The Impact of Land Cover on Selected Water Quality Parameters in Polish Lowland Streams during the Non-Vegetative Period
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Field and Laboratory Investigations
3.2. Land Cover Metrics
3.3. Statistical Analysis
4. Results
4.1. Meteorological Background
4.2. Spatial Variability of Water Quality Parameters
4.3. Land Cover Effect on Water Quality
5. Discussion
5.1. Spatial Variability of the Water Quality Parameters
5.2. The Effect of Land Cover Characteristics on Selected Nitrogen Compounds Variability
5.3. The Performance of Land Cover Metrics in Different Spatial Scales
5.4. Comparison of Land Use Datasets
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stream | Site | A | CLC 2018 Dataset | S2GLC Dataset | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UA | ARA | ORCH | MEAD | CF | DF | TF | UA | ARA | MEAD | CF | DF | TF | |||
Myszadła Stream | P1 | 15.5 | 4.8 | 61.4 | 0.0 | 22.0 | 0.0 | 1.3 | 1.7 | 0.2 | 27.3 | 52.0 | 3.4 | 11.5 | 14.9 |
Józefów Stream | P2 | 15.9 | 8.2 | 65.3 | 0.0 | 8.0 | 1.8 | 8.1 | 15.8 | 0.3 | 39.7 | 36.1 | 8.0 | 11.3 | 19.3 |
Rozalin Stream | P3 | 15.1 | 1.1 | 58.8 | 0.0 | 2.3 | 0.0 | 31.7 | 32.5 | 0.1 | 23.5 | 28.8 | 26.5 | 14.7 | 41.1 |
Kobylanka | P4 | 17.1 | 3.3 | 52.3 | 0.0 | 1.6 | 0.0 | 30.1 | 42.6 | 0.0 | 18.9 | 25.5 | 32.4 | 12.3 | 44.7 |
Rynia | P5 | 23.7 | 1.3 | 30.3 | 0.0 | 6.9 | 0.0 | 37.1 | 52.1 | 0.1 | 18.2 | 17.5 | 41.8 | 11.9 | 53.6 |
Kukawki Stream | P6 | 16.6 | 3.6 | 10.8 | 0.0 | 15.3 | 0.0 | 41.2 | 55.2 | 0.2 | 7.6 | 23.5 | 44.5 | 14.9 | 59.5 |
Moszczona | P7 | 13.2 | 2.5 | 64.9 | 0.0 | 4.2 | 4.3 | 14.7 | 19.1 | 0.1 | 44.4 | 29.9 | 11.0 | 10.6 | 21.6 |
Łochów Stream | P8 | 11.4 | 24.1 | 21.8 | 0.0 | 6.9 | 8.5 | 13.2 | 47.2 | 7.3 | 12.3 | 17.6 | 25.2 | 25.9 | 51.1 |
Łojewski Rów | P9 | 12.3 | 9.5 | 62.6 | 0.0 | 0.0 | 0.0 | 0.0 | 17.9 | 0.4 | 19.4 | 37.1 | 6.7 | 26.3 | 33.1 |
Ostrówek Stream | P10 | 5.1 | 8.4 | 23.0 | 0.0 | 0.0 | 28.6 | 0.0 | 48.8 | 0.4 | 13.3 | 21.8 | 18.7 | 32.8 | 51.4 |
Wieliczna Stream | P11 | 12.6 | 6.6 | 56.1 | 0.0 | 8.8 | 3.7 | 0.0 | 18.4 | 0.2 | 18.9 | 46.3 | 4.1 | 23.1 | 27.2 |
Zgrzebichy Stream | P12 | 12.6 | 7.3 | 44.6 | 0.0 | 15.6 | 2.5 | 6.4 | 15.5 | 0.2 | 24.6 | 41.2 | 7.0 | 21.5 | 28.4 |
