Assessment of the Ecological Risk from Heavy Metals in the Surface Sediment of River Surma, Bangladesh: Coupled Approach of Monte Carlo Simulation and Multi-Component Statistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Heavy Metal Analysis
2.3.1. Reagents and Sample Digestion
Soil Extraction and Determination of Fe, Mn, Cu, and Zn
Soil Extraction and Determination of Ni, Pb, Cd
2.3.2. Analytical Technique and Quality Assurance
3. Results
3.1. Heavy Metal in Sediments
3.2. Assessment of Sediment Quality
3.2.1. Contamination Factor (CF)
3.2.2. Contamination Degree (CD)
3.2.3. Modified Contamination Degree, MCD
3.2.4. Enrichment Factor (EF)
3.2.5. Pollution Load Index (PLI)
3.2.6. Geo-Accumulation Index (Igeo)
3.3. Pearson’s Correlation Matrix
3.4. Potential Ecological Risk Index (PERI)
- RI = risk factor or summation of all individual potential ecological risk factors contributed by each meal element;
- Eri = factor of potential ecological risk;
- CF = contamination factor;
- Tri = toxic response factor.
3.5. Monte Carlo Simulation
3.6. Principal Component Analysis
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silambarasan, K.; Senthilkumar, P.; Velmurugan, K. Studies on the distribution of heavy metal concentrations in River Adyar, Chennai, Tamil Nadu. Eur. J. Exp. Biol. 2012, 2, 2192–2198. [Google Scholar]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Nadem, S. Assessment of Heavy Metal in Surface Sediments of Day River at Beni-Mellal Region, Morocco. Res. J. Environ. Earth Sci. 2012, 4, 797–806. [Google Scholar]
- Shazili, N.A.M.; Yunus, K.; Ahmad, A.S.; Abdullah, N.; Rashid, M.K.A. Heavy metal pollution status in the Malaysian aquatic environment. Aquat. Ecosyst. Healh Manag. 2006, 9, 137–145. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.; Kizilkaya, R. Effects of Heavy Metals on Soil Enzyme Activities. In Soil Heavy Metals; Sherameti, I., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 237–262. [Google Scholar]
- Duruibe, J.; Egwurugwu, J. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Saleem, M.; Iqbal, J.; Shah, M.H. Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—A case study from Mangla Lake, Pakistan. Environ. Nanotechnol. Monit. Manag. 2015, 4, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Moore, F. Assessment of heavy metal contamination in water and surface sediments of the Maharlu saline lake, SW Iran. Iran. J. Sci. Technol. Trans. A 2009, 33, A1. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go’mez-Ariza, J.; Gira’ldez, I.; Sa’nchez-Rodas, D.; Morales, E. Metal readsorption and redistribution during the analytical fractionation of trace elements in toxic estuarine sediments. Anal. Chim. Acta 1999, 399, 295–307. [Google Scholar] [CrossRef]
- Lasheen, M.; Ammar, N. Speciation of some heavy metals in River Nile sediments, Cairo, Egypt. Environmentalist 2009, 29, 8–16. [Google Scholar] [CrossRef]
- Qu, C.; Li, B.; Wu, H.; Wang, S.; Li, F. Probabilistic ecological risk assessment of heavy metals in sediments from China’s major aquatic bodies. Stoch. Environ. Res. Risk Assess. 2016, 30, 271–282. [Google Scholar] [CrossRef]
- Duke, L.D.; Taggart, M. Uncertainty factors in screening ecological risk assessments. Environ. Toxicol. Chem. 2009, 19, 1668–1680. [Google Scholar] [CrossRef]
- Chen, S.; Fath, B.D.; Chen, B. Information-based network environ analysis: A system perspective for ecological risk assessment. Ecol. Indic. 2011, 11, 1664–1672. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Fath, B.D. Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. Renew. Sustain. Energy Rev. 2015, 42, 78–92. [Google Scholar] [CrossRef]
