Low-Impact Development (LID) in Coastal Watersheds: Infiltration Swale Pollutant Transfer in Transitional Tropical/Subtropical Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data and Laboratory Analysis
3. Results and Discussion
3.1. Rain in the Campeche District
3.2. Runoff Analysis
3.3. Pollutant Concentrations in Runoff
3.4. Results from Soil Monitoring
3.5. Groundwater Monitoring Results
3.6. Integrative Analysis of All Three Environments (Runoff, Soil, Groundwater)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abellán García, A.I.; Cruz Pérez, N.; Santamarta, J.C. Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology. Sustainability 2021, 13, 7258. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; O’Donnell, E.C.; Feng, M.; Sang, Y.; Thorne, C.R.; Griffiths, J.; Liu, L.; Liu, S.; Zhang, C.; et al. Exploring the Development of the Sponge City Program (SCP): The Case of Gui’an New District, Southwest China. Front. Water 2021, 3, 41. [Google Scholar] [CrossRef]
- Tedoldi, D.; Gromaire, M.-C.; Chebbo, G. Infiltrer Les Eaux Pluviales C’est Aussi Maîtriser Les Flux Polluants; OPUR: Paris, France, 2020. [Google Scholar]
- Barbosa, A.E.; Fernandes, J.N. Review of tools for road runoff quality prediction and application to European roads. Water Sci. Technol. 2021, 84, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Huthinson, S.L.; Keane, T.; Christianson, R.D.; Skabeland, L.; Mooret, L.; Green, E.A.; Kinery-Page, K. Management practices for the amelioration of urban stormwater. Procedia Environ. Sci. 2009, 9, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Ingvertsen, S.T.; Sommer, H.; Cederkvist, K.; Régent, Y.; Jensen, M.B.; Magid, J. Infiltration and Treatment of Urban Stormawater: How Well do Swale-Trench Systems Work? NOVATECH: Lyon, France; INSA de Lyon: Lyon, France, 2010. [Google Scholar]
- Ismail, A.F.; Sapari, N.; Waha, B.; Abdul, M.M. Vegetative swale for treatment of stormwater runoff from contruction site. Sci. Technol. Pertanika J. Ci Technol. 2014, 22, 55–64. [Google Scholar]
- Horstmeyer, N.; Huber, M.; Drewes, J.E.; Helmreic, H. Evaluation of site-specific factors inflencing heavy metal contents in the topsoil of vegetated infiltration swales. Sci. Total Environ. 2016, 560, 19–28. [Google Scholar] [CrossRef]
- Leroy, M.C.; Koltalo, F.P.; Legras, M.; Lederf, F. Performance of vegeted swale for improving road runoff quality in a moderate traffic urban area. Sci. Total Environment. 2016, 566, 113–121. [Google Scholar] [CrossRef]
- Scholes, L.; Revitt, D.M.; Ellis, J.B. A systematic approach for the comparative assessment of stormwater pollutant removal potentials. J. Environ. Manage. 2008, 88, 467–478. [Google Scholar] [CrossRef]
- Baptista, M.; Nascimento, N.; Barraud, S. Técnicas Compensatórias em Drenagem Urbana; Associação Brasileira de Recursos Hídricos: Porto Alegre, Brazil, 2005. [Google Scholar]
- Belotti, F.M. Capacidade de Retenção de Metais Pesados Pelo Solo em Áreas de Implantação de Estruturas de Infiltração Para Águas Pluviais Urbanas em Belo Horizonte-MG. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2011; 142p. [Google Scholar]
- Sebastian, C.; Barraud, S.; Becouze-Lareire, C.; Gonzalez-Merchan, C.; Lipeme-Kouy, I.; Gibello, C. Accumulated Sedimetns in a Large Dry Stormwater Retention-Detention Basin: Physic-Chimical Spatial Characterization and Evolution—Estimation of Metals, Pesticides, PAHs and Alkylphenols Contents; NOVATECH: Lyon, France, 2013; p. 10. [Google Scholar]
- California Stormwater Quality Association. California Stormwater Best Management Practices Handbook: New Development and Redevelopment; CASQA: Redondo Beach, CA, USA, 2003; 378p. [Google Scholar]
- Pacheco, E.F. Avaliação Quali-Quantitativa do Desempenho de Uma Vala de Infiltração de Águas Pluviais Implantada em Florianópolis. Dissertação de Mestrado Apresentada ao Programa de Pós-Graduação em Engenharia Ambiental; da Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2015. [Google Scholar]
- Silveira, A.L.L. Problems of modern urban drainage in developing countries. Water Sci. Technol. 2002, 45, 31–40. [Google Scholar] [CrossRef]
