Simulation of Denitrification Process of Calcium Nitrate Combined with Low Oxygen Aeration Based on Double Logarithm Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of the Optimum Dosage of Calcium Nitrate
2.2.2. Determination of the Optimum Aeration Rate
2.2.3. Determination of Ammonia Nitrogen and Nitrate Nitrogen
3. Results
3.1. Variation of Ammonia Nitrogen and Nitrate Nitrogen Contents with Calcium Nitrate Addition
3.2. Variation of Ammonia Nitrogen and Nitrate Nitrogen Concentration with Calcium Nitrate Addition
3.3. Variation of Ammonia Nitrogen and Nitrate Nitrogen Contents with Aeration
3.4. Variation of Ammonia Nitrogen and Nitrate Nitrogen Concentration with Aeration
4. Discussion
4.1. Analysis on Inhibition Degree of Ammonia Nitrogen and Nitrate Nitrogen in Sediment with Different Dosage of Calcium Nitrate
4.2. Analysis on Inhibition Degree of Ammonia Nitrogen and Nitrate Nitrogen in Overlying Water with Different Dosage of Calcium Nitrate
4.3. Analysis on Inhibition Degree of Ammonia Nitrogen and Nitrate Nitrogen in Sediment with Different Aeration Rates
4.4. Analysis on Inhibition Degree of Ammonia Nitrogen and Nitrate Nitrogen in Overlying Water with Different Aeration Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, Y.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Fang, Y.; Huang, R. Analysis on the formation condition of the algae-induced odorous black water agglomerate. Saudi J. Biol. Sci. 2014, 21, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Siegert, M.; Fang, W.; Sun, Y.; Jiang, F.; Lu, H.; Chen, G.H.; Wang, S. Blackening and Odorization of Urban Rivers: A bio-geochemical process. FEMS Microbiol. Ecol. 2017, 94, fix180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zhong, J.; He, J.; Zhang, L.; Fan, C. Effects of black spots of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay, Lake Taihu. Environ. Sci. 2009, 30, 2520–2526. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202001/t20200117_760049.html. (accessed on 21 December 2021).
- Bin, L.; Bai, Y.; Liu, D.; Wanf, F.; Yuan, P.; Liu, R. Nationwide distribution, problems, countermeasure proposals of black and odorous water bodies in built-up area of cities at prefecture level or above in China. Chin. J. Environ. Eng. 2019, 13, 511–518. [Google Scholar]
- Zhang, D.; Yang, H.; Lan, S.; Wang, C.; Li, X.; Xing, Y.; Yue, H.; Li, Q.; Wang, L.; Xie, Y. Evolution of urban black and odorous water: The characteristics of microbial community and driving-factors. J. Environ. Sci. 2022, 112, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Fang, W.; Luo, Y.; Lu, Q.; Juneau, P.; He, Z.; Wang, S. Mechanistic insights into organic carbon-driven water blackening and odorization of urban rivers. J. Hazard. Mater. 2021, 405, 124663. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Niu, M.S.; Yi, X.; Li, G.; Zhou, H.; Gao, W. Boron vacancies of mesoporous MnO2 with strong acid sites, free Mn3+ species and macropore decoration for efficiently decontaminating organic and heavy metal pollutants in black-odorous waterbodies. Appl. Surf. Sci. 2021, 561, 150081. [Google Scholar] [CrossRef]
- Yin, H.; Wang, J.; Zhang, R.; Tang, W. Performance of physical and chemical methods in the co-reduction of internal phosphorus and nitrogen loading from the sediment of a black odorous river. Sci. Total Environ. 2019, 663, 68–77. [Google Scholar] [CrossRef]
