Smooth and Stepped Converging Spillway Modeling Using the SPH Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Numerical Simulations
3. Results
3.1. Flow Depths and Velocity Profiles along the Broad Crested Weir
3.2. Flow Depths along the Spillway
3.2.1. Smooth Spillway with Two Converging Walls of = 9.9°
3.2.2. Smooth Spillway with One Converging Wall of = 19.3°
3.2.3. Stepped Spillway with Two Converging Walls of = 9.9°
3.2.4. Stepped Spillway with One Converging Wall of = 19.3°
3.2.5. Normalized Flow Depths at the Converging Wall on Smooth and Stepped Spillways
3.3. Velocity Profiles along the Spillway
3.4. Cross-Sectional Flow Depth Profiles and Standing Wave Development along the Spillway
3.5. Velocity and Vorticity Fields along the Stepped Spillway
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
speed of sound; | |
numerical speed of sound; | |
numerical density diffusion term; | |
flow depth; | |
initial particle spacing; | |
critical flow depth at the broad crested weir; | |
flow depth at the chute centerline; | |
flow depth at the converging wall; | |
flow depth at or near the non-converging wall; | |
flow depth at the chute centerline immediately upstream of the wall deflection at = 0; | |
flow depth at the chute centerline () or at the non-converging wall (); | |
flow depth at the converging wall (); | |
approach Froude number: ; | |
local Froude number: ; | |
continuous function; | |
g | gravity acceleration constant; |
g | gravity acceleration vector; |
upstream total head relative to the invert; | |
upstream total head above the broad crested weir; | |
step height; | |
kernel function length; | |
length of the step cavity, parallel to the pseudo-bottom; | |
length of the broad crested weir; | |
step length; | |
mass of the particle; | |
pressure; | |
discharge; | |
unit discharge relative to the upstream width of the chute; | |
normalized particle spacing in relation to the kernel function length: ; | |
hydraulic radius; | |
Reynolds number: ; | |
r | position vector; |
approach shock number: ; | |
time; | |
flow velocity; | |
mean flow velocity at the chute centerline or at the non-converging wall: ; | |
free-stream velocity; | |
velocity vector; | |
vorticity magnitude; | |
smoothing kernel function; | |
upstream width of the chute, at the downstream end of the broad crested weir; | |
downstream width of the chute, at at the upstream end of the stilling basin; | |
standing wave width; | |
streamwise coordinate, parallel to the bottom or the pseudo-bottom; | |
* | streamwise coordinate, parallel to the broad crested weir bottom; |
normal coordinate, perpendicular to the bottom or the pseudo-bottom; | |
* | normal coordinate, perpendicular to the broad crested weir bottom; |
transverse coordinate, from the right wall of the broad crested weir; | |
transverse coordinate from the right wall of the converging chute; | |
coefficient of the Wendland kernel function; | |
dissipation terms of the momentum equation; | |
exponent of the equation of state; | |
coefficient of the Delta-SPH function for the continuity equation; | |
chute angle from the horizontal; | |
kinematic viscosity; | |
density of the particle; | |
reference density; | |
wall convergence angle; | |
stress tensor. | |
Subscripts | |
interpolating particle; | |
neighboring particle; | |
values between particle and ; | |
x | streamwise coordinate, parallel to the bottom or the pseudo-bottom; |
normal coordinate, perpendicular to the bottom or the pseudo-bottom; | |
