Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment
Abstract
:1. Introduction
2. Materials and Methods
- The toxic equivalent RTBaP (TEQ—Toxic Equivalent) [36]:
+ 0.001 × [Phe] + 0.01 × [Ant] + 0.001 × [Flu] + 0.001 × [Pyr] + 0.1 × [B(a)A]
+ 0.01 × [Chr] + 0.1 × [B(b)F] + 0.1 × [B(k)F] + 1 × [B(a)P] +5 × [D(ah)A] + 0.1 ×
[B(ghi)P] + 0.1 × [I(cd)P]
- Mutagenic equivalent (MEQ) [37]:
× [I(cd)P] + 0.29 × [D(ah)A] + 0.19 × [B(ghi)P]
- Carcinogen equivalent (TCDD-TEQ) [36]:
0.00110 × [I(cd)P] + 0.00203 × [D(ah)A] + 0.00253 × [B(b)F] + 0.00487 × [B(k)F]
- The ratio of PAHs considered to be carcinogenic to the sum of all measured PAHs [38]:
[I(cd)P])/([∑WWA])
- [Nap]—naphthalene concentration;
- [Acy]—acenaphthylene concentration;
- [Ace]—acenaphthene concentration;
- [Fl]—fluorene concentration;
- [Phe]—phenanthrene concentration;
- [Ant]—anthracene concentration;
- [Flu]—fluoranthene concentration;
- [Pyr]—pyrene concentration;
- [B(a)A]—benzo[a]anthracene concentration;
- [Chr]—chrysene concentration;
- [B(b)F]—benzo[b]fluoranthene concentration;
- [B(k)F]—benzo[k]fluoranthene concentration;
- [B(a)P]—benzo[a]pyrene concentration;
- [D(ah)A]—dibenz[a,h]anthracene concentration;
- [B(ghi)P]—benzo[g,h,i]perylene concentration;
- [I(cd)P]—indeno[1,2,3,c,d]pyrene concentration;
- [∑WWA]—concentration of the sum of 16 PAHs.
- TUa—Acute Toxicity Units;
- EC50—half maximal effective concentration.
- Class 0: TUa = 0—non-toxic sample;
- Class 1: 0.4 < TUa < 1—no significant toxicity (low acute toxicity);
- Class 2: 1 < TUa < 10—significant toxicity;
- Class 3: 10 < TUa < 100—high acute toxicity;
- Class 4: TUa > 100—very high toxicity.
- Class 1: TUa < 10—no significant toxic effect;
- Class 2: 10 < TUa < 25—significant toxic effect—low-toxic sample;
- Class 3: 25 < TUa < 100—significant toxic effect—toxic sample;
- Class 4: TUa > 100—significant toxic effect—highly toxic sample.
3. Results and Discussion
4. Conclusions
- Among the soot aqueous extracts tested from the combustion of five solid fuels, the highest concentration of total PAHs was obtained in the soot aqueous extracts from the combustion of 25–80 mm hard coal (4155.92 ng/g DM), while the lowest was acquired from the combustion of mixed wood fuel (225.58 ng/g DM), which was more than 20 times lower.
- The analysis of the compactness of the light fraction of LMW showed that the smallest share of this fraction in the total concentration was recorded in the samples of soot water extracts from the combustion of 6 mm pellets; this indicates the low contribution of the more biodegradable compounds from the PAH group.
- Considering the calculated TEQ = CEQ, MEQ, and TCDD-TEQ, it was found that the most toxic and carcinogenic soot extract from the combustion of 25–80 mm hard coal was the most toxic and carcinogenic, while the least impactful on living organisms and the environment were samples of soot water extracts from the combustion of mixed firewood.
- The highest ΣWWAcarc/ΣWWA ratio was obtained for the samples of aqueous extracts from coal combustion soot with a granule size of 8–25 mm.
