Numerical Modeling of COD Transportation in Liaodong Bay: Impact of COD Loads from Rivers Flowing into the Sea
Abstract
:1. Introduction
2. Theory and Numerical Simulation Method
2.1. D hydrodynamic Model Construction
- (1)
- System of St. Venant equations
- (2)
- Branch point connection equation
2.2. D hydrodynamic Model Construction
- (1)
- Shallow water equation
- (2)
- Finite element discretization
2.3. Construction of a Water Quality Model
3. Materials and Methods
3.1. Study Area
3.2. Sample Collection
3.3. Model Input
3.4. Model Setup and Calibration
4. Results
4.1. Model Validation
- (1)
- Validation of the 1D hydrodynamic model for river channel
- (2)
- Validation of the 2D sea hydrodynamic model
- (3)
- Validation of the water quality model in the sea
4.2. Effects of Major Inlet Rivers on COD in Liaodong Bay
4.3. Sudden Water Pollution Accident Simulation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, Y.; Feng, J.; Cui, S.; Zhu, L. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China. Mar. Pollut. Bull. 2017, 117, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Nixon, S.W. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 1995, 41, 199–219. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Kuang, C.; Gu, J.; Kolditz, O.; Chen, K.; Zhang, J.; Zhang, W.; Zhang, Y. Analysis of chlorophyll-a correlation to determine nutrient limitations in the Coastal Waters of the Bohai Sea, China. J. Coast. Res. 2017, 33, 396–407. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, H.; Feng, Z.; Zhang, C.; Zhou, X.; Wang, Z.; Zheng, J.; Zou, X. Spatial distribution, deposition flux, and environmental impact of typical persistent organic pollutants in surficial sediments in the Eastern China Marginal Seas (ECMSs). J. Hazard. Mater. 2021, 407, 124343. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.H. A comparison of terrestrial and marine ecological systems. Nature 1985, 313, 355–358. [Google Scholar] [CrossRef]
- Xin, M.; Wang, B.; Xie, L.; Sun, X.; Wei, Q.; Liang, S.; Chen, K. Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China. Mar. Pollut. Bull. 2019, 146, 562–573. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Liu, X.; Zhu, G.; Qin, B.; Shi, Z.; Fen, L. Temporal and spatial variations of chemical oxygen demand in Lake Taihu, China, from 2005 to 2009. Hydrobiologia 2011, 665, 129–141. [Google Scholar] [CrossRef]
- Vigiak, O.; Grizzetti, B.; Udias-Moinelo, A.; Michela, Z.; Chiara, D.; Fayçal, B.; Alberto, P. Predicting biochemical oxygen demand in European freshwater bodies. Sci. Total Environ. 2019, 666, 1089–1105. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Xu, G.; Chen, B. Distribution and transport of heavy metals in surface sediments of the Zhejiang nearshore area, East China Sea: Sedimentary environmental effects. Mar. Pollut. Bull. 2019, 146, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Romanou, A.; Chassignet, E.P.; Sturges, W. Gulf of Mexico circulation within a high-resolution numerical simulation of the North Atlantic Ocean. J. Geophys. Res. Oceans. 2004, 109, C01003. [Google Scholar] [CrossRef]
- Guerzoni, S.; Frignani, M.; Giordani, P.; Frascari, F. Heavy metals in sediments from different environments of a Northern Adriatic Sea area, Italy. Econ. Environ. Geol. 1984, 6, 111–119. [Google Scholar] [CrossRef]