- Wang, D. Sustainable management of the future environment under uncertainties and risks. Hum. Ecol. Risk Assess. 2010, 16, 1249–1254. [Google Scholar] [CrossRef]
- Yu, J.J.; Qin, X.S.; Larsen, O. Joint Monte Carlo and possibilistic simulation for flood damage assessment. Stoch. Environ. Res. Risk Assess. 2013, 27, 725–735. [Google Scholar] [CrossRef]
- Bai, J.; Cui, B.; Chen, B.; Zhang, K.; Deng, W.; Gao, H.; Xiao, R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland. China Ecol. Model. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Su, L.; Liu, J.; Christensen, P. Spatial distribution and ecological risk assessment of metals in sediments of Baiyangdian wetland ecosystem. Ecotoxicology 2011, 20, 1107–1116. [Google Scholar] [CrossRef]
- Sakib, A.N.; Rahman, A.; Iqbal, S.A.; Das, S.; Yousuf, A. Solid waste management of Sylhet city in terms of energy. In Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2011, Chittagong, Bangladesh, 22–24 December 2011. [Google Scholar]
- Larsen, W.E.; Gilley, J.R.; Linden, D.R. Consequences of Waste Disposal on Land. Soil Water Conserv. 1975, 2, 68. [Google Scholar]
- Ahmed, M.F. Municipal Waste Management in Bangladesh with Emphasis on Recycling, Aspect of Solid Waste Management Bangladesh Context; Mofizul Hoq, L., Ed.; German Cultural Institute: Dhaka, Bangladesh, 1994; p. 113. [Google Scholar]
- Rashid, H.E. Geography of Bangladesh; The University Press Limited (UPL): Dhaka, Bangladesh, 1977. [Google Scholar]
- Manoj, K.; Kumar, B.; Padhy, P.K. Characterization of Metals in Water and Sediments of Subarnarekha River along the Projects’ Sites in Lower Basin. Univ. J. Environ. Res. Technol. 2012, 2, 402–410. [Google Scholar]
- Rabee, A.M.; Al-Fatlawy, Y.F.; Abd, A.A.H.N.; Nameer, M. Using Pollution Load Index (PLI) and Geoaccumulation Index (I-Geo) for the Assessment of Heavy Metals Pollution in Tigris River Sediment in Baghdad Region. J. Al-Nahrain Univ. Sci. 2011, 14, 108–114. [Google Scholar] [CrossRef]
- Petersen, L. Analytical Methods: Soil, Water, Plant Material, Fertilizer; Soil Resource Development Institute: Dhaka, Bangladesh, 2002. [Google Scholar]
- Martin, J.M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Herut, B.; Hornung, H.; Krom, M.D.; Kress, N.; Cohen, Y. Trace metals in shallow sediments from the Mediterranean coastal region of Israel. Mar. Pollut. Bull. 1993, 26, 675–682. [Google Scholar] [CrossRef]
- Kassim, T.; Al-Saadi, H.; Al-Lami, A.; Al-Jaberi, H. Heavy Metals in Water, Suspended Particles, Sediments and Aquatic Plants of the Upper Region of Euphrates River, Iraq. J. Environ. Sci. Health 1997, 32, 2497–2506. [Google Scholar] [CrossRef]
- Al-Juboury, A. Natural Pollution by Some Heavy Metals in the Tigris River, Northern Iraq. Int. J. Environ. Res. 2009, 31, 189–198. [Google Scholar]
- Raju, K.V.; Somashekar, R.; Prakash, K. Heavy Metal Status of Sediment in River Cauvery, Karnataka. Environ. Monit. Assess. 2012, 184, 361–373. [Google Scholar] [CrossRef]
- Rahman, M.S.; Saha, N.; Molla, A.H.; Al-Reza, S.M. Assessment of Anthropogenic Influence on Heavy Metals Contamination in the Aquatic Ecosystem Components: Water, Sediment, and Fish. Soil Sediment Contam. Int. J. 2014, 23, 353–373. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Shen, Z.; Tang, Z.; Niu, J.; Gao, F. Assessment of Heavy Metals in Sediments from a Typical Catchment of the Yangtze River, China. Environ. Monit. Assess. 2011, 172, 407–417. [Google Scholar] [CrossRef]