- The acute toxicity analysis based on biotests using Aliivibrio fischeri luminescent bacteria indicated the toxic effect of the tested carbon black samples, among which the water extract characterised the highest value of the toxicity index TUa from hard coal with dimensions over 60 mm.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robl, T.; Oberlink, A.; Jones, R. Coal Combustion Products (CCPs): Characteristics, Utilization and Beneficiation; Series in Energy; Woodhead Publishing: Sawston, UK, 2017; p. 108. [Google Scholar]
- Nežiková, B.; Degrendele, C.; Čupr, P. Bulk atmospheric deposition of persistent organic pollutants and polycyclic aromatic hydrocarbons in Central Europe. Environ. Sci. Pollut. Res. 2019, 26, 23429. [Google Scholar] [CrossRef] [PubMed]
- Dat, N.-D.; Chang, M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Kim, K.-H. Review of PAH contamination in food products and their health hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef] [PubMed]
- IARC. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organisation International Agency for Research on Cancer: Lyon, France, 2010; Volume 92, p. 868. [Google Scholar]
- Tsai, P.-J.; Shieh, H.-Y.; Hsieh, L.-T.; Lee, W.-J. The fate of PAHs in the carbon black manufacturing process. Atmos. Environ. 2001, 35, 3495–3501. [Google Scholar] [CrossRef]
- Arditsoglou, A.; Petaloti, C.; Terzi, E.; Sofoniou, M.; Samara, C. Size distribution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants. Sci. Total Environ. 2004, 323, 153–167. [Google Scholar] [CrossRef]
- Achten, C.; Hofmann, T. Native polycyclic aromatic hydrocarbons (PAH) in coals—A hardly recognized source of environmental contamination. Sci. Total Environ. 2009, 407, 2461–2473. [Google Scholar] [CrossRef]
- Nowacka, A.; Włodarczyk-Makuła, M. Monitoring of Polycyclic Aromatic Hydrocarbons in Water during Preparation Processes. Polycycl. Aromat. Compd. 2013, 33, 430–450. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Beyer, J.; Jonsson, G.; Porte, C.; Krahn, M.M.; Ariese, F. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environ. Toxicol. Pharmacol. 2010, 30, 224–244. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-D.; Chen, C.-F.; Chen, C.-W. Determination of Polycyclic Aromatic Hydrocarbons in Industrial Harbor Sediments by GC-MS. Int. J. Environ. Res. Public Health 2012, 9, 2175–2188. [Google Scholar] [CrossRef] [Green Version]
- Newsted, J.L.; Giesy, J.P. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to daphnia magna, strauss (cladocera, crustacea). Environ. Toxicol. Chem. 1987, 6, 445–461. [Google Scholar] [CrossRef]
- Jesus, F.; Pereira, J.L.; Campos, I.; Santos, M.; Ré, A.; Keizer, J.; Nogueira, A.; Gonçalves, F.J.; Abrantes, N.; Serpa, D. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Sci. Total Environ. 2022, 820, 153282. [Google Scholar] [CrossRef] [PubMed]
- Bleeker, E.A.J.; Pieters, B.J.; Wiegman, S.; Kraak, M.H.S. Comparative (photoenhanced) toxicity of homocyclic and heterocy-clic PACs. Polycycl. Aromat. Compd. 2002, 22, 601–610. [Google Scholar] [CrossRef]
- Bell, H.; Liber, K.; Call, D.; Ankley, G. Evaluation of bioaccumulation and photo-induced toxicity of fluoranthene in larval and adult life-stages of Chironomus tentans Arch. Environ. Contam. Toxicol. 2004, 47, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Luo, L.; Wang, P.; Luan, T.; Tam, N.F.Y. Effects of metals on biosorption and biodegradation of mixed polycyclic aro-matic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour. Technol. 2010, 101, 6950–6961. [Google Scholar] [CrossRef] [PubMed]
- Agteren, M.H.; Keuning, S.; Janssen, D.B. Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds; Springer: Dordrecht, The Netherlands, 1998; Volume VII, p. 493. [Google Scholar] [CrossRef]
- De Lasera MP, G.; de Jesús Olmos-Espejel, J.; Díaz-Flores, G.; Montaño-Montiel, A. Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: A comparative study useful for bioremediation. Environ. Sci. Pollut. Res. 2016, 23, 3365–3375. [Google Scholar] [CrossRef]
- Włodarczyk-Maukuła, M. Comparison of Biotic and Abiotic Changes of PAHs in Soil Fertilized with Sewage Sludge. Annu. Set Environ. Prot. 2010, 12, 559–573. [Google Scholar]
- Benhabib, K.; Simonnot, M.-O.; Sardin, M. PAHs and Organic Matter Partitioning and Mass Transfer from Coal Tar Particles to Water. Environ. Sci. Technol. 2006, 40, 6038–6043. [Google Scholar] [CrossRef]
- Poluszynska, J. Assessment of contamination possibility of soil by polycyclic aromatic hydrocarbons (PAHs) contained in the fly ash from power boilers. Sci. Work. Inst. Ceram. Build. Mater. 2013, 12, 60–71. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-dde0b374-a38a-47e6-a931-035c3a7cf5cf (accessed on 21 August 2022). (In Polish).