- Xu, B.; Yang, X.; Gu, Z.; Zhang, Y.; Chen, Y.; Lv, Y. The trend and extent of heavy metal accumulation over last one hundred years in the Liaodong Bay, China. Chemosphere 2009, 75, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Jiang, H.; Gao, W.; Weinstein Michael, P.; Zhang, Q.; Zhang, W.; Yu, L.; Yuan, D.; Tao, J. Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J. Environ. Manage. 2011, 92, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Song, X.; Zhang, Y. Using multivariate statistical analyses to identify and evaluate the main sources of contamination in a polluted river near to the Liaodong Bay in Northeast China. Environ. Pollut. 2019, 245, 1058–1070. [Google Scholar] [CrossRef]
- Stynes, M. Steady-state convection-diffusion problems. Acta Numer. 2005, 14, 445–508. [Google Scholar] [CrossRef]
- Borthwick, A.; Barber, R. River and reservoir flow modelling using the transformed shallow water equations. Int. J. Numer. Methods Fluids 1992, 14, 1193–1217. [Google Scholar] [CrossRef]
- Yeung, R.W. Numerical methods in free-surface flows. Annu. Rev. Fluid Mech. 1982, 14, 395–442. [Google Scholar] [CrossRef]
- Ming, P.; Duan, W. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J. Hydrodynam B 2010, 22, 856–864. [Google Scholar] [CrossRef]
- Szymkiewicz, R. Finite-element method for the solution of the Saint Venant equations in an open channel network. J. Hydrol. 1991, 122, 275–287. [Google Scholar] [CrossRef]
- Molls, T.; Molls, F. Space-time conservation method applied to Saint Venant equations. ISH J. Hydraul. Eng. 1998, 124, 501–508. [Google Scholar] [CrossRef]
- Perthame, B.; Simeoni, C. A kinetic scheme for the Saint-Venant system¶ with a source term. Calcolo 2001, 38, 201–231. [Google Scholar] [CrossRef]
- Yamazaki, D.; De Almeida, G.A.M.; Bates, P.D. Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res. 2013, 49, 7221–7235. [Google Scholar] [CrossRef]
- Choi, H.; Moin, P. Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 1994, 113, 1–4. [Google Scholar] [CrossRef]
- Weare, T.J. Instability in tidal flow computational schemes. J. Hydraul. Eng. 1976, 102, 569–580. [Google Scholar] [CrossRef]
- Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, V.B.; Hautzinger, A.; Mcmullen, L.E.; Warner, A. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river. Freshw. Biol. 2010, 55, 68–85. [Google Scholar] [CrossRef]
- Anastasiou, K.; Chan, C. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int. J. Numer. Methods Fluids 1997, 24, 1225–1245. [Google Scholar] [CrossRef]
- Namin, M.; Lin, B.; Falconer, R.A. Modelling estuarine and coastal flows using an unstructured triangular finite volume algorithm. Adv. Water Resour. 2004, 27, 1179–1197. [Google Scholar] [CrossRef]
- Alcrudo, F.; Garcia-Navarro, P. A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. Int. J. Numer. Methods Fluids 1993, 16, 489–505. [Google Scholar] [CrossRef]
- Cea, L.; French, J.; Vázquez-Cendón, M. Numerical modelling of tidal flows in complex estuaries including turbulence: An unstructured finite volume solver and experimental validation. Int. J. Numer. Methods Eng. 2006, 67, 1909–1932. [Google Scholar] [CrossRef]
