From Sponge Cities to Sponge Watersheds: Enhancing Flood Resilience in the Sishui River Basin in Zhengzhou, China
Abstract
:1. Introduction
2. The SWA Framework and Strategies
2.1. Framework
2.2. Source Strategy: Absorption and Detention
2.2.1. Fish-Scale Pits + Forestation
2.2.2. Terraced Fields + Check Dam
2.2.3. Ponds and Benches
2.3. Flow Strategy: Deceleration and Dissipation
2.3.1. Widen the River and Reintroduce Meanders
2.3.2. Build Weirs and Construct Diverse Landforms
2.3.3. Planting to Stabilize the Landforms
2.4. Sink Strategy: Resilience and Adaptation
2.4.1. Site Buildings on Constructed Earthen Benches
2.4.2. Build Structures with Open, Floodable Ground Floors
2.4.3. Activity Adaptation
3. Materials and Methods
3.1. Study Area and Data
3.1.1. Study Area
3.1.2. Data Collection
3.2. Modeling Process and Model Setup
3.2.1. Hydrologic Modeling Process
- (1)
- The hyetograph
- (2)
- The hydrologic model setup
- (3)
- Development of the source and flow interventions
3.2.2. Hydraulic Modeling at the Sink and Its Validation
3.2.3. Flood-Loss Calculation
3.3. Simulation Scenarios of SWA Strategies
4. Results
4.1. Model Validation Using Flood Conditions
4.2. The Effects of the Source and Flow Strategies on Peak Flow
4.2.1. The Effects of the Source Strategy
4.2.2. The Effects of the Flow Strategies
4.3. The Assessments of SWA Strategies for Flood Mitigation
4.3.1. The Effects on Hydrograph and Peak Value
4.3.2. The Effects on Inundation Area and Flood Loss
4.3.3. The Effects of Elevating Structures’ Bases
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of Shorter More Extreme Rainfalls and Increased Flood Variability under Climate Change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Blöschl, G.; Kiss, A.; Viglione, A.; Barriendos, M.; Böhm, O.; Brázdil, R.; Coeur, D.; Demarée, G.; Llasat, M.C.; Macdonald, N.; et al. Current European Flood-Rich Period Exceptional Compared with Past 500 Years. Nature 2020, 583, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Kottasová, I. Enormous Scale of Destruction Is Revealed as Water Subsides after Historic Western Europe Flooding. Available online: https://edition.cnn.com/2021/07/18/europe/western-europe-floods-sunday-intl/index.html (accessed on 17 July 2022).
- Leandro, J. Title of Special Issue: Towards More Flood Resilient Cities. Urban Water J. 2015, 12, 1–2. [Google Scholar] [CrossRef]
- Driessen, P.P.J.; Hegger, D.L.T.; Kundzewicz, Z.W.; Rijswick, H.F.M.W.V.; Crabbé, A.; Larrue, C.; Matczak, P.; Pettersson, M.; Priest, S.; Suykens, C.; et al. Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water 2018, 10, 1595. [Google Scholar] [CrossRef] [Green Version]
- Yu, K. Climate Adaptation and Resilience. Landsc. Archit. Front. 2021, 9, 4–7. [Google Scholar]
- Disaster Investigation Group of the State Council. The Investigation Report on the “7·20” Heavy Rainfall Disaster of Zhengzhou, Henan; Disaster Investigation Group of the State Council: China, 2022. [Google Scholar]