- Hycnar, J.; Szczygielski, T.; Lysek, N.; Rajczy, K. Means of Optimizing Coal Combustion Product Utilization. Ind. Furn. Boil. 2014, V–VI, 16–27. (In Polish) [Google Scholar]
- Jabeen, S.; Khan, M.S.; Khattak, R.; Zekker, I.; Burlakovs, J.; Dc Rubin, S.S.; Ghangrekar, M.M.; Kallistova, A.; Pimenov, N.; Zahoor, M.; et al. Palladium-Supported Zirconia-Based Catalytic Degradation of Rhodamine-B Dye from Wastewater. Water 2021, 13, 1522. [Google Scholar] [CrossRef]
- Wahab, M.; Zahoor, M.; Salman, S.M.; Kamran, A.; Naz, S.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Zekker, I. Adsorption-Membrane Hybrid Approach for the Removal of Azithromycin from Water: An Attempt to Minimize Drug Resistance Problem. Water 2021, 13, 1969. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Rahman, N.u.; Ullah, I.; Alam, S.; Khan, M.S.; Shah, L.A.; Zekker, I.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Vincevica-Gaile, Z.; et al. Activated Ailanthus altissima Sawdust as Adsorbent for Removal of Acid Yellow 29 from Wastewater: Kinetics Approach. Water 2021, 13, 2136. [Google Scholar] [CrossRef]
- Umar, A.; Khan, M.S.; Alam, S.; Zekker, I.; Burlakovs, J.; Rubin, S.S.d.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor, M. Synthesis and Characterization of Pd-Ni Bimetallic Nanoparticles as Efficient Adsorbent for the Removal of Acid Orange 8 Present in Wastewater. Water 2021, 13, 1095. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C. A overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczuk, A.; Pawluk, A.; Sierka, J. Elution of fly ash from biomass combustion. Econ. Miner. Resour. 2015, 31, 145–156. Available online: https://journals.pan.pl/Content/86066/PDF/uliasz-bochenczyk-i-inni.pdf (accessed on 18 August 2022). (In Polish).
- Manahan, S. Toxicological Chemistry and Biochemistry; Scientific Publishing House PWN: Warsaw, Poland, 2011. [Google Scholar]
- Seńczuk, W. Contemporary Toxicology; Medical Publishing House PZWL: Warsaw, Poland, 2012. [Google Scholar]
- Dołżyńska, M.; Obidziński, S.; Kowczyk-Sadowy, M.; Krasowska, M. Densification and Combustion of Cherry Stones. Energies 2019, 12, 3042. [Google Scholar] [CrossRef]
- Szatyłowicz, E.; Skoczko, I. Evaluation of the PAH Content in Soot from Solid Fuels Combustion in Low Power Boilers. Energies 2019, 12, 4254. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K. Concentration, Origin and Health Hazard from Fine Particle-Bound PAH at Three Characteristic Sites in Southern Poland. Bull. Environ. Contam. Toxicol. 2013, 91, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Willett, K.L.; Gardinali, P.R.; Sericano, J.L.; Wade, T.L.; Safe, S.H. Characterization of the H4IIE Rat Hepatoma Cell Bioassay for Evaluation of Environmental Samples Containing Polynuclear Aromatic Hydrocarbons (PAHs). Arch. Environ. Contam. Toxicol. 1997, 32, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Widder, E.A. Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity. Science 2010, 328, 704–708. [Google Scholar] [CrossRef]