transverse coordinate, from the right wall of the broad crested weir. |
References
- USBR. Spillways. In Design of Small Dams, 3rd ed.; United States Department of the Interior: Washington, DC, USA, 1987; pp. 339–434. [Google Scholar]
- Hunt, S.L.; Kadavy, K.C.; Abt, S.R.; Temple, D.M. Impact of converging chute walls for roller compacted concrete stepped spillways. J. Hydraul. Eng. 2008, 134, 1000–1003. [Google Scholar] [CrossRef]
- Moran, R.; Toledo, M.A.; Peraita, J.; Pellegrino, R. Energy dissipation in stilling basins with side jets from highly convergent chutes. Water 2021, 13, 1343. [Google Scholar] [CrossRef]
- Dawson, J.H. The Effect of Lateral Contractions on Super-Critical Flow in Open Channels. M.Sc. Thesis, Lehigh University, Bethlehem, PA, USA, 1943. [Google Scholar]
- Ippen, A.T.; Dawson, J.H. Design of channel contractions. T. Am. Soc. Civ. Eng. 1951, 116, 326–346. [Google Scholar] [CrossRef]
- Hager, W.H.; Schwalt, M.; Jimenez, O.; Chaudhry, M.H. Supercritical flow near an abrupt wall deflection. J. Hydraul. Res. 1994, 32, 103–118. [Google Scholar] [CrossRef]
- Zindovic, B.; Vojt, P.; Kapor, R.; Savic, L. Converging stepped spillway flow. J. Hydraul. Res. 2016, 54, 699–707. [Google Scholar] [CrossRef]
- Stone, A.A. Theoretical Investigation of Standing Waves in Hydraulic Structures. M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1946. [Google Scholar]
- Ippen, A.T.; Harleman, D.R.F. Verification of theory for oblique standing waves. T. Am. Soc. Civ. Eng. 1956, 121, 678–694. [Google Scholar] [CrossRef]
- Nikpour, M.R.; Khosraviniab, P.; Farsadizadehc, D. Experimental analysis of shock waves turbulence in contractions with rectangular sections. J. Comp. Appl. Res. Mech. Eng. 2018, 8, 189–198. [Google Scholar] [CrossRef]
- Reinauer, R.; Hager, W.H. Shockwave reduction by chute diffractor. Exp. Fluids 1996, 21, 209–217. [Google Scholar] [CrossRef]
- Reinauer, R.; Hager, W.H. Supercritical flow in chute contraction. J. Hydraul. Eng. 1998, 124, 55–64. [Google Scholar] [CrossRef]
- Jiménez, O.F. Computation of Supercritical Flow in Open Channels. M.Sc. Thesis, Washington State University, Pullman, WA, USA, 1987. [Google Scholar]
- Jiménez, O.F.; Chaudhry, M.H. Computation of supercritical free-surface flows. J. Hydraul. Eng. 1988, 114, 377–395. [Google Scholar] [CrossRef]
- Causon, D.M.; Minghan, C.G.; Ingram, D.M. Advances in calculation methods for supercritical flow in spillway channels. J. Hydraul. Eng. 1999, 125, 1039–1050. [Google Scholar] [CrossRef]
- Abdo, K.; Riahi-Nezhad, K.C.; Imran, J. Steady supercritical flow in a straight-wall open-channel contraction. J. Hydraul. Res. 2018, 57, 647–661. [Google Scholar] [CrossRef]
- Neilson, F.M. Convex Chutes in Converging Supercritical Flow; Report; U.S. Army Engineer Waterways Experimentation Station Hydraulics Laboratory: Vicksburg, MS, USA, 1976. [Google Scholar]
- Jan, C.-D.; Chang, C.-J.; Lai, J.-S.; Guo, W.-D. Characteristics of hydraulic shock waves in an inclined chute contraction—Experiments. J. Mech. 2009, 25, 129–136. [Google Scholar] [CrossRef]
- Frizell, K.H. Hydraulic Model Study of Mc Clure Dam Existing and Proposed RCC Stepped Spillways; Report n. R-90-02; U.S. Department of the Interior, Bureau of Reclamation: Denver, CO, USA, 1990. [Google Scholar]
- Hanna, L.J.; Pugh, C.A. Hydraulic Model Study of Pilar Dam; Report, U.S.; Department of the Interior, Bureau of Reclamation, Technical Service Center: Denver, CO, USA, 1997. [Google Scholar]