- Yu, K.; Li, D.; Yuan, H.; Fu, W.; Qiao, Q.; Wang, S. “Sponge City”: Theory and Practice. City Plan. Rev. 2015, 39, 26–36. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and More–The Evolution and Application of Terminology Surrounding Urban Drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning Green Infrastructure to Mitigate Urban Surface Water Flooding Risk–A Methodology to Identify Priority Areas Applied in the City of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low Impact Development Techniques to Mitigate the Impacts of Climate-Change-Induced Urban Floods: Current Trends, Issues and Challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Yin, D.; Xu, C.; Jia, H.; Yang, Y.; Sun, C.; Wang, Q.; Liu, S. Sponge City Practices in China: From Pilot Exploration to Systemic Demonstration. Water 2022, 14, 1531. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J. A Review of the Progress in Chinese Sponge City Programme: Challenges and Opportunities for Urban Stormwater Management. Water Supply 2021, 22, 1638–1651. [Google Scholar] [CrossRef]
- Yu, K. Three Key Strategies to Achieve A Sponge City: Retention, Slow Down and Adaptation. South Archit. 2015, 4–7. [Google Scholar]
- Yu, K. Sponge Philosophy. Landsc. Archit. Front. 2015, 3, 0. [Google Scholar]
- The Ministry of Housing and Urban-Rural Development. Technical Guide for Sponge City Construction—Construction of Rainwater System with Low Impact Development (Trial Implementation); Architecture& Building Press: Beijing, China, 2014. [Google Scholar]
- The Ministry of Finance; The Ministry of Housing and Urban-Rural Development; The Ministry of Water Resources. Notice on the Demonstration Projects of Promoting Sponge City Construction from the System and Regional Perspective. Available online: http://www.gov.cn/zhengce/zhengceku/2021-04/26/content_5602408.htm (accessed on 26 April 2021).
- Golden, H.E.; Hoghooghi, N. Green Infrastructure and Its Catchment-Scale Effects: An Emerging Science. WIREs Water 2018, 5, 1254. [Google Scholar] [CrossRef] [Green Version]
- Sayers, P.B.; Hall, J.W.; Meadowcroft, I.C. Towards Risk-Based Flood Hazard Management in the UK. Civ. Eng. 2002, 150, 36–42. [Google Scholar] [CrossRef]
- GWP (Global Water Partnership Technical Advisory Committee). Integrated Water Resources Management (TAC Background Paper 4); Global Water Partnership: Stockholm, Sweden, 2000. [Google Scholar]
- Department of the Environment, Transport and Regions; Environment Agency; Institute for Environment and Health. Guidelines for Environmental Risk Assessment and Management; The Stationery Office: London, UK, 2000. [Google Scholar]
- Evans, E.; Hall, J.; Penning-Rowsell, E.; Sayers, P.; Thorne, C.; Watkinson, A. Future Flood Risk Management in the UK. Proc. Inst. Civ. Eng.-Water Manag. 2006, 159, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Holdgate, M.W. A Perspective of Environmental Pollution; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Zhang, Y.; Wang, H. Study on the Concept and Simulation Evaluation Method of Sponge Watershed. Master’s Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2017. [Google Scholar]
- Wang, J.; Xue, F.; Jing, R.; Lu, Q.; Huang, Y.; Sun, X.; Zhu, W. Regenerating Sponge City to Sponge Watershed through an Innovative Framework for Urban Water Resilience. Sustainability 2021, 13, 5358. [Google Scholar] [CrossRef]
- Li, Y.; Xue, F.; Jing, R.; Wang, Y.; Wang, J. Study on Water-City Pattern Strategies of Shenshan Special Cooperation Zone, China With Sponge City Construction at the Watershed Scale. Landsc. Archit. Front. 2019, 7, 104–113. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Hill, R.L.; Wu, S.; Dong, Q.; Sun, L.; Zhang, K. Fish-Scale Pit Effects on Erosion and Water Runoff Dynamics When Positioned on a Soil Slope in the Loess Plateau Region, China. Land Degrad. Dev. 2019, 30, 1813–1827. [Google Scholar] [CrossRef]