- Yin, H.; Yang, P.; Kong, M. Effects of nitrate dosing on the migration of reduced sulfur in black odorous river sediment and the influencing factors. Chem. Eng. J. 2019, 371, 516–523. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, Z.; Wu, G. Impacts of environmental factors on microbial diversity, distribution patterns and syntrophic correlation in anaerobic processes. Arch. Microbiol. 2019, 201, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, M.; Zou, Y.; Lv, M.; Sun, J. Mechanism of aerobic denitrifiers and calcium nitrate on urban river sediment remediation. Int. Biodeterior. Biodegrad. 2018, 126, 119–130. [Google Scholar] [CrossRef]
- Sueitt, A.P.E.; Yamada-Ferraz, T.M.; Oliveira, A.F.; Botta, C.M.R.; Fadini, P.S.; Nascimento, M.R.L.; Faria, B.M.; Mozeto, A.A. Ecotoxicological risks of calcium nitrate exposure to freshwater tropical organisms: Laboratory and field experiments. Ecotoxicol. Environ. Saf. 2015, 117, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wang, J.; Chen, J.; Guo, J.; Yang, H.; Chen, Q. Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals. Sci. Total Environ. 2019, 663, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lu, S.; Zhao, Y.; Wang, W.; Huang, M. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment. J. Environ. Sci. 2011, 23, 206–211. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Water Quality—Determination of Ammonia Nitrogen-Nessler’s Reagent Spectrophotometry. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201001/t20100112_184155.shtml. (accessed on 21 December 2021). (In Chinese)
- Ministry of Ecology and Environment of the People’s Republic of China. Water quality--Determination of Nitrate-Nitrogen--Ultraviolet Spectrophotometry. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200703/t20070316_101688.shtml. (accessed on 21 December 2021). (In Chinese)
- Li, S.; Twilley, R.; Hou, A.; Hou, A. Heterotrophic nitrogen fixation in response to nitrate loading and sediment organic matter in an emerging coastal deltaic floodplain within the Mississippi River Delta plain. Limnol. Oceanogr. 2021, 66, 1962–1978. [Google Scholar] [CrossRef]
- Tian, L.; Yan, Z.; Wang, C.; Xu, S.; Jiang, H. Habitat heterogeneity induces regional differences in sediment nitrogen fixation in eutrophic freshwater lake. Sci. Total Environ. 2021, 772, 145594. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.M.; Sueitt, A.P.E.; Beraldo, D.A.S.; Botta, C.M.R.; Fadini, P.S.; Nascimento, M.R.L.; Faria, B.M.; Mozeto, A.A. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: Microcosm experiments. Water Res. 2012, 46, 6463–6475. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Huang, R.; Liang, Y.; Yu, G.; Chong, Y.; Wang, L. Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions. J. Environ. Manag. 2018, 226, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Bittman, S.; van Vliet, L.J.; Kowalenko, C.G.; McGinn, S.; Hunt, D.E.; Bounaix, F. Surface-Banding Liquid Manure over Aeration Slots: A New Low-Disturbance Method for Reducing Ammonia Emissions and Improving Yield of Perennial Grasses. Agron. J. 2005, 97, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
Sample | Indicator | Unit | Background Value |
---|---|---|---|
Overlying water | pH | - | 7.34 ± 0.39 |
