Improvement of the “Triangle Method” for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India
Abstract
:1. Introduction
2. Triangle Method
3. Materials and Methods
3.1. Satellite Data
3.2. Experimental Site and Ground Measurements
3.3. Data Pre-Processing
3.4. Retrieval of Coefficients for Fractional Vegetation Cover, Scaled Surface Temperature, and SSM
3.5. Validation Approach
4. Results
4.1. Evaluation of Variables for Triangle Method Implementation
4.2. Extreme Points
4.3. Optimized Parameters and Coefficients
4.4. Triangle Construction and Soil Moisture Retrieval
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the Value of Soil Moisture Measurements in Vadose Zone Hydrology: A Review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.K.; Petropoulos, G.P.; Kerr, Y.H. Satellite Soil Moisture Retrieval: Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2016; Available online: http://www.sciencedirect.com/science/book/9780128033883 (accessed on 31 May 2022).
- Bao, Y.; Lin, L.; Wu, S.; Deng, K.A.K.; Petropoulos, G.P. Surface Soil Moisture Retrievals Over Partially Vegetated Areas from the Synergy of Sentinel-1 & Landsat 8 Data Using a Modified Water-Cloud Model. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 76–85. [Google Scholar] [CrossRef]
- North, M.R.; Petropoulos, G.P.; Ireland, G.; McCalmont, J.P. Appraising the Capability of a Land Biosphere Model as a Tool in Modelling Land Surface Interactions: Results from Its Validation at Selected European Ecosystems. Earth Syst. Dyn. Discuss. 2015, 6, 217–265. [Google Scholar] [CrossRef] [Green Version]
- Howells, D.O.; Petropoulos, G.P.; Srivastava, P.K.; Triantakonstantis, D. Exploring the potential of SCAT-SAR SWI for soil moisture retrievals at selected COSMOS-UK sites. Int. J. Remote Sens. 2021, 42, 9146–9160. [Google Scholar] [CrossRef]
- Satapathy, T.; Ramadas, M.; Dietrich, J. A novel agricultural drought monitoring framework using remote sensing products. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Souza, A.G.S.S.; Neto, A.R.; de Souza, L.L. Soil moisture-based index for agricultural drought assessment: SMADI application in Pernambuco State-Brazil. Remote Sens. Environ. 2021, 252, 112124. [Google Scholar] [CrossRef]
- Masrur Ahmed, A.A.; Deo, R.C.; Ghahramani, A.; Raj, N.; Feng, Q.; Yin, Z.; Yang, L. LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4. 5 and RCP8. 5 global warming scenarios. Stoch. Environ. Res. Risk Assess. 2021, 35, 1851–1881. [Google Scholar] [CrossRef]
- Pablos, M.; González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J. Assessment of SMADI and SWDI agricultural drought indices using remotely sensed root zone soil moisture. Proc. Int. Assoc. Hydrol. Sci. 2018, 380, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Graetz, S.; Martin, W.; Washuck, N.; Anderson, J.; Sibley, P.K.; Prosser, R.S. Deterministic risk assessment of firefighting water additives to terrestrial organisms. Environ. Sci. Pollut. Res. 2021, 28, 20883–20893. [Google Scholar] [CrossRef]
- Conesa, M.R.; Conejero, W.; Vera, J.; Agulló, V.; García-Viguera, C.; Ruiz-Sánchez, M.C. Irrigation management practices in nectarine fruit quality at harvest and after cold storage. Agric. Water Manag. 2021, 243, 106519. [Google Scholar] [CrossRef]
- Srivastava, P.K. Satellite soil moisture: Review of theory and applications in water resources. Water Resour. Manag. 2017, 31, 3161–3176. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Sandric, I.; Hristopulos, D.; Nahum Carlson, T. Evaporative fluxes and Surface Soil Moisture Retrievals in a Mediterranean setting from Sentinel-3 and the “simplified triangle”. Remote Sens. 2020, 12, 3192. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The international Soil Moisture network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. Available online: https://hess.copernicus.org/articles/25/5749/2021 (accessed on 31 May 2022). [CrossRef]
- Carlson, T.N.; Petropoulos, G.P. A New Method for Estimating of Evapotranspiration and Surface Soil Moisture from Optical and Thermal Infrared Measurements: The Simplified Triangle. Int. J. Remote Sens. 2019, 40, 7716–7729. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Hristopulos, D. Retrievals of key biophysical parameters at mesoscale from the Ts/VI scatterplot domain. Geocarto Int. 2020, 37, 2385–2405. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Islam, T. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J. Hydrol. 2013, 498, 292–304. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Srivastava, P.K. Evaluation of the soil moisture operational estimates from SMOS in Europe: Results over diverse ecosystems. IEEE Sens. J. 2015, 15, 5243–5251. [Google Scholar] [CrossRef]
- Bartsch, A.; Balzter, H.; George, C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ. Res. Lett. 2009, 4, 045021. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.; Lorite, I.J.; Tasumi, M.; Allen, R.G.; Fereres, E. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig. Sci. 2008, 26, 277–288. [Google Scholar] [CrossRef]
- Saradjian, M.R.; Hosseini, M. Soil moisture estimation by using multipolarization SAR image. Adv. Space Res. 2011, 48, 278–286. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Ma, Z.; Pan, Z.; Lv, M.; Yang, Q.; Duan, Y. The increasing role of vegetation transpiration in soil moisture loss across China under global warming. J. Hydrometeorol. 2022, 23, 253–274. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Al-Shrafany, D.; Islam, T. Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour. Manag. 2013, 27, 5069–5087. [Google Scholar] [CrossRef]