- Nałęcz-Jawecki, G.; Baran, S.; Mankiewicz-Boczek, J.; Niemirycz, E.; Wolska, L.; Knapik, J.; Piekarska, K.; Bartosiewicz, M. The first Polish interlaboratory comparison of the luminescent bacteria bioassay with three standard toxicants. Environ. Prot. Eng. 2010, 36, 95–102. [Google Scholar]
- Włodarczyk, E.; Wolny, L.; Próba, M. Toxicity Analysis of Sewage Sludge Treated with Polyelectrolytes Using Luminescent Bacteria. Eng. Prot. Environ. 2017, 20, 447–455. [Google Scholar] [CrossRef]
- Park, K.; Hee, S.Q. Effect of Dust on the Viability of Vibrio fischeri in the Microtox Test. Ecotoxicol. Environ. Saf. 2001, 50, 189–195. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Tsai, M.H.; Ryan, D.K.; Pancorbo, O.C. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Mi-crotox® chronic toxicity test. Sci. Total Environ. 2004, 320, 37–50. [Google Scholar] [CrossRef]
- Baran, A.; Tarnawski, M. Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Ecotoxicol. Environ. Saf. 2013, 98, 19–27. [Google Scholar] [CrossRef]
- Czech, B.; Jośko, I.; Oleszczuk, P. Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicol. Environ. Saf. 2014, 104, 247–253. [Google Scholar] [CrossRef]
- Ajuzieogu, C.A.; Odokuma, L.O. Comparison of the Sensitivity of Crassostrea gigas and Vibrio fischeri (Microtox) for Toxicity Assessment of Produced Water. J. Adv. Biol. Biotechnol. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Mantis, I.; Voutsa, D.; Samara, C. Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicol. Environ. Saf. 2005, 62, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, J.; Nałęcz-Jawecki, G.; Mankiewicz-Boczek, J.; Izydorczyk, K.; Sumorok, B.; Drobniewska, A.; Kaza, M. Comprehensive Ecotoxicological Analysis of Surface Waters; MNiI project no. 2 P05F 056 28; Department of Environmental Biology, Medical University of Warsaw: Warsaw, Poland, 2007; Available online: https://docplayer.pl/44204188-Kompleksowa-analiza-ekotoksykologiczna-wod-powierzchniowych.html (accessed on 20 August 2022). (In Polish)
- Han, M.; Zhang, R.; Yu, K.; Yan, A.; Li, H.; Zhang, R.; Zeng, W.; Zhang, Z.-E.; Liu, F. Environmental fate and effects of PAHs in tropical mariculture ponds near the northern South China Sea: Rainfall plays a key role. Sci. Total Environ. 2022, 847, 157442. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, S.; Lan, J.; Xie, Z.; Pu, J.; Yuan, D.; Yang, H.; Xing, B. Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, southwest China. Chemosphere 2019, 230, 616–627. [Google Scholar] [CrossRef]
- Wornat, M.J.; Ledesma, E.B.; Sadrowitz, A.K.; Roth, M.J.; Dawsey, S.M.; Qiao, Y.L.; Chen, W. Polycyclic aromatic hydro-carbons identified in soot extracts from domestic coal-burning stoves of Henan Province, China. Environ. Sci. Technol. 2001, 35, 1943–1952l. [Google Scholar] [CrossRef]
- Ali, N. Polycyclic aromatic hydrocarbons (PAHs) in indoor air and dust samples of different Saudi microenvironments; health and carcinogenic risk assessment for the general population. Sci. Total Environ. 2019, 696, 133995. [Google Scholar] [CrossRef]
- Kuśmierz, M.; Oleszczuk, P.; Kraska, P.; Pałys, E.; Andruszczak, S. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 2016, 146, 272–279. [Google Scholar] [CrossRef]