Dzięciołek | P13 | 21.2 | 5.3 | 23.6 | 0.0 | 15.2 | 14.6 | 15.1 | 47.2 | 0.4 | 17.8 | 28.2 | 27.0 | 22.1 | 49.1 |
Bojewka | P14 | 12.6 | 4.4 | 10.9 | 0.0 | 2.9 | 5.5 | 43.4 | 79.6 | 0.0 | 7.7 | 14.5 | 49.2 | 21.5 | 70.6 |
Ugoszcz | P15 | 9.8 | 0.0 | 34.6 | 0.0 | 21.7 | 0.0 | 31.2 | 31.2 | 0.0 | 25.7 | 29.1 | 23.8 | 16.8 | 40.6 |
Chruszczewek Stream | P16 | 9.4 | 0.0 | 25.5 | 0.0 | 0.0 | 4.3 | 52.6 | 74.4 | 0.0 | 17.2 | 6.1 | 42.2 | 29.0 | 71.1 |
Wrotnów Stream | P17 | 22.6 | 1.6 | 45.5 | 0.0 | 2.6 | 0.0 | 28.2 | 39.6 | 0.1 | 40.4 | 16.1 | 23.0 | 17.2 | 40.2 |
Kolonia Miedzna Stream | P18 | 12.4 | 0.0 | 61.8 | 0.0 | 0.0 | 0.0 | 18.1 | 30.9 | 0.1 | 46.4 | 18.1 | 17.3 | 16.1 | 33.4 |
Międzylesie Stream | P19 | 21.8 | 0.0 | 47.8 | 0.0 | 9.1 | 0.0 | 15.0 | 32.6 | 0.1 | 43.5 | 19.0 | 17.7 | 17.0 | 34.7 |
Miedzanka | P20 | 30.8 | 4.7 | 59.1 | 0.0 | 9.4 | 9.3 | 4.2 | 24.4 | 0.3 | 53.7 | 17.3 | 5.9 | 19.5 | 25.4 |
Wola Orzeszowska Stream | P21 | 12.8 | 3.6 | 70.4 | 0.0 | 5.4 | 0.0 | 10.0 | 10.0 | 0.2 | 66.2 | 14.4 | 6.1 | 10.5 | 16.7 |
Jartypor Stream | P22 | 20.0 | 2.9 | 57.9 | 0.0 | 2.2 | 6.3 | 25.3 | 31.6 | 0.1 | 55.6 | 7.9 | 18.0 | 15.2 | 33.3 |
Chmielów Stream | P23 | 11.9 | 2.3 | 66.6 | 0.0 | 0.0 | 8.9 | 6.4 | 17.1 | 0.4 | 65.1 | 5.6 | 6.1 | 18.9 | 25.0 |
Zawady Stream | P24 | 10.7 | 5.0 | 80.5 | 0.0 | 9.0 | 0.6 | 2.5 | 3.1 | 0.3 | 69.6 | 22.0 | 1.7 | 4.7 | 6.4 |
Zalesie Stream | P25 | 11.2 | 8.9 | 90.5 | 0.0 | 0.0 | 0.6 | 0.0 | 0.6 | 0.4 | 71.5 | 22.0 | 0.0 | 4.4 | 4.4 |
Majdan Stream | P26 | 11.1 | 12.4 | 20.9 | 0.0 | 10.6 | 23.5 | 7.1 | 55.2 | 0.1 | 19.5 | 20.5 | 22.1 | 33.9 | 56.0 |
Lubicza | P27 | 14.2 | 1.8 | 31.9 | 0.0 | 10.6 | 13.1 | 1.9 | 51.8 | 0.0 | 26.7 | 19.7 | 25.1 | 24.0 | 49.1 |
Korycianka | P28 | 14.8 | 7.8 | 86.3 | 0.0 | 4.6 | 1.2 | 0.2 | 1.3 | 0.6 | 79.2 | 13.4 | 0.3 | 4.5 | 4.8 |
Komory Stream | P29 | 7.2 | 1.0 | 84.5 | 0.0 | 4.4 | 3.2 | 0.0 | 3.2 | 0.5 | 58.6 | 31.0 | 0.9 | 6.5 | 7.4 |
Borucza | P30 | 32.0 | 8.1 | 34.9 | 0.0 | 9.2 | 0.0 | 25.5 | 37.7 | 0.8 | 19.2 | 22.5 | 25.5 | 17.6 | 43.2 |
Cienka | P31 | 25.0 | 2.7 | 42.4 | 0.0 | 6.8 | 0.0 | 36.0 | 40.4 | 0.0 | 17.2 | 22.5 | 33.8 | 13.8 | 47.6 |