- Stansby, P.K. Semi-implicit finite volume shallow-water flow and solute transport solver with k–ε turbulence model. Int. J. Numer. Methods Fluids 1997, 25, 285–313. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J. A three-dimensional PC-based hydrodynamic model using an ADI scheme. Coast. Eng. 1994, 23, 271–287. [Google Scholar] [CrossRef]
- Casulli, V.; Cattani, E. Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput. Math. Appl. 1994, 27, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Abualtayef, M.; Kuroiwa, M.; Tanaka, K.; Matsubara, Y.; Nakahira, J. Three-dimensional hydrostatic modeling of a bay coastal area. J. Mar. Sci. Technol. 2008, 13, 40–49. [Google Scholar] [CrossRef]
- Wang, K. Characterization of circulation and salinity change in Galveston Bay. J. Eng. Mech. 1994, 120, 557–579. [Google Scholar] [CrossRef]
- Dou, Y.; Li, J.; Zhao, J.; Wei, H.; Yang, S.; Bai, F.; Zhan, D.; Ding, X.; Wang, L. Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: Sources and transport patterns. Cont. Shelf Res. 2014, 73, 72–82. [Google Scholar] [CrossRef]
- Tan, L.; He, M.; Men, B.; Lin, C. Distribution and sources of organochlorine pesticides in water and sediments from Daliao River estuary of Liaodong Bay, Bohai Sea (China). Estuar. Coast. Shelf Sci. 2009, 84, 119–127. [Google Scholar] [CrossRef]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model Applicati11. J. Am. Water Resour. Assoc. 2007, 43, 1223–1236. [Google Scholar] [CrossRef]
- Ewen, J.; Parkin, G.; O’connell, P.E. SHETRAN: Distributed river basin flow and transport modeling system. J. Hydrol. Eng. 2000, 5, 250–258. [Google Scholar] [CrossRef]
- Li, C.; Wu, W.; Yin, Y. Hierarchical elimination selection method of dendritic river network generalization. PLoS ONE 2018, 13, e0208101. [Google Scholar] [CrossRef] [PubMed]
- Madsen, N.K. Divergence preserving discrete surface integral methods for maxwell’s curl equations using non-orthogonal unstructured grids. J. Comput. Phys. 1995, 119, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Ai, T.; Liu, Y.; Huang, Y. The hierarchical watershed partitioning and generalization of river network. Acta Geod. Et Cartogr. Sin. 2007, 36, 231–236. [Google Scholar]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Qu, L.; Yao, D.; Cong, P. Inorganic nitrogen and phosphate and potential eutrophication assessment in Liaodong Bay. Huan Jing Ke Xue 2006, 27, 263–267. [Google Scholar]
- Xia, K.; Guo, J.; Han, Z.; Dong, M.; Xu, Y. Analysis of the scientific and technological innovation efficiency and regional differences of the land–sea coordination in China’s coastal areas. Ocean Coast. Manag. 2019, 172, 157–165. [Google Scholar] [CrossRef]
- Wu, X.; Hu, J.; Jia, A.; Peng, H.; Wu, S.; Dong, Z. Determination and occurrence of retinoic acids and their 4-oxo metabolites in Liaodong Bay, China, and its adjacent rivers. Environ. Toxicol. Chem. 2010, 29, 2491–2497. [Google Scholar] [CrossRef]
- Meng, W.; Qin, Y.; Zheng, B.; Zhang, L. Heavy metal pollution in Tianjin Bohai bay, China. J. Environ. Stud. 2008, 20, 814–819. [Google Scholar] [CrossRef]
- Guo, B.; Jiao, D.; Wang, J.; Lei, K.; Lin, C. Trophic transfer of toxic elements in the estuarine invertebrate and fish food web of Daliao River, Liaodong Bay, China. Mar. Pollut. Bull. 2016, 113, 258–265. [Google Scholar] [CrossRef]