- Petropoulos, G.; Carlson, T.; Wooster, M.; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 2009, 33, 224–250. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Rawat, K.S.; Sehgal, V.K.; Singh, S.K.; Ray, S.S. Soil moisture estimation using triangular method at higher resolution from MODIS products. Phys. Chem. Earth Parts A/B/C 2021, 126, 103051. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Zhang, S.; Hao, X.; Dasgupta, S. Soil moisture estimation using MODIS and ground measurements in eastern China. Int. J. Remote Sens. 2007, 28, 1413–1418. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the” triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Silva Fuzzo, D.F.; Carlson, T.N.; Kourgialas, N.N.; Petropoulos, G.P. Coupling remote sensing with a water balance model for soybean yield predictions over large areas. Earth Sci. Inform. 2020, 13, 345–359. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol. Sci. J. 1996, 41, 495–516. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Perry, E.M.; Schmugge, T.J. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. Agric. For. Meteorol. 1990, 52, 45–69. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Carlson, T.N.; Capehart, W.J.; Gillies, R.R. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens. Environ. 1995, 54, 161–167. [Google Scholar] [CrossRef]
- Moran, M.S.; Vidal, A.; Troufleau, D.; Qi, J.; Clarke, T.R.; Pinter, P.J., Jr.; Mitchell, T.A.; Inoue, Y.; Neale, C.M.U. Combining multifrequency microwave and optical data for crop management. Remote Sens. Environ. 1997, 61, 96–109. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteorol. Climatol. 1995, 34, 745–756. [Google Scholar] [CrossRef]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. Int. J. Remote Sens. 2003, 24, 4599–4622. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Franz, T.E.; Jones, S.; Tuller, M. Mapping soil moisture with the Optical TRApezoid Model (OPTRAM) based on long-term MODIS observations. Remote Sens. Environ. 2018, 211, 425–440. [Google Scholar] [CrossRef]
- Mananze, S.; Pôças, I.; Cunha, M. Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique. J. Appl. Remote Sens. 2019, 13, 24519. [Google Scholar] [CrossRef]
- Yadav, V.P.; Prasad, R.; Bala, R.; Vishwakarma, A.K. An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C-band Sentinel-1A SAR data. Comput. Electron. Agric. 2020, 173, 105447. [Google Scholar] [CrossRef]
- Wu, S.; Ren, J.; Chen, Z.; Yang, P.; Li, H. Soil moisture estimation based on the microwave scattering mechanism during different crop phenological periods in a winter wheat-producing region. J. Hydrol. 2020, 590, 125521. [Google Scholar] [CrossRef]
- Farhadi, L.; Entekhabi, D.; Salvucci, G. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states. Water Resour. Res. 2016, 52, 2737–2752. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Şandric, I.; Pavlides, A.; Hristopulos, D.T. A preliminary evaluation of the ‘simplified triangle’ with Sentinel-3 images for mapping surface soil moisture and evaporative fluxes: Results obtained in a Spanish savannah environment. In Agricultural Water Management; Academic Press: Cambridge, MA, USA, 2021; pp. 209–223. [Google Scholar]
- Venturini, V.; Bisht, G.; Islam, S.; Jiang, L. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida. Remote Sens. Environ. 2004, 93, 77–86. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; O’Neill, P.; Islam, T.; Gupta, M. Assessment of SMOS soil moisture retrieval parameters using tau–omega algorithms for soil moisture deficit estimation. J. Hydrol. 2014, 519, 574–587. [Google Scholar] [CrossRef]
Properties | Sentinel-2 | Ecostress |
---|---|---|
Altitude | 786 km | 400 km |
Swath | 290 km (FOV:20.6°) | 384 km |
LTDN | 10:30 | 05:00 |
Revisit | 5 days | 3 days |
No. of Bands | 10 | 6 |
Spatial Resolution | 10, 20, 30 m | ~60, ~70 m |
Data extracted | NDVI | LST |
Name | Description | Mathematical Definition |
---|---|---|
Bias/MBE | Bias (accuracy) or Mean Bias Error | |
Scatter/SD | Scatter (precision) or Standard Deviation | |
RMSE | Root Mean Square Error |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Srivastava, P.K.; Petropoulos, G.P.; Shukla, S.; Prasad, R. Improvement of the “Triangle Method” for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India. Water 2022, 14, 3179. https://doi.org/10.3390/w14193179
Singh R, Srivastava PK, Petropoulos GP, Shukla S, Prasad R. Improvement of the “Triangle Method” for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India. Water. 2022; 14(19):3179. https://doi.org/10.3390/w14193179
Chicago/Turabian StyleSingh, Rishabh, Prashant K. Srivastava, George P. Petropoulos, Sudhakar Shukla, and Rajendra Prasad. 2022. "Improvement of the “Triangle Method” for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India" Water 14, no. 19: 3179. https://doi.org/10.3390/w14193179
APA StyleSingh, R., Srivastava, P. K., Petropoulos, G. P., Shukla, S., & Prasad, R. (2022). Improvement of the “Triangle Method” for Soil Moisture Retrieval Using ECOSTRESS and Sentinel-2: Results over a Heterogeneous Agricultural Field in Northern India. Water, 14(19), 3179. https://doi.org/10.3390/w14193179