Pniewniczanka | P32 | 32.6 | 4.2 | 59.6 | 0.0 | 7.0 | 2.8 | 16.9 | 25.1 | 0.2 | 39.9 | 22.5 | 16.5 | 13.9 | 30.4 |
Białka | P33 | 34.9 | 0.5 | 35.3 | 38.5 | 0.0 | 3.5 | 2.6 | 13.6 | 0.4 | 30.6 | 39.2 | 2.2 | 18.2 | 20.4 |
Stanisławów Stream | P34 | 12.1 | 0.0 | 2.2 | 83.9 | 0.0 | 2.3 | 0.0 | 2.3 | 0.9 | 24.1 | 53.3 | 0.2 | 9.3 | 9.5 |
Chodnów Stream | P35 | 20.2 | 0.0 | 2.9 | 77.5 | 7.0 | 0.0 | 3.9 | 3.9 | 0.8 | 28.6 | 40.3 | 2.8 | 14.3 | 17.1 |
Rylka | P36 | 57.2 | 1.3 | 49.0 | 19.7 | 9.9 | 4.2 | 1.7 | 9.5 | 0.3 | 46.4 | 30.7 | 4.0 | 9.2 | 13.2 |
Regnów Stream | P37 | 47.7 | 1.2 | 59.0 | 7.9 | 5.0 | 2.6 | 9.6 | 14.1 | 0.5 | 51.8 | 25.9 | 7.4 | 7.9 | 15.3 |
Strzałki Stream | P38 | 30.5 | 5.3 | 71.2 | 0.9 | 12.9 | 0.0 | 0.1 | 1.1 | 0.2 | 76.1 | 14.4 | 0.8 | 3.2 | 4.0 |
Krzemionka | P39 | 45.0 | 1.9 | 65.7 | 0.9 | 2.8 | 4.3 | 11.2 | 17.3 | 0.1 | 67.5 | 7.8 | 13.1 | 6.1 | 19.2 |
Dańków Stream | P40 | 1.5 | 0.0 | 77.3 | 3.8 | 0.0 | 11.2 | 0.0 | 11.2 | 0.2 | 81.6 | 5.8 | 0.0 | 8.9 | 8.9 |
Huta Błędowska Stream | P41 | 16.4 | 5.5 | 2.0 | 84.6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 24.4 | 43.1 | 0.5 | 16.6 | 17.1 |
Machnatka | P42 | 61.0 | 1.3 | 3.8 | 76.7 | 1.6 | 0.0 | 2.7 | 8.2 | 0.9 | 24.4 | 40.4 | 2.3 | 22.9 | 25.2 |
Mogielanka | P43 | 44.5 | 0.6 | 10.9 | 67.5 | 0.6 | 4.5 | 2.6 | 9.3 | 1.1 | 25.5 | 39.5 | 2.2 | 21.5 | 23.7 |
Trębaczew Stream | P44 | 17.4 | 2.9 | 0.0 | 78.1 | 1.9 | 1.9 | 0.0 | 6.2 | 0.6 | 27.8 | 42.6 | 0.5 | 14.2 | 14.7 |
Gostomka | P45 | 33.5 | 1.4 | 2.9 | 73.7 | 0.0 | 1.9 | 5.6 | 14.6 | 0.7 | 24.3 | 34.6 | 2.0 | 22.1 | 24.1 |
Rosocha Stream | P46 | 23.4 | 13.9 | 50.5 | 19.0 | 2.6 | 0.0 | 0.6 | 5.3 | 0.7 | 34.8 | 38.4 | 1.7 | 10.0 | 11.7 |
Gać | P47 | 36.7 | 1.3 | 38.2 | 0.0 | 0.7 | 7.4 | 34.0 | 55.2 | 0.1 | 41.0 | 3.0 | 39.5 | 12.2 | 51.6 |
Luboczanka | P48 | 36.5 | 0.2 | 37.7 | 0.2 | 1.2 | 8.2 | 31.4 | 55.5 | 0.2 | 39.0 | 5.3 | 42.3 | 9.4 | 51.7 |
Kanice Stream | P49 | 6.8 | 0.4 | 72.7 | 0.0 | 0.0 | 0.0 | 18.6 | 20.7 | 0.0 | 73.1 | 5.2 | 14.9 | 4.2 | 19.0 |
Rzeczyca | P50 | 16.7 | 2.4 | 54.1 | 0.0 | 5.9 | 0.0 | 12.8 | 21.3 | 0.5 | 62.0 | 11.5 | 16.5 | 4.3 | 20.8 |
Olszówka | P51 | 13.5 | 0.0 | 8.2 | 0.0 | 0.0 | 8.5 | 59.7 | 88.5 | 0.0 | 7.0 | 4.4 | 72.8 | 10.5 | 83.3 |