- Enell, A.; Fuhrman, F.; Lundin, L.; Warfvinge, P.; Thelin, G. Polycyclic aromatic hydrocarbons in ash: Determination of total and leachable concentrations. Environ. Pollut. 2008, 152, 285–292. [Google Scholar] [CrossRef]
- Mon, E.E.; Phay, N.; Agusa, T.; Bach, L.T.; Yeh, H.-M.; Huang, C.-H.; Nakata, H. Polycyclic Aromatic Hydrocarbons (PAHs) in Road Dust Collected from Myanmar, Japan, Taiwan, and Vietnam. Arch. Environ. Contam. Toxicol. 2019, 78, 34–45. [Google Scholar] [CrossRef]
- Valmari, T.; Kauppinen, E.I.; Kurkela, J.; Jokiniemi, J.K.; Sfiris, G.; Revitzer, H. Fly ash formation and deposition during flu-idized bed combustion of willow. J. Aerosol. Sci. 1998, 29, 445–459. [Google Scholar] [CrossRef]
- Kozielska, B.; Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Jureczko, I. Polycyclic aromatic hydrocarbons in various franctions of ambient particulate matter at areas dominated by traffic emission. Eco. Eng. 2016, 49, 25–32. [Google Scholar] [CrossRef]
- Fernandez-Turiel, J.-L.; De Carvalho, W.; Cabañas, M.; Querol, X.; Soler, L. Mobility of heavy metals from coal fly ash. Environ. Earth Sci. 1994, 23, 264–270. [Google Scholar] [CrossRef]
- Ram, L.C.; Srivastava, N.K.; Tripathi, R.C.; Thakur, S.K.; Sinha, A.K.; Jha, S.K.; Masto, R.E.; Mitra, S. Leaching behavior of lignite fly ash with shake and column tests. Environ. Earth Sci. 2006, 51, 1119–1132. [Google Scholar] [CrossRef]
- Sarode, D.B.; Jadhav, R.N.; Khatik, V.A.; Ingle, S.T.; Attarde, S.B. Extraction andleaching of heavy metals from thermal power plant fly ash and its admixtures. Pol. J. Environ. Stud. 2010, 19, 1325–1330. [Google Scholar]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Dai, S.; Finkelman, R.B.; Graham, I.T.; French, D.; Hower, J.C.; Li, X. Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel 2019, 255, 115710. [Google Scholar] [CrossRef]
- Chyc, M.; Burzała, B. Carbon black—A hazardous waste. Arch. Waste Manag. Environ. Prot. 2012, 14, 65–70. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BSL6-0016-0025 (accessed on 17 August 2022). (In Polish).
- Skotak, K.; Degórska, A.; Ulańczyk, R.; Pecka, T. Soot as an indicator of human activity for life and environment. Chem. Ind. 2016, 95, 548–553. [Google Scholar] [CrossRef]
- Kubica, R.; Kubica, K.; Kacprzyk, W. Limitation of black carbon emissions from solid fuel combustion in small plants. Chem. Ind. 2016, 95, 472–479. [Google Scholar] [CrossRef]
- Kumar, V.; Kothiyal, N.C.; Saruchi; Vikas, P.; Sharma, R. Sources, distribution, and health effect of carcinogenic polycyclic aromatic hydrocarbons (PAHs)—Current knowledge and future directions. J. Chin. Adv. Mater. Soc. 2016, 4, 302–321. [Google Scholar] [CrossRef]
- Park, G.S.; Lee, S.H.; Park, S.Y.; Yoon, S.J.; Lee, S.M.; Chung, C.S.; Hong, G.-H.; Kim, S.H. Ecotoxicological evaluation of sewage sludge using bioluminescent marine bacteria and rotifer. Ocean Sci. J. 2005, 40, 91–100. [Google Scholar] [CrossRef]