- Wei, W.; Pan, D.; Yang, Y. Effects of Terracing Measures on Water Retention of Pinus Tabulaeformis Forest in the Dryland Loess Hilly Region of China. Agric. For. Meteorol. 2021, 308–309, 108544. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Abbasi, M.; Keesstra, S.; Cerdà, A. Assessment of Soil Particle Erodibility and Sediment Trapping Using Check Dams in Small Semi-Arid Catchments. CATENA 2017, 157, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Green, C. Towards Sustainable Flood Risk Management. Int. J. Disaster Risk Sci. 2010, 1, 33–43. [Google Scholar] [CrossRef]
- Yu, K.; Yu, W.; Lin, G.; Zhang, J.; Bai, Z. Slowing Down Nutrient Flows—Ecological Design of the Fengxiang Park. Landsc. Archit. Front. 2019, 7, 102–115. [Google Scholar]
- Liao, K.-H. A Theory on Urban Resilience to Floods—A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-Based Coastal Defence in the Face of Global Change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Zhengzhou Water Conservancy Construction Survey and Design Institute. Special Report on Flood Control Planning in Mihe Town, Gongyi City; Zhengzhou Water Conservancy Construction Survey and Design Institute: Zhengzhou, China, 2021. [Google Scholar]
- Gongyi Municipal People’s Government. Post-Disaster Restoration and Reconstruction Planning in Mihe Town, Gongyi City; Gongyi Municipal People’s Government: Zhengzhou, China, 2021. [Google Scholar]
- William, A.S.; Matthew, J.F. HEC-HMS User’s Manual; Version 4.10; US Army Corps of Engineers Hydrologic Engineering Center (HEC): Washington, DC, USA, 2013. [Google Scholar]
- Brunner, G.W. HEC-RAS River Analysis System User’s Manual; Version 5.0; US Army Corps of Engineers Hydrologic Engineering Center (HEC): Davis, CA, USA, 2016. [Google Scholar]
- Cronshey, R.; McCuen, R.H.; Miller, N.; Rawls, W.; Robbins, S.; Woodward, D. Urban Hydrology for Small Watersheds (TR-55); Natural Resources Conservation Service: Washington, DC, USA, 1986. [Google Scholar]
- Henan Water Conservancy Survey and Design Institute. Design Storm and Flood Atlas for Small and Medium-Sized Watersheds in Henan Province; Henan Water Conservancy Survey and Design Institute: Zhengzhou, China, 1984. [Google Scholar]
- Ibrahim-Bathis, K.; Ahmed, S.A. Rainfall-Runoff Modelling of Doddahalla Watershed—An Application of HEC-HMS and SCN-CN in Ungauged Agricultural Watershed. Arab. J. Geosci. 2016, 9, 170. [Google Scholar] [CrossRef]
- El Alfy, M. Assessing the Impact of Arid Area Urbanization on Flash Floods Using GIS, Remote Sensing, and HEC-HMS Rainfall–Runoff Modeling. Hydrol. Res. 2016, 47, 1142–1160. [Google Scholar] [CrossRef] [Green Version]
- Azizi, S.; Ilderomi, A.R.; Noori, H. Investigating the Effects of Land Use Change on Flood Hydrograph Using HEC-HMS Hydrologic Model (Case Study: Ekbatan Dam). Nat. Hazards 2021, 109, 145–160. [Google Scholar] [CrossRef]
- Yuan, W.; Fu, L.; Gao, Q. Research on Rainfall Threshold of Flash Flood Based on HEC-HMS Model. Yellow River 2019, 41, 22–27+31. [Google Scholar]
- Yong, B.; Zhang, W.; Zhao, D.; Zhu, Q. Application of Hydrological Modeling System HEC-HMS to Baohe Catchment of Hanjiang Basin. Bull. Soil Water Conserv. 2006, 26, 86–90. [Google Scholar] [CrossRef]
- Xing, Z.; Ma, M.; Wen, L.; Liu, C.; Lv, J.; Su, Z. Application of HEC-HMS Model in Mountain Flood Forecasting in Data Deficient Areas. J. China Inst. Water Resour. Hydropower Res. 2020, 18, 54–61. [Google Scholar] [CrossRef]