- Christophoridis, C.; Dedepsidis, D.; Fytianos, K. Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J. Hazard. Mater. 2009, 168, 1082–1091. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Salah, E.A.M.; Zaidan, T.A.; Al-Rawi, A.S. Assessment of Heavy Metals Pollution in the Sediments of Euphrates River, Iraq. J. Water Resour. Prot. 2012, 4, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef]
- Feng, H.; Han, X.; Zhang, W.; Yu, L. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar. Pollut. Bull. 2004, 49, 910–915. [Google Scholar] [CrossRef]
- Sinex, S.A.; Helz, G.R. Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ. Geol. 1981, 3, 315–323. [Google Scholar] [CrossRef]
- Tippie, V.K. An Environmental Characterization of Chesa-Peak Bay and a Framework for Action. In The Estuary as a Filter; Kennedy, V., Ed.; Academic Press: New York, NY, USA, 1984; pp. 467–487. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Muller, G. The Heavy Metal Pollution of the Sediments of Neckers and Its tributary, A Stocktaking. Chem. Zeit. 1981, 150, 157–164. [Google Scholar]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [Google Scholar] [CrossRef]
- Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl. Radiat. Isot. 2011, 69, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. Metal monitoring in coastal environments. Met. Coast. Environ. Lat. Am. 1988, 239–257. [Google Scholar] [CrossRef]
- Devanesan, E.; Gandhi, M.S.; Selvapandiyan, M.; Senthilkumar, G.; Ravisankar, R. Heavy metal and Potential Ecological Risk Assessment in sedimentscollected from Poombuhar to Karaikal Coast of Tamilnadu using Energy dispersive X-ray fluorescence (EDXRF) technique. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 285–292. [Google Scholar] [CrossRef]
- Li, X.; Chi, W.; Tian, H.; Zhang, Y.; Zhu, Z. Probabilistic ecological risk assessment of heavy metals in western Laizhou Bay, Shandong Province, China. PLoS ONE 2019, 14, e0213011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia. Int. J. Environ. Res. Public Health 2018, 15, 621. [Google Scholar] [CrossRef] [Green Version]
Sample Stations | Heavy Metals (Units in mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cu | Zn | Fe | Mn | Pb | Cd | Ni | |
Mean | 3.688 | 8.951 | 317.533 | 120.136 | 18.975 | 0.099 | 116.077 |
Standard Deviation | 1.867 | 6.196 | 70.224 | 88.473 | 12.278 | 0.101 | 39.248 |
Minimum | 1.590 | 2.350 | 170.000 | 4.200 | 1.080 | 0.015 | 65.560 |
Maximum | 8.520 | 19.800 | 418.000 | 303.490 | 41.230 | 0.350 | 189.620 |
Surface rock average [27] | 32 | 127 | 35900 | 750 | 16 | 0.2 | 49 |
WHO (2004) | 1.5 | 123 | NA | NA | NA | 6 | 20 |
USEPA (1999) | 16 | 110 | 30 | 30 | 40 | 0.6 | 16 |
River/Date of Sampling/Country | Pb | Cd | Zn | Ni | Fe | Mn | Cu | Reference |
---|---|---|---|---|---|---|---|---|
World Average | 230.75 | 1.4 | 303 | 102.1 | 57405.9 | 975.3 | 122.9 | [23] |
Euphrates, 1997, Iraq | 19.5 | 0.08 | 30 | 125 | - | 450 | - | [29] |
Tigris, 1993, Iraq | 17.9–30.6 | 0.1–1.7 | 8.3–47.1 | 105.4–125.5 | - | 451.3–565.6 | 17.4–28.9 | [30] |
Cauvery 2007–2009, India | 4.3 | 1.3 | 93.1 | 27.7 | 11144 | 176.3 | 11.2 | [31] |
Bangshi River, 2014, Bangladesh | 59.99 | 0.61 | 117.15 | 25.67 | - | 483.44 | - | [32] |
Yangtze, 2005, China | 49.19 | 0.98 | 230.9 | 41.86 | - | - | 60.03 | [33] |
Surma River, 2019, Bangladesh | 11.73 | 0.06 | 6.12 | 92.34 | 291.1 | 88.03 | 2.68 | Present study |
Contamination Factor Ranges | Description | Contamination Degree Ranges | Description |
---|---|---|---|
CF < 1 | low contamination | CD < 8 | Low degree of contamination |