- Parvez, S.; Venkataraman, C.; Mukherji, S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006, 32, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Fulladosa, E.; Murat, J.C.; Villaescusa, I. Effect of Cadmium(II), Chromium(VI), and Arsenic(V) on Long-Term Viability- and Growth-Inhibition Assays Using Vibrio fischeri Marine Bacteria. Arch. Environ. Contam. Toxicol. 2005, 49, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Zadorozhnaya, O.; Kirsanov, D.; Buzhinsky, I.; Tsarev, F.; Abramova, N.; Bratov, A.; Muñoz, F.J.; Ribó, J.; Bori, J.; Riva, M.C.; et al. Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria. Sens. Actuators B Chem. 2015, 207, 1069–1075. [Google Scholar] [CrossRef]
- Mansour, S.A.; Abdel-Hamid, A.A.; Ibrahim, A.W.; Mahmoud, N.H.; Moselhy, W.A. Toxicity of Some Pesticides, Heavy Metals and Their Mixtures to Vibrio fischeri Bacteria and Daphnia magna: Comparative Study. J. Biol. Life Sci. 2015, 6, 221–240. [Google Scholar] [CrossRef]
- Mariani, L.; Grenni, P.; Barra Caracciolo, A.; Donati, E.; Rauseo, J.; Rolando, L.; Patrolecco, L. Toxic response of the bacterium Vibrio fischeri to sodium lauryl ether sulphate residues in excavated soils. Ecotoxicology 2020, 29, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Ramteke, P.W.; Sagar, A.; Singh, M.P. Assessment of wastewater toxicity by Vibrio fischeri bioassay. Int. J. Ecol. Environ. Sci. 2019, 45, 15–17. [Google Scholar]
Type of Fuel | Moisture [%] | Volatile Substances [%] | Ash Content [%] |
---|---|---|---|
Mixed firewood | 7.82 ± 0.10 | 75.65 ± 0.33 | 0.44 ± 0.02 |
Pellet 6 mm | 5.51 ± 0.16 | 77.37 ± 0.34 | 0.72 ± 0.04 |
Hard coal with a grain size of 8–25 mm | 12.40 ± 0.13 | 39.07 ± 0.09 | 5.68 ± 0.02 |
Hard coal with a grain size of 25–80 mm | 22.75 ± 0.20 | 40.36 ± 0.41 | 5.73 ± 0.65 |
Hard coal with particle sizes above 60 mm | 21.56 ± 0.16 | 33.34 ± 0.20 | 6.93 ± 0.03 |
ng/g DM (ng/g Dry Mass) | Hard Coal with Dimensions over 60 mm | Hard Coal with a Grain Size of 8–25 mm | Mixed Firewood | Pellet | Hard Coal with a Grain Size of 25–80 mm |
---|---|---|---|---|---|
Scheme for presenting the results | |||||
Naphthalene [NAP] | 33.99 ± 1.34 28.93–35.05 | 13.26 ± 0.46 9.57–16.30 | 10.70 ± 1.79 7.02–14.04 | 19.05 ± 3.02 16.07–24.04 | 11.94 ± 2.04 6.46–13.04 |
Acenaphthene [ACY] | 204.09 ± 8.72 190.12–208.63 | 25.30 ± 1.35 22.34–29.05 | 30.24 ± 3.05 27.61–34.05 | 190.25 ± 11.13 178.35–195.35 | 65.87 ± 4.53 60.21–69.24 |
Acenaphthene [ACE] | 48.81 ± 2.56 43.62–51.24 | 4.94 ± 0.81 3.57–6.03 | 5.26 ± 0,67 4.50–8.38 | 33.76 ± 2.04 27.35–37.35 | 9.07 ± 1.03 8.35–11.34 |
Fluorene [FLU] | 83.61 ± 3.56 72.04–87.53 | 15.77 ± 1.45 11.23–17.03 | 14.68 ± 2.04 9.02–17.09 | 68.87 ± 3.96 62.95–78.34 | 54.82 ± 7.35 49.646–59.32 |
Phenanthrene [PHE] | 323.48 ± 11.23 302.11–330.32 | 125.65 ± 9.63 119.35–130.56 | 47.76 ± 7.35 40.04–51.05 | 372.84 ± 26.75 356.24–384.46 | 951.42 ± 75.34 902.34–975.30 |
Anthracene [ANT] | 189.19 ± 8.24 180.54–197.09 | 50.48 ± 4.50 45.24–54.26 | 17.58 ± 1,70 14.56–19.09 | 211.31 ± 16.57 197.45–226.68 | 381.61 ± 45.35 374.11–395.34 |
Fluoranthene [FLR] | 34.98 ± 3.56 29.35–40.34 | 30.52 ± 6.24 26.73–34.63 | 5.56 ± 1,66 4.06–7.03 | 61.89 ± 5.78 53.84–67.45 | 277.51 ± 35.51 256.34–295.30 |
Pyrene [PYR] | 162.86 ± 9.03 154.65–170.30 | 168.38 ± 8.56 159.85–173.45 | 26.81 ± 4.03 21.05–35.63 | 293.28 ± 16.45 282.56–297.10 | 1449.27 ± 124.4 1405.13–1535.03 |