Liciążna Stream | P52 | 7.3 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 83.1 | 94.9 | 0.0 | 2.5 | 3.9 | 81.9 | 6.5 | 88.4 |
Cetenka | P53 | 19.8 | 0.0 | 3.4 | 0.0 | 1.4 | 5.7 | 70.1 | 95.2 | 0.0 | 3.5 | 2.6 | 77.8 | 9.7 | 87.4 |
Kiełcznica | P54 | 30.2 | 0.7 | 26.3 | 0.0 | 24.2 | 5.5 | 32.1 | 42.9 | 0.0 | 23.4 | 28.8 | 32.5 | 9.2 | 41.7 |
References
- Meteo-Sagasta, J.; Marjani, S.; Turral, H. Water Pollution from Agriculture: A Global Review. Executive Summary, 1st ed.; FAO and IWMI: Rome, Italy, 2017. [Google Scholar]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lintern, A.; Webb, J.; Ryu, D.; Liu, S.; Bende-Michl, U.; Waters, D.; Leahy, P.; Wilson, P.; Western, A.W. Key factors influencing differences in stream water quality across space. WIREs Water 2018, 5, e1260. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, P.; Whalley, C.; Zal, F.N.N.; Christiansen, T. European Waters Assessment of Status and Pressures 2018, 1st ed.; EEA: Copenhagen, Denmark, 2018. [Google Scholar]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Jayaswal, K.; Sahu, V.; Gurjar, B.R. Water Pollution, Human Health and Remediation. In Water Remediation; Springer: Singapore, 2018; pp. 11–27. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. In Eutrophication: Causes, Consequences and Control, 1st ed.; Ansari, A.A., Gill, S.S., Eds.; Springer: Singapore, 2014; Volume 2, pp. 1–15. [Google Scholar] [CrossRef]
- Miller, J.D.; Stewart, E.; Hess, T.; Brewer, T. Evaluating landscape metrics for characterising hydrological response to storm events in urbanised catchments. Urban Water J. 2020, 17, 247–258. [Google Scholar] [CrossRef]
- A Snapshot of the World’s Water Quality: Towards a Global Assessment; UNEP: Nairobi, Kenya, 2016; Available online: https://wesr.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf (accessed on 4 September 2022).
- Makarigakis, A.K.; Jimenez-Cisneros, B.E. UNESCO’s Contribution to Face Global Water Challenges. Water 2019, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2015: Water for Sustainable World; UNESCO: Paris, France, 2015; Available online: https://sustainabledevelopment.un.org/content/documents/1711Water%20for%20a%20Sustainable%20World.pdf (accessed on 4 September 2022).