- André, M.; Ramos, P. Hidráulica de Descarregadores de Cheia em Degraus: Aplicação a Descarregadores com Paredes Convergentes; Research Report; Instituto Superior Técnico, Universidade de Lisboa: Lisbon, Portugal, 2003. [Google Scholar]
- Frizell, K.H. Hydraulic Model Study of Gwinnett County Georgia Y15 Dam Overtopping Protection; Report HL-20006-05; U.S. Department of the Interior, Bureau of Reclamation: Washington, DC, USA, 2006. [Google Scholar]
- Cabrita, J. Caracterização do Escoamento Deslizante Sobre Turbilhões em Descarregadores de Cheias em Degraus com Paredes Convergentes. M.Sc. Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2007. [Google Scholar]
- Hunt, S.L. Design of Converging Stepped Spillways. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2008. [Google Scholar]
- Woolbright, R.W. Hydraulic Performance Evaluation of RCC Stepped Spillways with Sloped Converging Training Walls. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2008. [Google Scholar]
- Woolbright, R.W.; Hunt, S.L.; Hanson, G.J. Model study of RCC stepped spillways with sloped converging stepped spillway training walls. In Proceedings of the American Society of Agricultural and Biological Engineers, Providence, RI, USA, 29 June–2 July 2008. [Google Scholar] [CrossRef]
- Willey, J.; Ewing, T.; Lesleighter, E.; Dymke, J. Numerical and physical modelling for a complex stepped spillway. Hydropower Dams 2010, 17, 103–113. [Google Scholar]
- Wadhai, P.J.; Ghare, A.D.; Deshpande, N.V.; Vasudeo, A.D. Comparative analysis for estimation of the height of training wall of convergent stepped spillway. Int. J. Eng. Technol. 2015, 4, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Hunt, S.L.; Temple, D.M.; Abt, S.R.; Kadavy, K.C.; Hanson, G. Converging stepped spillways: Simplified momentum analysis approach. J. Hydraul. Eng. 2012, 138, 796–802. [Google Scholar] [CrossRef]
- Reisi, A.; Salah, P.; Kavianpour, M.R. Impact of chute walls convergence angle on flow characteristics of spillways using numerical modeling. Int. J. Chem. Environ. Biol. Sci. 2015, 3, 245–251. [Google Scholar]
- Nunes, A.F.P. Modelação Computacional do Escoamento Deslizante Sobre Turbilhões em Descarregadores de Cheias em Degraus com Paredes Convergentes. M.Sc. Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2017. [Google Scholar]
- Nunes, F.; Matos, J.; Meireles, I. Numerical modelling of skimming flow over small converging spillways. In Proceedings of the 3rd International Conference on Protection against Overtopping, Protections 2018, Grange-over-Sands, UK, 6–8 June 2018. [Google Scholar]
- Salazar, F.; San-Mauro, J.; Celigueta, M.A.; Oñate, E. Shockwaves in spillways with the particle finite element method. Comput. Part. Mech. 2020, 7, 87–99. [Google Scholar] [CrossRef]
- Nóbrega, J.D.; Matos, J.; Schulz, H.E.; Canelas, R.B. Smooth and stepped spillway modelling using the SPH method. J. Hydraul. Eng. 2020, 146, 04020054. [Google Scholar] [CrossRef]
- López, D.; de Blas, M.; Marivela, R.; Rebollo, J.J.; Díaz, R.; Sánchez Juny, M.; Strella, S. Estudio hidrodinámico de vertederos y rápidas escalonadas con modelo numérico tridimensional SPH: Proyecto ALIVESCA. In Proceedings of the II Jornadas de Ingeniería del Agua: Modelos Numéricos en Dinámica Fluvial: FLUMEN, Barcelona, Spain, 5–6 October 2011. [Google Scholar]
- Gu, S.; Ren, L.; Wang, X.; Xie, H.; Huang, Y.; Wei, J.; Shao, S. SPHysics simulation of experimental spillway hydraulics. Water 2017, 9, 973. [Google Scholar] [CrossRef] [Green Version]