Rivers | Flow (m3/s) | Monitoring Section | Detected Concentrations of COD (mg/L) | |
---|---|---|---|---|
1 | Daling River | 40 | Xibaqian | 23.4 |
2 | Daliao River | 151 | Liaohe Park | 13.56 |
3 | Liao River | 112.3 | Zhaoquanhe | 18.8 |
4 | Xiaoling River | 14.4 | Xishulin | 42.25 |
5 | Xingcheng River | 5 | Hongshibei | 0.5 |
6 | Yantai River | 5 | Yantai River Entrance | 0.5 |
7 | Liugu River | 18.8 | Xiaoyuchang | 0.17 |
8 | Gou River | 4 | Xiaowantun | 0.5 |
9 | Shi River | 3 | Shi River Entrance | 0.5 |
10 | Dahan River | 5.2 | Yinggaigonglu | 22.58 |
11 | Daqing River | 2 | Daqing River Entrance | 21.67 |
12 | Sha River | 3 | Sha River Entrance | 19.91 |
13 | Xiongyue River | 2 | Yangjiatun | 14.58 |
14 | Fuzhou River | 7.4 | Santaizi | 20.58 |
Month | Simulated Water Level (m) | Measured Water Level (m) | RMSE (m) | MRE (%) | R2 |
---|---|---|---|---|---|
1 | 3.042 | 2.960 | 0.082 | 0.028 | 0.999 |
2 | 2.930 | 3.050 | 0.120 | 0.039 | 0.998 |
3 | 2.970 | 2.780 | 0.190 | 0.068 | 0.995 |
4 | 2.978 | 2.750 | 0.228 | 0.083 | 0.994 |
5 | 4.816 | 4.440 | 0.376 | 0.085 | 0.993 |
6 | 3.520 | 3.220 | 0.300 | 0.093 | 0.991 |
7 | 3.531 | 3.270 | 0.261 | 0.080 | 0.994 |
8 | 3.772 | 3.480 | 0.292 | 0.084 | 0.994 |
9 | 3.358 | 3.110 | 0.248 | 0.080 | 0.995 |
10 | 3.118 | 2.900 | 0.218 | 0.075 | 0.994 |
11 | 2.995 | 2.870 | 0.125 | 0.043 | 0.998 |
12 | 3.085 | 2.940 | 0.145 | 0.049 | 0.998 |
Daling River (km2) | Liao River (km2) | Daliao Rive (km2) | Total (km2) | |
---|---|---|---|---|
April | 10.79 | 126.84 | 121.23 | 258.86 |
August | 11.12 | 191.72 | 189.04 | 391.88 |
December | 10.48 | 129.89 | 117.52 | 257.89 |
Class II (km2) | Class III (km2) | Class IV (km2) | Poor IV (km2) | Total (km2) | |
---|---|---|---|---|---|
Daling River | 4.51 | 1.6 | 2.21 | 2.8 | 11.12 |
Liao River | 53.39 | 54.6 | 30.08 | 50.97 | 189.04 |
Daliao River | 81.91 | 17.35 | 29.82 | 62.64 | 191.72 |
Total | 139.81 | 73.55 | 62.11 | 116.41 | 391.88 |
River | Accident Occurred | Time of Arrival | Time of Peak | Restore Class I |
---|---|---|---|---|
Daling River | 15 May 2018 | 21 May 2018 | 30 May 2018 | 17 June 2018 |
Liao River | 15 May 2018 | 17 May 2018 | 19 May 2018 | 9 June 2018 |
Hun River | 8 August 2018 | 19 August 2018 | 23 August 2018 | 16 September 2018 |
Taizi River | 16 June 2018 | 25 June 2018 | 11 July 2018 | 17 August 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Jin, G.; Jin, S.; Chen, Z.; Fan, W.; Xiao, D. Numerical Modeling of COD Transportation in Liaodong Bay: Impact of COD Loads from Rivers Flowing into the Sea. Water 2022, 14, 3114. https://doi.org/10.3390/w14193114
Yu H, Jin G, Jin S, Chen Z, Fan W, Xiao D. Numerical Modeling of COD Transportation in Liaodong Bay: Impact of COD Loads from Rivers Flowing into the Sea. Water. 2022; 14(19):3114. https://doi.org/10.3390/w14193114
Chicago/Turabian StyleYu, Hexin, Ge Jin, Sheng Jin, Zhen Chen, Wei Fan, and Dan Xiao. 2022. "Numerical Modeling of COD Transportation in Liaodong Bay: Impact of COD Loads from Rivers Flowing into the Sea" Water 14, no. 19: 3114. https://doi.org/10.3390/w14193114
APA StyleYu, H., Jin, G., Jin, S., Chen, Z., Fan, W., & Xiao, D. (2022). Numerical Modeling of COD Transportation in Liaodong Bay: Impact of COD Loads from Rivers Flowing into the Sea. Water, 14(19), 3114. https://doi.org/10.3390/w14193114