- Ruckelshaus, M.H.; Guannel, G.; Arkema, K.; Verutes, G.; Griffin, R.; Guerry, A.; Silver, J.; Faries, J.; Brenner, J.; Rosenthal, A. Evaluating the benefits of green infrastructure for coastal areas. Coast. Manag. 2016, 44, 504–516. [Google Scholar] [CrossRef]
- Arkema, K.K.; Griffin, R.; Maldonado, S.; Silver, J.; Suckale, J.; Guerry, A.D. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. Ann. N. Y. Acad. Sci. 2017, 1399, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Enot, P.; Barry, D.A.; Li, L.; Binley, A.; Jeng, D.S. Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. J. Hydrol. 2006, 327, 110–127. [Google Scholar] [CrossRef]
- Caprario, J.; Rech, A.S.; Tasca, F.A.; Finotti, A.R. Influence of drainage network and compensatory techniques on urban flooding susceptibility. In Proceedings of the 11th International Conference on Urban Drainage Modelling, Palermo, Italy, 23–26 September 2018; Mannina, G., Ed.; Springer International: New York, NY, USA, 2018; pp. 23–26. [Google Scholar]
- Reginato, P.A.R.; Brancher, L.; Schafer, A.E.; Lanzer, R.M. Poços como vetores de contaminação: O caso dos aquíferos da planície costeira do Rio Grande do Sul. In Proceedings of the XV Congresso Brasileiro de Águas Subterrâneas, Natal, Brazil, 14 November 2008; ABAS: São Paulo, Brazil, 2008; pp. 11–15. [Google Scholar]
- Medeiros, C.M.; Barbosa, D.L.; Ceballos, B.S.O.; Ribeiro, M.M.R.; Albuquerque, J.P.T. Qualidade das águas subterrâneas na porção sedimentar na região do baixo curso do rio Paraíba. In Proceedings of the XVIII Simpósio Brasileiro de Recursos Hídricos, Campo Grande, Brazil, 26 November 2009; ABRH; Porto Alegre, Brazil, 2009; p. 10. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- OMM. WMO Guidelines on the Calculation of Climate Normals; WMO-No. 1203; WMO: Geneve, Switzerland, 2017; 18p. [Google Scholar]
- Erickson, A.J.; Weiss, P.T.; Gulliver, J.S. Optimizing Stormwater Treatment Practices; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4623-1. [Google Scholar]
- APHA. Standard Methods for the Evaluation of Water and Wastewater, 22th ed.; LTC-Pharmabooks: Washington, DC, USA, 2012. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J. Análise de Solo, Plantas e Outros Materiais, 2nd ed.; UFRGS: Porto Alegre, Brazil, 1995. [Google Scholar]
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos, 2nd ed.; EMBRAPA Solos: Rio de Janeiro, Brazil, 2006. [Google Scholar]
- ABNT. Brazilian Technical Standard 07181: Soil Particle Size Determinantion with Sieves and Sedimentation; ABNT: São Paulo, Brazil, 1984. [Google Scholar]
- ABNT. Brazilian Technical Standard—Infiltration with Concentric Rings; ABNT: São Paulo, Brazil, 1997. [Google Scholar]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Martínez, R.; Zambrano, E.; Nieto López, J.J.; Hernández, J.; Costa, F. Evolución, vulnerabilidad e impactos económicos y sociales de El Niño 2015-2016 en América Latina. Investig. Geográficas 2017, 65, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Frello, A.S. Avaliação Quantitativa de Uma Vala de Infiltração Como Técnica Compensatória em Drenagem Urbana; Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2016; p. 109. [Google Scholar]
- Orlando, E.G. Avaliação do Fenômeno da Carga de Lavagem na Área de Contribuição de Uma Vala de Infiltração Localizada no Distrito do Campeche (Florianópolis/SC); Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2017; p. 128. [Google Scholar]
- Rama, F.; Miotlinski, K.; Franco, D.; Corseuil, H.X. Recharge estimation from discrete water-table datasets in a coastal shallow aquifer in a humid subtropical climate. Hydrogeol. J. 2018, 26, 1887–1902. [Google Scholar] [CrossRef]
- BRASIL; Conselho Nacional do Meio Ambiente (CONAMA). Resolução 357/2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providênc. DOU 2005, 53, 58–63. [Google Scholar]
- Minnessota Stormwater Manual. Available online: https://stormwater.pca.state.mn.us/index.php?title=Typical_Annual_and_Snowmelt_Urban_Stormwater_Quality_Characteristics (accessed on 20 October 2021).