- Novak, P.; Moffat, A.I.B.; Nalluri, C.; Narayanan, R. Hydraulic Structures, 4th ed.; Taylor & Francis: New York, NY, USA, 2007. [Google Scholar]
- Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method, 1st ed.; World Scientific Publishing: Singapore, 2003. [Google Scholar]
- Crespo, A.J.C.; Domínguez, J.M.; Rogers, B.D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O. DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Comm. 2015, 187, 204–216. [Google Scholar] [CrossRef]
- Domínguez, J.M.; Fourtakas, G.; Altomare, C.; Canelas, R.B.; Tafuni, A.; García-Feal, O.; Martínez-Estévez, I.; Mokos, A.; Vacondio, R.; Crespo, A.J.C.; et al. DualSPHysics: From fluid dynamics to multiphysics problems. Comput. Part. Mech. 2021, 9, 867–895. [Google Scholar] [CrossRef]
- Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 1995, 4, 389–396. [Google Scholar] [CrossRef]
- Molteni, D.; Colagrossi, A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput. Phys. Commun. 2009, 180, 861–872. [Google Scholar] [CrossRef]
- Gotoh, H.; Shao, S.; Memita, T. SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coastal Eng. J. 2004, 46, 39–63. [Google Scholar] [CrossRef]
- Husain, S.M.; Muhammed, J.R.; Karunarathna, H.U.; Reeve, D.E. Investigation of pressure variations over stepped spillways using smooth particle hydrodynamics. Adv. Water Resour. 2014, 66, 52–69. [Google Scholar] [CrossRef]
- Wan, H.; Li, R.; Gualtieri, C.; Yang, H.; Feng, J. Numerical simulation of hydrodynamics and reaeration over a stepped spillway by the SPH method. Water 2017, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Li, R.; Pu, X.; Zhang, H.; Feng, J. Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model. Int. J. Comput. Fluid Dyn. 2017, 31, 435–449. [Google Scholar] [CrossRef]
- Felder, S.; Chanson, H. Free-surface profiles, velocity and pressure distributions on a broad-crested weir: A physical study. J. Irrig. Drain. Eng. 2012, 138, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Lúcio, I. Modelação Numérica do Escoamento Deslizante Sobre Turbilhões em Descarregadores de Cheias em Degraus: Aplicação a Pequenas Barragens de Aterro. M.Sc. Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2015. [Google Scholar]
- English, A.; Domínguez, J.M.; Vacondio, R.; Crespo, A.J.C.; Stansby, P.K.; Lind, S.J.; Chiapponi, L.; Gómez-Gesteira, M. Modifed dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics (SPH): Application to tank sloshing, dam break and fish pass problems. Comp. Part. Mech. 2021, 9, 1–15. [Google Scholar] [CrossRef]
- Castro-Orgaz, O.; Hager, W.H. Drawdown curve and turbulent boundary layer development for chute flow. J. Hydraul. Res. 2010, 48, 591–602. [Google Scholar] [CrossRef]
- Nóbrega, J.D.; Matos, J.; Schulz, H.E.; Canelas, R.B. SPH simulation of non-aerated flow over converging spillways. In Proceedings of the 9th International Symposium on Hydraulic Structures: IAHR, IIT, Roorkee, India, 24–27 October 2022. accepted. [Google Scholar]
- Hunt, S.L.; Kadavy, K.C.; Hanson, G.J. Simplistic design methods for moderate-sloped stepped chutes. J. Hydraul. Eng. 2014, 40, 04014062. [Google Scholar] [CrossRef]
- Meireles, I.; Matos, J. Skimming flow in the nonaerated region of stepped spillways over embankment dams. J. Hydraul. Eng. 2009, 135, 685–689. [Google Scholar] [CrossRef]
- Hager, W.H. Supercritical flow in channel junctions. J. Hydraul. Eng. 1989, 115, 595–616. [Google Scholar] [CrossRef]