1 ≤ CF ≤ 3 | Moderate Contamination | 8 ≤ CD < 16 | Moderate degree of contamination |
3 ≤ CF ≤ 6 | Considerable Contamination; | 16 ≤ CD < 32 | Considerable degree of contamination |
CF ≥ 6 | Very High Contamination | CD ≥ 32 | Very high degree of contamination |
Igeo Class | Igeo Values | Description |
---|---|---|
Class 0 | Igeo < 0 | uncontaminated sediments |
Class I | 0 < Igeo < 1 | uncontaminated to moderately contaminated |
Class II | 1 < Igeo < 2 | moderately contaminated |
Class III | 2 < Igeo < 3 | moderately to highly contaminated |
Class IV | 3 < Igeo < 4 | highly contaminated |
Class V | 4 < Igeo < 5 | highly to extremely contaminated |
Class VI | Igeo > 5 | extremely contaminated |
Cu | Zn | Fe | Mn | Pb | Cd | Ni | |
---|---|---|---|---|---|---|---|
Cu | 1 | ||||||
Zn | 0.78 *** | 1 | |||||
Fe | 0.58 ** | 0.29 | 1 | ||||
Mn | 0.66 *** | 0.48 * | 0.39 | 1 | |||
Pb | 0.78 *** | 0.71 *** | 0.6 ** | 0.69 *** | 1 | ||
Cd | 0.26 | 0.45 * | 0.06 | 0.15 | 0.49 * | 1 | |
Ni | 0.8 *** | 0.61 ** | 0.48 * | 0.74 *** | 0.87 *** | 0.5 * | 1 |
Site ID | Cu | Zn | Pb | Cd | Ni | RI |
---|---|---|---|---|---|---|
S1 | 0.48 | 0.02 | 5.31 | 4.5 | 11.62 | 21.930 |
S2 | 0.34 | 0.04 | 3.81 | 9 | 7.45 | 20.640 |
S3 | 0.4 | 0.07 | 3.53 | 3.9 | 6.69 | 14.590 |
S4 | 0.44 | 0.03 | 4.34 | 2.25 | 11.5 | 18.560 |
S5 | 0.54 | 0.06 | 5.09 | 15 | 11.03 | 31.720 |
S6 | 0.4 | 0.03 | 0.34 | 2.25 | 9.42 | 12.440 |
S7 | 0.79 | 0.06 | 8.67 | 22.5 | 13.33 | 45.350 |
S8 | 0.68 | 0.08 | 7.42 | 52.5 | 16.27 | 76.950 |
S9 | 0.62 | 0.14 | 12.88 | 43.5 | 17.6 | 74.740 |
S10 | 1.33 | 0.16 | 12.12 | 13.5 | 19.35 | 46.460 |
S11 | 1.04 | 0.14 | 11.19 | 6 | 16.89 | 35.260 |
S12 | 0.41 | 0.09 | 0.48 | 11.85 | 8.83 | 21.660 |
S13 | 0.61 | 0.12 | 5.44 | 24.75 | 8.03 | 38.950 |
S14 | 0.32 | 0.02 | 4.78 | 9.6 | 11.16 | 25.880 |
S15 | 0.25 | 0.02 | 3.53 | 2.55 | 8.51 | 14.860 |
Variables | PC1 | PC2 |
---|---|---|
Cu | 0.43 | −0.16 |
Zn | 0.38 | 0.23 |
Fe | 0.29 | −0.52 |
Mn | 0.37 | −0.24 |
Pb | 0.45 | 0.03 |
Cd | 0.23 | 0.77 |
Ni | 0.44 | 0.06 |
Eigenvalue | 4.40 | 1.04 |
Cumulative variance (%) | 63.00 | 78.00 |
Total variance (%) | 71.00 | 25.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharjee, A.; Ahmed, Z.; Kumar, P.; Alam, R.; Rahman, M.S.; Simal-Gandara, J. Assessment of the Ecological Risk from Heavy Metals in the Surface Sediment of River Surma, Bangladesh: Coupled Approach of Monte Carlo Simulation and Multi-Component Statistical Analysis. Water 2022, 14, 180. https://doi.org/10.3390/w14020180
Acharjee A, Ahmed Z, Kumar P, Alam R, Rahman MS, Simal-Gandara J. Assessment of the Ecological Risk from Heavy Metals in the Surface Sediment of River Surma, Bangladesh: Coupled Approach of Monte Carlo Simulation and Multi-Component Statistical Analysis. Water. 2022; 14(2):180. https://doi.org/10.3390/w14020180
Chicago/Turabian StyleAcharjee, Arup, Zia Ahmed, Pankaj Kumar, Rafiul Alam, M. Safiur Rahman, and Jesus Simal-Gandara. 2022. "Assessment of the Ecological Risk from Heavy Metals in the Surface Sediment of River Surma, Bangladesh: Coupled Approach of Monte Carlo Simulation and Multi-Component Statistical Analysis" Water 14, no. 2: 180. https://doi.org/10.3390/w14020180
APA StyleAcharjee, A., Ahmed, Z., Kumar, P., Alam, R., Rahman, M. S., & Simal-Gandara, J. (2022). Assessment of the Ecological Risk from Heavy Metals in the Surface Sediment of River Surma, Bangladesh: Coupled Approach of Monte Carlo Simulation and Multi-Component Statistical Analysis. Water, 14(2), 180. https://doi.org/10.3390/w14020180