- David, N.; Leatherbarrow, J.E.; Yee, D.; McKee, L.J. Removal efficiencies of a bioretention system for trace metals, PCBs, PAHs, and dioxins in a semiarid environment. J. Environ. Eng. 2015, 141, 04014092. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Solo-Gabriele, H.M.; Fleming, L.E.; Cai, Y.; Townsend, T.G. A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure. Sci. Total Environ. 2007, 372, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Cederkvist, K.; Jensen, M.B.; Holm, P.E. Characterization of Chromium Species in Urban Runoff. J. Environ. Qual. 2013, 42, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Gromaire, M.-C.; Veiga, L.; Grimaldi, M.; Aires, N. Outils de Bonne Gestion des Eaux de Ruissellement en Zones Urbaines; Eau Seine Normandie: Nanterre, France, 2013. [Google Scholar]
- US EPA. Median Concentrations from More Than 2300 Rainfall Events Monitored across the Nation; USEPA: Washington, DC, USA, 1983.
- Hunt, W.F.; Davis, A.P.; Traver, R.G. Meeting Hydrologic and Water Quality Goals through Targeted Bioretention Design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- VonSperling, M. Princípios do tratamento biológico de águas residuárias. In Introdução à Qualidade das Águas e ao Tratamento de Esgoto; UFMG: Belo Horizonte, Brazil, 2005. [Google Scholar]
- Souza, A.M.; Salviano, A.M.; Melo, J.F.B.; Felix, W.P.; Belém, C.S.; Ramos, P.N. Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil. Braz. J. Biol. 2016, 76, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Barrett, M.E.; Walsh, P.M.; Malina, J.F.; Charbeneau, R.J. Performance of vegetative controls for treating highway runoff. J. Environ. Eng. 1998, 124, 1121–1128. [Google Scholar] [CrossRef]
- Stagge, H.J.; Allen, D.; Jamil, E.; Kim, H. Performace of grass swales for improving water quality from highway runoff. Water Res. 2012, 46, 20–6731. [Google Scholar] [CrossRef] [PubMed]
- BRASIL; Conselho Nacional do Meio Ambiente (CONAMA). Resolução 420/2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por. Publicação DOU 2009, 249, 81–84. [Google Scholar]
- McBride, M.B. Environmental Chemistry of Soils; OUP: New York, NY, USA, 1994. [Google Scholar]
- Fadiga, F.S.; Amaral-Sobrinho, N.M.B.; Mazur, N.; Anjos, L.H.C.; Freixo, A.A. Concentrações naturais de metais pesados em algumas classes de solos brasileiros. Bragantina 2002, 61, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liang, J.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Li, X.; Qian, Y.; Wu, H.; Luo, Y.; et al. Sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios in contaminated wetland soil. J. Soils Sediments 2018, 18, 1530–1539. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System, 5th ed.; EMBRAPA: Brasília, Brazil, 2018. [Google Scholar]
- BRASIL Conselho Nacional do Meio Ambiente (CONAMA). Resolução 396/2008. Dispõe Sobre a Classificação e Diretrizes Ambientais para o Enquadramento das Águas Subterrâneas e dá Outras Providências; MMA: Brasília, Brazil, 2008. [Google Scholar]
- Rech, A.S.; Caprario, J.; Miranda, N.M.G.; Tasca, F.A.; Finotti, A.R.; Rech, J.C.; Durante, T.; Favero, M.; Chiuchi, L.; Leoratto, J.; et al. Uso de técnicas de infiltração e os riscos de contaminação de aquíferos superficiais. Anais 2017. Available online: https://repositorio.ufsc.br/bitstream/handle/123456789/215452/PGEA0659-T.pdf?sequence=-1&isAllowed=y (accessed on 20 October 2021).
- Rech, A.S.; Rech, J.C.; Caprario, J.; Tasca, F.A.; Lobo Recio, M.A.; Finotti, A.R. Use of shrimp-shell for adsortion of metals present surface runoff. Water Sci.Technol. 2019, 79, 2221–2230. [Google Scholar] [CrossRef]
Medium | Parameter | Analysis Type | Method Reference |
---|---|---|---|
