Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment
Abstract
:1. Introduction
2. Method
2.1. Boundary Condition of Simulation
2.2. Simulation Design
2.2.1. Simulation of Different Water Body Area Proportions
2.2.2. Simulation of Different Water Body Layouts
3. Results
3.1. The Effect of Area Proportion on the Cooling Effect
3.2. The Effect of Layout on the Cooling Effect
3.2.1. Effect of the SI of Water Bodies on the Cooling Effect
3.2.2. Effect of the LSI of Water Bodies on the Cooling Effect
4. Discussion
4.1. The Effect of Wind Direction on the Cooling Effect
4.2. The Effect of Waterfront Green Space Type on the Cooling Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, D.; Song, J.; Huang, J.; Zhuang, C.; Guo, R.; Gao, Y. Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: A case study in Chongqing, China. Sustain. Cities Soc. 2020, 55, 102065. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Sun, X.; Huang, C.; Yuan, Y.; Hou, D. Comparison of cooling effect between green space and water body. Sustain. Cities Soc. 2021, 67, 102711. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chan, M.W.H. Urban greenspace delivery in Hong Kong: Spatial-institutional limitations and solutions. Urban For. Urban Green. 2016, 18, 65–85. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Nicholson, S.E. Land surface atmosphere interaction: Physical processes and surface changes and their impact. Prog. Phys. Geogr. 1988, 12, 36–65. [Google Scholar] [CrossRef]
- Jia, H.; Ma, H.; Wei, M. Urban wetland planning: A case study in the Beijing central region. Ecol. Complex. 2011, 8, 213–221. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M.; Synnefa, A.; Assimakopoulos, D.; Didaskalopoulos, P.; Apostolakis, K. Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings. Build. Environ. 2011, 46, 570–576. [Google Scholar] [CrossRef]
- Syafii, N.I.; Ichinose, M.; Kumakura, E.; Chigusa, K.; Jusuf, S.K.; Wong, N.H. Enhancing the potential cooling benefits of urban water bodies. Nakhara J. Environ. Des. Plan. 2017, 13, 29–40. [Google Scholar]
- Peng, J.; Liu, Q.; Xu, Z.; Lyu, D.; Du, Y.; Qiao, R.; Wu, J. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landsc. Urban Plan. 2020, 202, 103873. [Google Scholar] [CrossRef]
- Liu, Z.; Li, K.; Jia, H.; Wang, Z. Refining Assignment of Runoff Control Targets with a Landscape Statistical Model: A Case Study in the Beijing Urban Sub-Center, China. Water 2022, 14, 1466. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, L. Thermal environment effect of urban water landscape. Acta Ecol. Sin. 2013, 33, 1852–1859. [Google Scholar]
- Li, C.; Yu, C.W. Mitigation of urban heat development by cool island effect of green space and water body. In Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, Xi’an, China, 20–21 October 2013; pp. 551–561. [Google Scholar]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Cheng, L.; Guan, D.; Zhou, L.; Zhao, Z.; Zhou, J. Urban cooling island effect of main river on a landscape scale in Chongqing, China. Sustain. Cities Soc. 2019, 47, 101501. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, W. Investigating the heterogeneity of water cooling effect for cooler cities. Sustain. Cities Soc. 2021, 75, 103281. [Google Scholar] [CrossRef]
- Sun, R.; Chen, A.; Chen, L.; Lue, Y. Cooling effects of wetlands in an urban region: The case of Beijing. Ecol. Indic. 2012, 20, 57–64. [Google Scholar] [CrossRef]
- Hong, J.; Teng, S.; Zhang, R. Effect of water body forms on microclimate of residential district. Energy Procedia 2017, 134, 256–265. [Google Scholar]
- Syafii, N.I.; Ichinose, M.; Kumakura, E.; Jusuf, S.K.; Hien, W.N.; Chigusa, K.; Ashie, Y. Assessment of the Water Pond Cooling Effect on Urban Microclimate: A Parametric Study with Numerical Modeling. Assessment 2021, 12, 461–471. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xu, J. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban For. Urban Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Li, S. Microclimate effects of different underlying surfaces in cities. In Proceedings of the 2006 Annual Meeting of China Meteorological Society, Chengdu, China, 25–27 October 2006; pp. 173–186. [Google Scholar]
- Anderson, W.P.; Anderson, J.L.; Thaxton, C.S.; Babyak, C.M. Changes in stream temperatures in response to restoration of groundwater discharge and solar heating in a culverted, urban stream. J. Hydrol. 2010, 393, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Chen, Y.; Liang, L.; Gong, A.; Li, J. Quantitative analysis of the interannual variation in the seasonal water cooling island (WCI) effect for urban areas. Sci. Total Environ. 2020, 727, 138750. [Google Scholar] [CrossRef]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: The study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Manteghi, G.; Lamit, H.; Remaz, D.; Aflaki, A. ENVI-Met simulation on cooling effect of Melaka River. Int. J. Energy Environ. Res. 2016, 4, 7–15. [Google Scholar]
- Yang, J.; Hu, X.; Feng, H.; Marvin, S. Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban For. Urban Green. 2021, 66, 127384. [Google Scholar] [CrossRef]
- Han, D.; Yang, X.; Cai, H.; Xu, X. Impacts of neighboring buildings on the cold island effect of central parks: A case study of Beijing, China. Sustainability 2020, 12, 9499. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Chen, Z. Simulation and optimization of the impact of green space on urban local thermal environment. Master’s Thesis, Beijing Normal University, Beijing, China, 2018. [Google Scholar]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: St. Paul, MN, USA, 1995; Volume 351.