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Starkloff, T. Winter hydrology and soil erosion processes in an agricultural catchment in Norway. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.; Delaney-Newcomb, K.; Kaushal, S.S.; Findlay, S.E.G.; Belt, K.T. Potential effects of leaf litter on water quality in urban watersheds. Biogeochemistry 2014, 121, 61–80. [Google Scholar] [CrossRef]
- Kronvang, B.; Jeppesen, E.; Conley, D.J.; Søndergaard, M.; Larsen, S.E.; Ovesen, N.B.; Carstensen, J. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J. Hydrol. 2005, 304, 274–288. [Google Scholar] [CrossRef]
- Seitzinger, S. Nitrogen cycle: Out of Reach. Nature 2008, 452, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Diaz, R.J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Giri, S.; Qiu, Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the Impacts of Land Use on Water Quality: A Case Study in The Chaohu Lake Basin. Sci. World J. 2013, 2013, 329187. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Zhou, X.; Li, J.; Wu, W.; Chen, Y. Assessment of the salinization processes in the largest inland freshwater lake of China. Stoch. Environ. Res. Risk Assess. 2015, 33, 89–104. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, X.; Guo, M.; Wu, W. Land use change and its effects on water quality in typical inland lake of arid area in China. J. Environ. Biol. 2016, 37, 603–609. [Google Scholar]
- Gossweiler, B.; Wesström, I.; Messing, I.; Romero, A.M.; Joel, A. Spatial and Temporal Variations in Water Quality and Land Use in a Semi-Arid Catchment in Bolivia. Water 2019, 11, 2227. [Google Scholar] [CrossRef]
- Mararakanye, N.; Le Roux, J.; Franke, A. Long-term water quality assessments under changing land use in a large semi-arid catchment in South Africa. Sci. Total Environ. 2022, 818, 151670. [Google Scholar] [CrossRef]
- Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess. 2016, 188, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Šandac, M.; Dostálc, T.; Krásac, J.; Vitvarc, T.; Štichc, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.E.; Bravo, V.D.; Giddings, S.N.; Davis, K.A.; Pawlak, G.; Torres, M.A.; Adelson, A.E.; César-Ávila, C.I.; Boza, X.; Collin, R. Land Use and Land Cover Shape River Water Quality at a Continental Caribbean Land-Ocean Interface. Front. Water 2022, 4, 737920. [Google Scholar] [CrossRef]
- Schueler, T.R.; Fraley-McNeal, L.; Cappiella, K. Is Impervious Cover Still Important? Review of Recent Research. J. Hydrol. Eng. 2009, 14, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, K.; Li, L.; Xu, Z. Relationship of land use/cover on water quality in the Liao River basin, China. Procedia Environ. Sci. 2012, 13, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Zampella, R.A.; Procopio, N.A.; Lathrop, R.G.; Dow, C.L. Relationship of Land-Use/Land-Cover Patterns and Surface-Water Quality in The Mullica River Basin. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 594–604. [Google Scholar] [CrossRef]
- Liberoff, A.L.; Flaherty, S.; Hualde, P.; Asorey, M.I.G.; Fogel, M.L.; Pascual, M.A. Assessing land use and land cover influence on surface water quality using a parametric weighted distance function. Limnologica 2019, 74, 28–37. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Landscape metrics as indicators of river water quality at catchment scale. Hydrol. Res. 2007, 38, 125–138. [Google Scholar] [CrossRef]