Benzo[a]anthracene [B(a)A] | 54.92 ± 2.67 48.11–59.61 | 56.32 ± 5.63 50.52–59.60 | 12.06 ± 9.34 10.01–17.51 | 52.31 ± 4.91 47.35–58.10 | 217.25 ± 23.45 204.54–234.51 |
Chrysene [CHR] | 25.86 ± 2.56 22.45–32.45 | 41.18 ± 2.64 39.35–44.05 | 6.61 ± 1.64 3.40–8.03 | 29.22 ± 2.45 25.77–35.62 | 126.45 ± 15.51 110.43–134.21 |
Benzo[b]fluoranthene [B(b)F] | 32.08 ± 1.67 28.90–36.34 | 60.99 ± 6.34 52.35–66.78 | 5.94 ± 1.05 4.06–7.03 | 20.46 ± 2.04 17.64–24.51 | 221.50 ± 26.20 194.32–230.53 |
Benzo[k]fluoranthene [B(k)F] | 45.85 ± 1.89 38.13–47.35 | 104.90 ± 8.35 96.24–109.44 | 8.51 ± 1.04 6.03–10.01 | 44.20 ± 4.05 38.03–49.35 | 207.27 ± 26.45 191.02–218.34 |
Benzo[a]pyrene [B(a)P] | 29.52 ± 2.01 25.35–32.56 | 53.38 ± 3.84 45.35–56.20 | 3.01 ± 0,23 2.04–4.04 | 24.43 ± 2.35 20.54–28.44 | 67.84 ± 16.24 61.34–74.35 |
Indeno[1,2,3,c,d]pyrene [I(cd)P] | 38.03 ± 2.06 30.01–40.13 | 80.76 ± 7.56 71.20–85.60 | 7.64 ± 1.51 6.02–9.40 | 16.80 ± 1.56 14.56–19.45 | 40.19 ± 5.34 34.24–46.10 |
Dibenz[a,h]anthracene [D(ah)A] | 27.74 ± 2.04 24.67–31.54 | 22.67 ± 2.01 19.90–26.70 | 4.54 ± 0.53 3.05–7.03 | 5.80 ± 1.56 4.03–6.89 | 29.62 ± 2,35 25.35–34.3 |
Benzo[g,h,i]perylene [B(ghi)P] | 110.86 ± 7.45 104.22–115.60 | 123.81 ± 10.23 119.01–128.99 | 18.67 ± 3.02 15.06–20.01 | 19.05 ± 2.46 17.45–23.05 | 44.31 ± 4.35 35.13–46.24 |
SUMA | 1445.86 | 978.32 | 225.58 | 1463.51 | 4155.92 |
∑LMW | 693.98 | 184.92 | 108.65 | 684.77 | 1093.12 |
∑HMW | 562.70 | 742.93 | 99.35 | 567.43 | 2681.19 |
TEQ = CEQ | 523.59 | 337.23 | 80.11 | 445.63 | 1248.35 |
MEQ | 88.54 | 140.64 | 13.78 | 49.81 | 195.48 |
TCDD-TEQ | 0.60 | 1.23 | 0.11 | 0.48 | 2.52 |
ΣWWAcarc/ΣWWA | 175.67 | 429.52 | 214.15 | 132.02 | 218.99 |
EC50 after 5 min | TUa after 5 min | Toxicity According Persoone [47] | Toxicity According Sawicki et al. [48] | EC50 after 15 min | TUa after 15 min | Toxicity According Persoone [47] | Toxicity According Sawicki et al. [48] | |
---|---|---|---|---|---|---|---|---|
Hard coal with a grain size of 8–25 mm | 17.49 | 5.72 | Class 2 | Class 1 | 15.91 | 6.29 | Class 2 | Class 1 |
Hard coal with a grain size of 25–80 mm | 12.69 | 7.88 | Class 2 | Class 1 | 11.89 | 8.41 | Class 2 | Class 1 |
Hard coal with dimensions over 60 mm | 3.52 | 25.51 | Class 3 | Class 3 | 3.85 | 30.21 | Class 3 | Class 3 |
Pellet | 4.56 | 21.93 | Class 3 | Class 2 | 4.49 | 22.27 | Class 3 | Class 2 |
Mixed firewood | 12.01 | 8.33 | Class 2 | Class 1 | 11.89 | 8.41 | Class 2 | Class 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatyłowicz, E.; Hawrylik, E. Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment. Water 2022, 14, 3079. https://doi.org/10.3390/w14193079
Szatyłowicz E, Hawrylik E. Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment. Water. 2022; 14(19):3079. https://doi.org/10.3390/w14193079
Chicago/Turabian StyleSzatyłowicz, Ewa, and Eliza Hawrylik. 2022. "Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment" Water 14, no. 19: 3079. https://doi.org/10.3390/w14193079
APA StyleSzatyłowicz, E., & Hawrylik, E. (2022). Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment. Water, 14(19), 3079. https://doi.org/10.3390/w14193079