- Zeng, Z.; Zhou, X.; Li, L. The Impact of Water on Microclimate in Lingnan Area. Procedia Eng. 2017, 205, 2034–2040. [Google Scholar] [CrossRef]
- Herb, W.R.; Stefan, H.G. Dynamics of vertical mixing in a shallow lake with submersed macrophytes. Water Resour. Res. 2005, 41, 293–307. [Google Scholar] [CrossRef]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Syafii, N.I.; Ichinose, M.; Kumakura, E.; Jusuf, S.K.; Chigusa, K.; Wong, N.H. Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustain. Cities Soc. 2017, 34, 79–89. [Google Scholar] [CrossRef]
- Jacobs, C.; Klok, L.; Bruse, M.; Cortesão, J.; Lenzholzer, S.; Kluck, J. Are urban water bodies really cooling? Urban Clim. 2020, 32, 100607. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Chen, Y. Seasonal Variations of the Cooling Effect of Water Landscape in High-density Urban Built-up Area: A Case Study of the Center Urban District of Guangzhou. In Proceedings of the 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017; pp. 394–400. [Google Scholar]
- Xue, Z.; Hou, G.; Zhang, Z.; Lyu, X.; Jiang, M.; Zou, Y.; Shen, X.; Wang, J.; Liu, X. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: Case study of cities of Northeast China. Landsc. Urban Plan. 2019, 182, 92–100. [Google Scholar] [CrossRef]
Water Body Area Proportion | Area (m²) | Model |
---|---|---|
0% | 0 | |
1% | 100 | |
4% | 400 | |
9% | 900 | |
16% | 1600 | |
25% | 2500 | |
36% | 3600 | |
49% | 4900 | |
64% | 6400 |
Case | Perimeter of a Single Water Patch (m) | Area of a Single Water Patch (m²) | SI | LSI | Model |
---|---|---|---|---|---|
case 1 | 160 | 1600 | 0 | 1.13 | |
case 2 | 40 | 400 | 0.06 | 1.13 | |
case 3 | 40 | 400 | 0.25 | 1.13 | |
case 4 | 40 | 400 | 0.56 | 1.13 | |
case 5 | 200 | 1600 | 0 | 1.41 | |
case 6 | 260 | 1600 | 0 | 1.69 |
Water Body Area Proportion | 16% | 25% | 36% | 49% | 64% |
---|---|---|---|---|---|
Points |
Water Body Area Proportion | Point | Air Temperature (°C) | Cooling Effect (°C) |
---|---|---|---|
16% | 1 | 33.506 | 0.672 |
2 | 33.734 | 0.560 | |
3 | 34.245 | 0.199 | |
25% | 1 | 33.343 | 0.812 |
2 | 33.576 | 0.718 | |
3 | 34.197 | 0.298 | |
36% | 1 | 33.182 | 0.956 |
2 | 33.390 | 0.905 | |
3 | 34.139 | 0.416 | |
49% | 1 | 33.037 | 1.093 |
2 | 33.183 | 1.112 | |
3 | 34.094 | 0.555 | |
64% | 1 | 32.938 | 1.203 |
2 | 33.019 | 1.275 | |
3 | 34.146 | 0.686 |
Waterfront Green Space Type | No Green Space | Grass (0.25 m) | Hedges (2 m) | Tree (15 m) |
---|---|---|---|---|
Model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.; Chen, Q.; Du, M.; Cheng, Q.; Li, Y.; Liu, R. Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment. Water 2022, 14, 3091. https://doi.org/10.3390/w14193091
Cao B, Chen Q, Du M, Cheng Q, Li Y, Liu R. Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment. Water. 2022; 14(19):3091. https://doi.org/10.3390/w14193091
Chicago/Turabian StyleCao, Beilei, Qiang Chen, Mingyi Du, Qianhao Cheng, Yuanyuan Li, and Rui Liu. 2022. "Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment" Water 14, no. 19: 3091. https://doi.org/10.3390/w14193091
APA StyleCao, B., Chen, Q., Du, M., Cheng, Q., Li, Y., & Liu, R. (2022). Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment. Water, 14(19), 3091. https://doi.org/10.3390/w14193091