- Casquin, A.; Dupas, R.; Gu, S.; Couic, E.; Gruau, G.; Durand, P. The influence of landscape spatial configuration on nitrogen and phosphorus exports in agricultural catchments. Landsc. Ecol. 2021, 36, 3383–3399. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, P.; Shu, W.; Ding, M.; Zhang, H. Influence of landscape structures on river water quality at multiple spatial scales: A case study of the Yuan river watershed, China. Ecol. Indic. 2021, 121, 107226. [Google Scholar] [CrossRef]
- Song, M.; Jiang, Y.; Liu, Q.; Tian, Y.; Liu, Y.; Xu, X.; Kang, M. Catchment versus Riparian Buffers: Which Land Use Spatial Scales Have the Greatest Ability to Explain Water Quality Changes in a Typical Temperate Watershed? Water 2021, 13, 1758. [Google Scholar] [CrossRef]
- Matysik, M.; Absalon, D.; Habel, M.; Maerker, M. Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote Sens. 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Aune-Lundberg, L.; Strand, G.-H. The content and accuracy of the CORINE Land Cover dataset for Norway. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102266. [Google Scholar] [CrossRef]
- Hua, A.K. Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics. J. Environ. Public Health 2017, 2017, 7515130. [Google Scholar] [CrossRef] [Green Version]
- Risal, A.; Parajuli, P.B.; Dash, P.; Ouyang, Y.; Linhoss, A. Sensitivity of hydrology and water quality to variation in land use and land cover data. Agric. Water Manag. 2020, 241, 106366. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 2000, 403, 758–761. [Google Scholar] [CrossRef]
- Peterson, B.J.; Wollheim, W.M.; Mulholland, P.J.; Webster, J.R.; Meyer, J.L.; Tank, J.L.; Marti, E.; Bowden, W.B.; Valett, H.M.; Hershey, A.E.; et al. Control of nitrogen export from watersheds by headwater streams. Science 2001, 292, 86–90. [Google Scholar] [CrossRef]
- Ensign, S.H.; Doyle, M.W. Nutrient spiraling in streams and river networks. J. Geophys. Res. Biogeosci. 2006, 111, G04009. [Google Scholar] [CrossRef]
- Staponites, L.R.; Barták, V.; Bílý, M.; Simon, O.P. Performance of landscape composition metrics for predicting water quality in headwater catchments. Sci. Rep. 2019, 9, 14405. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Wagner, P.D.; Fohrer, N. Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a German lowland catchment. Ecol. Indic. 2021, 120, 106940. [Google Scholar] [CrossRef]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Makowska, A. Mapa Geologiczna Polski 1:200,000, Arkusz: Skierniewice; Państwowy Instytut Geologiczny: Warsaw, Poland, 1970. Available online: https://bazadata.pgi.gov.pl/data/mgp200/mapy/edycja1/mgp200A49-edycja1.jpg (accessed on 20 June 2022).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrzesiński, D. Reżimy rzek Polski. In Hydrologia Polski, 1st ed.; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; PWN: Warsaw, Poland, 2017; pp. 215–221. [Google Scholar]
- Kulikowski, R. Produkcja I Towarowość Rolnictwa W Polsce: Przemiany I Zróżnicowania Przestrzenne Po II Wojnie Światowej; Prace Geograficzne nr 241; IGIPZ PAN: Warsaw, Poland, 2013. [Google Scholar]
- Agencja Restrukturyzacji I Modernizacji Rolnictwa. Powierzchnie Upraw W Gminach. Available online: https://rejestrupraw.arimr.gov.pl/ (accessed on 5 September 2022).