- Niazi, M.; Nietch, C.; Maghrebi, M.; Jackson, N.; Bennett, B.R.; Tryby, M.; Massoudieh, A. Storm Water Management Model: Performance Review and Gap Analysis. J. Sustain. Water Built Environ. 2017, 3, 04017002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Leon, A.S.; Kavvas, M.L. Impact of Size and Location of Wetlands on Watershed-Scale Flood Control. Water Resour. Manag. 2020, 34, 1693–1707. [Google Scholar] [CrossRef]
- Salman, A.; Hassan, S.S.; Khan, G.D.; Goheer, M.A.; Khan, A.A.; Sheraz, K. HEC-RAS and GIS-Based Flood Plain Mapping: A Case Study of Narai Drain Peshawar. Acta Geophys. 2021, 69, 1383–1393. [Google Scholar] [CrossRef]
- Néelz, S.; Pender, G. Desktop Review of 2D Hydraulic Modelling Packages; Joint UK Defra/Environment Agency Flood and Coastal Erosion: Bristol, UK, 2009. [Google Scholar]
- Leon, A.S.; Tang, Y.; Qin, L.; Chen, D. A MATLAB Framework for Forecasting Optimal Flow Releases in a Multi-Storage System for Flood Control. Environ. Model. Softw. 2020, 125, 104618. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A.; Boutahri, I. Application of HEC-RAS and HEC-LifeSim Models for Flood Risk Assessment. J. Appl. Water Eng. Res. 2021, 9, 336–351. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, M.; Li, X.; Hu, Z. Study on the Influence of Different River Widening Schemes on River. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 10–12 December 2021; pp. 2037–2041. [Google Scholar]
- Yu, K.; Zhang, L. The Flood and Waterlog Adaptive Landscapes in Ancient Chinese Cities in the Yellow River Basin. Urban Plan. Forum 2007, 85–91. [Google Scholar]
- Wu, Q. The Protection of China’s Ancient Cities from Flood Damage. Disasters 1989, 13, 193–227. [Google Scholar] [CrossRef]
- Armillas, P. Gardens on Swamps: Archeological Research Verifies Historical Data on Aztec Land Reclamation in the Valley of Mexico. Science 1971, 174, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Architecten, K.; Stijlgroep, D. Plan Tide, Dordrecht, The Netherlands. Available online: https://www.urbangreenbluegrids.com/projects/plan-tide-dordrecht-the-netherlands/ (accessed on 19 September 2022).
Number | Scenario | Interventions |
---|---|---|
S1 | None | |
S2 | The optimal Cr value | |
S3 | The optimal flow strategies | |
S4 | Combination of and | |
S5 | The sink area after intervention | |
S6 | Combination of and | |
S7 | Combination of and | |
S8 | Combination of , , and |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Heng, X.; Li, Q.; Li, J.; Yu, K. From Sponge Cities to Sponge Watersheds: Enhancing Flood Resilience in the Sishui River Basin in Zhengzhou, China. Water 2022, 14, 3084. https://doi.org/10.3390/w14193084
Peng X, Heng X, Li Q, Li J, Yu K. From Sponge Cities to Sponge Watersheds: Enhancing Flood Resilience in the Sishui River Basin in Zhengzhou, China. Water. 2022; 14(19):3084. https://doi.org/10.3390/w14193084
Chicago/Turabian StylePeng, Xiao, Xianpei Heng, Qing Li, Jianxia Li, and Kongjian Yu. 2022. "From Sponge Cities to Sponge Watersheds: Enhancing Flood Resilience in the Sishui River Basin in Zhengzhou, China" Water 14, no. 19: 3084. https://doi.org/10.3390/w14193084
APA StylePeng, X., Heng, X., Li, Q., Li, J., & Yu, K. (2022). From Sponge Cities to Sponge Watersheds: Enhancing Flood Resilience in the Sishui River Basin in Zhengzhou, China. Water, 14(19), 3084. https://doi.org/10.3390/w14193084