- Amador, A.T. Comportamiento Hidráulico de los Aliviaderos Escalonados en Presas de Hormigón Compactado. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2005. [Google Scholar]
- Amador, A.; Sánchez-Juny, M.; Dolz, J. Characterization of the nonaerated flow region in a stepped spillway by PIV. J. Fluids Eng. Trans. ASME 2006, 128, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
- Toro, J.P.; Bombardelli, F.A.; Paik, J. Detached eddy simulation of the nonaerated skimming flow over a stepped spillway. J. Hydraul. Eng. 2017, 143, 04017032. [Google Scholar] [CrossRef]
- Zabatela, F.; Bombardelli, F.A.; Toro, J.P. Towards an understanding of the mechanisms leading to air entrainment in the skimming flow over stepped spillways. Environ. Fluid Mech. 2020, 20, 375–392. [Google Scholar] [CrossRef]
- Matos, J.; Meireles, I. Hydraulics of stepped weirs and dam spillways: Engineering challenges, labyrinths of research. In Proceedings of the 5th IAHR International Symposium on Hydraulic Structures, Brisbane, Australia, 25–27 June 2014. [Google Scholar]
- Lopes, P.; Leandro, J.; Carvalho, R.F.; Bung, D.B. Alternating skimming flow over a stepped spillway. Environ. Fluid Mech. 2016, 17, 303–322. [Google Scholar] [CrossRef]
Reference | (°) | (°) | Measurements | |
---|---|---|---|---|
Frizell (1990) [19] | 24.6 | 0; 5.6; 12.7 | 0.76 to 8.82 | Spillway discharge capacity, flow depths, energy dissipation |
Hanna and Pugh (1997) [20] | 51.3 | 16 | 1.54 to 4.50 | Flow depth profiles, pressure, energy dissipation |
André and Ramos (2003) [21] | 26.6 | 0; 19.3 | 0.69 to 3.48 | Flow depths, standing wave width, angle of the standing wave front, velocities, energy dissipation |
Frizell (2006) a [22] | 18.4 | 18.4 | 1.21 to 7.03 | Discharge capacity, flow dephts, velocities, flow run out |
Cabrita (2007) [23] | 26.6 | 9.9; 19.3 | 0.90 to 3.48 | Flow depths, standing wave width and angle, velocities, energy dissipation |
Hunt (2008) [24]; Hunt et al. (2008) [2] | 18.4 | 0; 15; 30; 52 | 1.83 to 6.04 | Flow depth profiles, standing wave width |
Woolbright (2008) a [25]; Woolbright et al. (2008) a [26]; | 18.4 | 18; 34; 45 | 3.86 to 6.07 | Stepped and smoothed sloped converging training wall. Flow depths, run-up height, angle of the standing wave front |
Willey et al. (2010) a [27] | 53.1 | 12 | 1.56 to 5.14 | Discharge capacity, flow depths and energy dissipation |
Wadhai et al. (2015) [28] | 45.0 | 45 | 0.15 to 2.60 | Flow depths |
Zindovic et al. (2016) [7] | 48.3 | 12; 18.8; 22.6 | 3.36 | Flow depths, standing wave width, air concentration, velocity profiles, residual energy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nóbrega, J.D.; Matos, J.; Schulz, H.E.; Canelas, R.B. Smooth and Stepped Converging Spillway Modeling Using the SPH Method. Water 2022, 14, 3103. https://doi.org/10.3390/w14193103
Nóbrega JD, Matos J, Schulz HE, Canelas RB. Smooth and Stepped Converging Spillway Modeling Using the SPH Method. Water. 2022; 14(19):3103. https://doi.org/10.3390/w14193103
Chicago/Turabian StyleNóbrega, Juliana D., Jorge Matos, Harry E. Schulz, and Ricardo B. Canelas. 2022. "Smooth and Stepped Converging Spillway Modeling Using the SPH Method" Water 14, no. 19: 3103. https://doi.org/10.3390/w14193103
APA StyleNóbrega, J. D., Matos, J., Schulz, H. E., & Canelas, R. B. (2022). Smooth and Stepped Converging Spillway Modeling Using the SPH Method. Water, 14(19), 3103. https://doi.org/10.3390/w14193103