- Wójcik, M.; Traczyk, A. Changes in the Spatial Organisation of Fruit Growing at the Beginning of the 21St Century: The Case of Grójec Poviat (Mazovia Voivodeship, Poland). Quaest. Geogr. 2017, 36, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Rigacci, L.N.; Giorgi, A.D.N.; Vilches, C.S.; Ossana, N.A.; Salibián, A. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina. Environ. Monit. Assess. 2013, 185, 9161–9168. [Google Scholar] [CrossRef] [PubMed]
- Lachhab, A.; Trent, M.M.; Motsko, J. Multimetric approach in the effects of small impoundments on stream water quality: Case study of Faylor and Walker Lakes on Middle Creek, Snyder County, PA. Water Environ. J. 2021, 35, 1007–1017. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Figueroa-Nieves, D.; McDowell, W.H.; Potter, J.D.; Martinez, G.; Ortiz-Zayas, J.R. Effects of Sewage Effluents on Water Quality in Tropical Streams. J. Environ. Qual. 2014, 43, 2053–2063. [Google Scholar] [CrossRef]
- Lenart-Boroń, A.; Wolanin, A.; Jelonkiewicz, E.; Żelazny, M. The effect of anthropogenic pressure shown by microbiological and chemical water quality indicators on the main rivers of Podhale, southern Poland. Environ. Sci. Pollut. Res. 2017, 24, 12938–12948. [Google Scholar] [CrossRef]
- Birgand, F.; Skaggs, R.W.; Chescheir, G.M.; Gilliam, J.W. Nitrogen Removal in Streams of Agricultural Catchments—A Literature Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 381–487. [Google Scholar] [CrossRef]
- Schulz, M.; Kozerski, H.-P.; Pluntke, T.; Rinke, K. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res. 2003, 37, 569–578. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Jenerowicz, M.; Gromny, E.; Krupiński, M.; Wojtkowski, C.; Krupiński, M.; Güntner, S.; Krätzschmar, E. S2GLC Final Report. In Scientific Exploitation of Operational Missions Project; 2019. [Google Scholar]
- Moiret-Guigand, A.; Jaffrain, G. CLC 2018 and CLC change 2012–2018 validation report—Copernicus land monitoring service. In File, SIRS SAS; 2021. [Google Scholar]
- Bhat, S.U.; Khanday, S.A.; Islam, S.T.; Sabha, I. Understanding the spatiotemporal pollution dynamics of highly fragile montane watersheds of Kashmir Himalaya, India. Environ. Pollut. 2021, 286, 117335. [Google Scholar] [CrossRef] [PubMed]
- de Mello, K.; Valente, R.A.; Ribeiro, M.P.; Randhir, T. Effects of forest cover pattern on water quality of low-order streams in an agricultural landscape in the Pirapora river basin, Brazil. Environ. Monit. Assess. 2022, 194, 189. [Google Scholar] [CrossRef] [PubMed]
- Pak, H.Y.; Chuah, C.J.; Yong, E.L.; Snyder, S.A. Effects of land use configuration, seasonality and point source on water quality in a tropical watershed: A case study of the Johor River Basin. Sci. Total Environ. 2021, 780, 146661. [Google Scholar] [CrossRef] [PubMed]
- Łaszewski, M.A. The effect of environmental drivers on summer spatial variability of water temperature in Polish lowland watercourses. Environ. Earth Sci. 2020, 79, 244. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Desmet, N.; Van Belleghem, S.; Seuntjens, P.; Bouma, T.; Buis, K.; Meire, P. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Phys. Chem. Earth Parts A/B/C 2011, 36, 479–489. [Google Scholar] [CrossRef]
- Kanownik, W.; Policht-Latawiec, A. Changeability of Oxygen and Biogenic Indices in Waters Flowing through Areas under Various Anthropopressures. Pol. J. Environ. Stud. 2015, 24, 1633–1640. [Google Scholar] [CrossRef]
- Matej-Łukowicz, K.; Wojciechowska, E.; Nawrot, N.; Dzierzbicka-Głowacka, L.A. Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland. PeerJ 2020, 8, e8381. [Google Scholar] [CrossRef]
- Górski, J.; Dragon, K.; Kaczmarek, P.M.J. Nitrate pollution in the Warta River (Poland) between 1958 and 2016: Trends and causes. Environ. Sci. Pollut. Res. 2019, 26, 2038–2046. [Google Scholar] [CrossRef] [Green Version]
- Łaszewski, M.; Fedorczyk, M.; Gołaszewska, S.; Kieliszek, Z.; Maciejewska, P.; Miksa, J.; Zacharkiewicz, W. Land Cover Effects on Selected Nutrient Compounds in Small Lowland Agricultural Catchments. Land 2021, 10, 182. [Google Scholar] [CrossRef]
