 | 23 | 6.82 |
6 | 0.63 | 24 | 0.26 |
7 | 1.48 | 25 | 5.68 |
8 | 2.64 | 26 | 2.43 |
9 | 0.94 | 27 | 1.00 |
10 | 1.75 | 28 | 3.45 |
11 | 3.50 | 29 | 0.56 |
12 | 6.91 | 30 | 2.60 |
13 | 10.32 | 31 | 0.02 |
14 | 4.29 | 32 | 6.57 |
15 | 0.16 | 33 | 1.51 |
16 | 1.64 | 34 | 4.71 |
17 | 8.71 | 35 | 0.62 |
18 | 2.66 |
Month | High-Flow Years | Normal-Flow Years | Low-Flow Years | ||||||
---|---|---|---|---|---|---|---|---|---|
Discharge Amount (t) | Simulated Runoff (m3/s) | NH3-N (mg/L) | Discharge Amount (t) | Simulated Runoff (m3/s) | NH3-N (mg/L) | Discharge Amount (t) | Simulated Runoff (m3/s) | NH3-N (mg/L) | |
Jan. | 0.76 | 0.21 | 1.74 | 96.13 | 1.47 | 1.99 | 5.23 | 0.70 | 1.82 |
Feb. | 10.09 | 0.58 | 1.01 | 116.75 | 0.59 | 1.94 | 24.76 | 3.63 | 1.94 |
Mar. | 53.53 | 2.07 | 1.58 | 231.81 | 0.36 | 1.71 | 668.90 | 27.92 | 1.43 |
Apr. | 787.25 | 6.98 | 1.30 | 290.94 | 4.85 | 0.69 | 1364.47 | 21.57 | 1.70 |
May | 565.47 | 0.59 | 1.81 | 765.96 | 4.51 | 0.90 | 851.36 | 10.11 | 1.12 |
Jun. | 1212.94 | 3.73 | 0.84 | 104.54 | 0.35 | 0.36 | 532.99 | 6.02 | 1.79 |
Jul. | 3004.87 | 42.57 | 0.39 | 2216.67 | 24.81 | 0.87 | 1663.18 | 2.09 | 0.77 |
Aug. | 3118.49 | 42.69 | 0.34 | 3093.50 | 69.98 | 1.27 | 2906.43 | 3.43 | 0.64 |
Sep. | 1693.75 | 34.63 | 0.71 | 2646.55 | 89.79 | 1.36 | 1840.61 | 34.42 | 0.72 |
Oct. | 565.29 | 17.39 | 1.81 | 1008.66 | 88.24 | 1.36 | 667.70 | 13.47 | 1.43 |
Nov. | 112.24 | 15.30 | 1.41 | 437.41 | 28.39 | 1.51 | 598.96 | 12.37 | 1.59 |
Dec. | 3.85 | 2.93 | 1.59 | 119.62 | 4.15 | 1.95 | 3.96 | 0.22 | 1.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yang, M.; Liu, Y.; Nan, L. Early Warning and Joint Regulation of Water Quantity and Quality in the Daqing River Basin. Water 2022, 14, 3068. https://doi.org/10.3390/w14193068
Chen L, Yang M, Liu Y, Nan L. Early Warning and Joint Regulation of Water Quantity and Quality in the Daqing River Basin. Water. 2022; 14(19):3068. https://doi.org/10.3390/w14193068
Chicago/Turabian StyleChen, Liang, Mingxiang Yang, Yang Liu, and Linjiang Nan. 2022. "Early Warning and Joint Regulation of Water Quantity and Quality in the Daqing River Basin" Water 14, no. 19: 3068. https://doi.org/10.3390/w14193068
APA StyleChen, L., Yang, M., Liu, Y., & Nan, L. (2022). Early Warning and Joint Regulation of Water Quantity and Quality in the Daqing River Basin. Water, 14(19), 3068. https://doi.org/10.3390/w14193068