runoff and groundwater | Cd, Cu, Pb, Zi, Cr, Fe, Mn, Ni, P-PO4 and N-NO2 | mass spectrophotometer | SM3111B 4500-P C and NO2 B [27] |
pH | pHmeter | ||
Solids 1 | gravimetric | 2540B,C,D [27] | |
TOC 2 | TOC analyser | 5310 B [27] | |
turbidity | nephelometric | 2130B [27] | |
alkalnity | titulometry | 2501B [27] | |
COD | spectrophotometer | 5310B [27] | |
Cd, Cu, Pb, Zi, Cr, Fe, Mn, Ni | mass spectrophotometer | SM3111B [27] | |
pH | pHmeter | ||
CEC 3 | [28] | ||
soil | OM 4 | [29] | |
PSD 5 | NBR 07181/84 [30] | ||
nfiltration rate | concentric rings | NBR 13969/97 [31] |
Months | PCSN 1 (INMET) | Precipitation in Swale Rain Gauge or CEMADEN | |||
---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | ||
January 3 | 162.7 | 147.1 | 95.7 | 184.6 | 178.2 |
February | 196.9 | 148.6 | 335.3 | 159.6 | 72.0 |
March | 173 | 94.6 | 237.1 | 218.4 | 174.9 |
April | 92.8 | 178.0 | 207.5 | 121.2 | 147.0 |
May | 96.9 | 66.8 | 194.1 | 66.1 | 276.8 |
June | 89.5 | 197.9 | 82.6 | 38.4 | 126.5 |
July 3 | 99.5 | 68.2 | 275.4 | 149.1 | 8.9 |
August | 95.3 | 85.8 | 74.0 | 78.0 | 107.2 |
September | 134.2 | 115.9 | 321.3 | 129.4 | 84.4 |
October | 109.8 | 113.0 | 293.6 | 134.1 | 102.7 |
November | 130.2 | 84.0 | 176.4 | 44.9 | 128.7 |
December | 137 | 90.4 | 132.6 | 325.1 | 165.9 |
MA 2 | 126.5 | 115.8 | 202.1 | 137.4 | 131.1 |
total annual | 1517 | 1390.3 | 2425.6 | 1648.9 | 1573.1 |
% diffe from climatology | 0 | −8.4 | 59.8 | 8.6 | 3.6 |
Event | P (mm) | D (min) | DNR (days) | Ve | Vo | Vi | %Inf |
---|---|---|---|---|---|---|---|
13/2/15 | 55.6 | 115 | 2 | 1516 | 1667 | 199 | 13 |
9/3/15 | 97.6 | 620 | 2 | 2638 | 2273 | 199 | 14 |
15/3/15 | 26.8 | 315 | 2 | 970 | 212 | 757 | 78 |
4/8/15 | 10.4 | 160 | 3 | 415 | 253 | 162 | 39 |
12/8/15 | 16 | 325 | 7 | 683 | 213 | 514 | 75 |
25/8/15 | 14.2 | 305 | 9 | 1269 | 263 | 1019 | 80 |
31/8/15 | 38.4 | 420 | 6 | 1550 | 1260 | 254 | 16 |
2/9/15 | 15.2 | 309 | 3 | 837 | 758 | 30 | 4 |
17/3/15 | 26.8 | 229 | 2 | 315 | 220 | 95 | 30 |
7/1/16 | 19.8 | 545 | 2 | 252 | 167 | 85 | 34 |
17/8/16 | 3.2 | 174 | 2 | 32 | 19 | 13 | 42 |
Reference | [3,42] | [43] | [38] | [4] | [39] | [40,41] |
---|---|---|---|---|---|---|
Characteristic | Road Runoff 1 | Road Runoff 2 | Urban Watershed Runoff 3 | Road Runoff 4 | Urban Watershed Runoff 5 | Wood Deck Runoff 6 |
MES (mg/L) | 69.3–875 | |||||
DCO (mg/L) | 70–368 | 91 | 66–169 | |||
Cd | 0.4–13.8 | 0.4–0.6 | ||||
Cu | 65.6–143.5 | 16–22 | 8–72 | |||
Pb | 25–535 | 180 | 0.4–0.6 | 2–44 | ||
Zn | 129.3–1956 | 111–203 | 76–346 | |||
Ni | 1–95 | |||||
Cr | 0.6–580 | |||||
Nitrate | 0.96 | |||||
P | 0.46 | 0.29–0.66 | ||||
TSS | 64–184 | 7–225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rech, A.; Pacheco, E.; Caprario, J.; Rech, J.C.; Finotti, A.R. Low-Impact Development (LID) in Coastal Watersheds: Infiltration Swale Pollutant Transfer in Transitional Tropical/Subtropical Climates. Water 2022, 14, 238. https://doi.org/10.3390/w14020238
Rech A, Pacheco E, Caprario J, Rech JC, Finotti AR. Low-Impact Development (LID) in Coastal Watersheds: Infiltration Swale Pollutant Transfer in Transitional Tropical/Subtropical Climates. Water. 2022; 14(2):238. https://doi.org/10.3390/w14020238
Chicago/Turabian StyleRech, Aline, Elisa Pacheco, Jakcemara Caprario, Julio Cesar Rech, and Alexandra Rodrigues Finotti. 2022. "Low-Impact Development (LID) in Coastal Watersheds: Infiltration Swale Pollutant Transfer in Transitional Tropical/Subtropical Climates" Water 14, no. 2: 238. https://doi.org/10.3390/w14020238
APA StyleRech, A., Pacheco, E., Caprario, J., Rech, J. C., & Finotti, A. R. (2022). Low-Impact Development (LID) in Coastal Watersheds: Infiltration Swale Pollutant Transfer in Transitional Tropical/Subtropical Climates. Water, 14(2), 238. https://doi.org/10.3390/w14020238