ORP | mV | −58.6 ± 1.24 | |
DO | mg/L | 0.48 ± 0.12 | |
NH3-N | mg/L | 9.10 ± 0.43 | |
COD | mg/L | 182.81 ± 3.93 | |
Sediment | moisture content | % | 49.04 ± 2.01 |
pH | - | 7.06 ± 0.35 | |
NH3-N | mg/L | 364.94 ± 4.06 |
Dosage of Calcium Nitrate | Double Logarithm Relation (Ammonia Nitrogen) | R2 | Double Logarithm Relation (Nitrate Nitrogen) | R2 |
---|---|---|---|---|
0 | lnct = 0.0017lnt + 5.8824 | 0.7593 | lnct = 0.3084lnt − 0.4313 | 0.8301 |
2% | lnct = −0.0815lnt + 5.9161 | 0.9126 | lnct = −0.3974lnt + 0.8904 | 0.6853 |
4% | lnct = −0.1743lnt + 5.5983 | 0.9536 | lnct = −0.0573lnt + 1.2019 | 0.7225 |
6% | lnct = −0.1712lnt + 5.9479 | 0.9431 | lnct = −0.3311lnt + 2.4552 | 0.8081 |
8% | lnct = −0.1357lnt + 5.9314 | 0.9670 | lnct = 0.0014lnt + 2.0889 | 0.7011 |
Dosage of Calcium Nitrate | Double Logarithm Relation (Ammonia Nitrogen) | R2 | Double Logarithm Relation (Nitrate Nitrogen) | R2 |
---|---|---|---|---|
0 | lnct = 0.0609lnt + 2.3169 | 0.7740 | lnct = 0.0862lnt + 1.0678 | 0.7753 |
2% | lnct = −0.0784lnt + 2.7947 | 0.7378 | lnct = −0.119lnt + 1.6959 | 0.9168 |
4% | lnct = −0.0758lnt + 2.7002 | 0.8023 | lnct = −0.1302lnt + 1.7814 | 0.8178 |
6% | lnct = −0.1238lnt + 2.8018 | 0.8405 | lnct = −0.1701lnt + 2.1208 | 0.8856 |
8% | lnct = −0.1145lnt + 2.8475 | 0.9398 | lnct = 0.0008lnt + 1.9165 | 0.7005 |
Aeration Rate | Double Logarithm Relation (Ammonia Nitrogen) | R2 | Double Logarithm Relation (Nitrate Nitrogen) | R2 |
---|---|---|---|---|
10 mL/min | lnct = −0.4026lnt + 6.2634 | 0.8473 | lnct = −0.2617lnt + 1.3442 | 0.9555 |
20 mL/min | lnct = −0.5792lnt + 6.4985 | 0.8915 | lnct = −0.5303lnt + 1.8030 | 0.9127 |
30 mL/min | lnct = −0.8499lnt + 6.8904 | 0.8930 | lnct = −0.5618lnt + 1.7145 | 0.9904 |
40 mL/min | lnct = −0.4426lnt + 6.219 | 0.8992 | lnct = −0.6863lnt + 1.9767 | 0.9331 |
Aeration Rate | Double Logarithm Relation (Ammonia Nitrogen) | R2 | Double Logarithm Relation (Nitrate Nitrogen) | R2 |
---|---|---|---|---|
10 mL/min | lnct = −0.7851lnt + 4.0957 | 0.8145 | lnct = −0.3934lnt + 1.6959 | 0.9331 |
20 mL/min | lnct = −1.1932lnt + 4.8799 | 0.7994 | lnct = −0.4235lnt + 1.7944 | 0.9752 |
30 mL/min | lnct = −1.1495lnt + 4.7724 | 0.6914 | lnct = −0.5159lnt + 1.8799 | 0.9450 |
40 mL/min | lnct = −0.9356lnt + 4.4059 | 0.8743 | lnct = −0.6770lnt + 2.0859 | 0.9411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Yang, F.; Gao, H.; Bai, Y.; Liao, H.; Li, H. Simulation of Denitrification Process of Calcium Nitrate Combined with Low Oxygen Aeration Based on Double Logarithm Mode. Water 2022, 14, 269. https://doi.org/10.3390/w14020269
Wang F, Yang F, Gao H, Bai Y, Liao H, Li H. Simulation of Denitrification Process of Calcium Nitrate Combined with Low Oxygen Aeration Based on Double Logarithm Mode. Water. 2022; 14(2):269. https://doi.org/10.3390/w14020269
Chicago/Turabian StyleWang, Fan, Fang Yang, Hongjie Gao, Yangwei Bai, Haiqing Liao, and Haisheng Li. 2022. "Simulation of Denitrification Process of Calcium Nitrate Combined with Low Oxygen Aeration Based on Double Logarithm Mode" Water 14, no. 2: 269. https://doi.org/10.3390/w14020269
APA StyleWang, F., Yang, F., Gao, H., Bai, Y., Liao, H., & Li, H. (2022). Simulation of Denitrification Process of Calcium Nitrate Combined with Low Oxygen Aeration Based on Double Logarithm Mode. Water, 14(2), 269. https://doi.org/10.3390/w14020269