- Kuczyńska, A.; Jarnuszewski, G.; Nowakowska, M.; Wexler, S.K.; Wiśniowski, Z.; Burczyk, P.; Durkowski, T.; Woźnicka, M. Identifying causes of poor water quality in a Polish agricultural catchment for designing effective and targeted mitigation measures. Sci. Total Environ. 2021, 765, 144125. [Google Scholar] [CrossRef]
- van Vliet, M.; Zwolsman, J. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Shu, X.; Wang, W.; Zhu, M.; Xu, J.; Tan, X.; Zhang, Q. Impacts of land use and landscape pattern on water quality at multiple spatial scales in a subtropical large river. Ecohydrology 2022, 15, e2398. [Google Scholar] [CrossRef]
- Hill, A. Factors affecting the export of nitrate-nitrogen from drainage basins in southern Ontario. Water Res. 1978, 12, 1045–1057. [Google Scholar] [CrossRef]
- Kebede, W.; Tefera, M.; Habitamu, T.; Alemayehu, T. Impact of Land Cover Change on Water Quality and Stream Flow in Lake Hawassa Watershed of Ethiopia. Agric. Sci. 2014, 5, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.C.P.; Martins, L.M.D.O.; Pacheco, F.A.L.; Fernandes, L.F.S. The consequences for stream water quality of long-term changes in landscape patterns: Implications for land use management and policies. Land Use Policy 2021, 109, 105679. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Wang, T.; Zhang, X.; Feng, Y.; Yang, G.; Zhen, W. Relating land-use/land-cover patterns to water quality in watersheds based on the structural equation modeling. CATENA 2021, 206, 105566. [Google Scholar] [CrossRef]
- Fixen, P.; West, F.B. Nitrogen Fertilizers: Meeting Contemporary Challenges. Ambio 2002, 31, 169–176. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [Green Version]
- Ryszkowski, L.; Bartoszewicz, A.; Kedziora, A. Management of matter fluxes by biogeochemical barriers at the agricultural landscape level⋆. Landsc. Ecol. 1999, 14, 479–492. [Google Scholar] [CrossRef]
- Życzyńska-Bałoniak, I.; Szajdak, L.; Jaskulska, R. Impact of Biogeochemical Barriers on the Migration of Chemical Compounds with the Water of Agricultural Landscape. Pol. J. Environ. Stud. 2005, 14, 671–676. [Google Scholar]
- Ryden, J.C.; Ball, P.R.; Garwood, E.A. Nitrate leaching from grassland. Nature 1984, 311, 50–53. [Google Scholar] [CrossRef]
- Bicalho, S.; Langenbach, T.; Rodrigues, R.; Correia, F.; Hagler, A.; Matallo, M.; Luchini, L. Herbicide distribution in soils of a riparian forest and neighboring sugar cane field. Geoderma 2010, 158, 392–397. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, X.; Wang, L.; Rousseau, A.N. Landscape influences on water quality in riparian buffer zone of drinking water source area, Northern China. Environ. Earth Sci. 2016, 75, 114. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; Martins, L.M.D.O.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. Effect of landscape metrics on water quality over three decades: A case study of the Ave River basin, Portugal. WIT Trans. Ecol. Environ. 2020, 242, 39–49. [Google Scholar] [CrossRef]
- Gebauer, G.; Zeller, B.; Schmidt, G.; May, C.; Buchmann, N.; Colin-Belgrand, M.; Dambrine, E.; Martin, F.; Schulze, E.-D.; Bottner, P. The fate of 15N-labelled nitrogen inputs to coniferous and broadleaf forests. In Carbon and Nitrogen Cycling in European Forest Ecosystems, 1st ed.; Schulze, E.D., Ed.; Springer: Berlin, Germany, 2000. [Google Scholar] [CrossRef]
- Nadelhoffer, K.; Emmett, B.; Gundersen, P.; Kjønaas, O.J.; Koopmans, C.J.; Schleppi, P.; Tietema, A.; Wright, R.F. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 1999, 398, 145–148. [Google Scholar] [CrossRef]
- Cronan, C.S. (Ed.) Ecosystem Biogeochemistry. In Element Cycling in the Forest Landscape, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; Available online: https://link.springer.com/content/pdf/10.1007/978-3-319-66444-6.pdf (accessed on 5 September 2022).
- Kristensen, H.L.; Gundersen, P.; Callesen, I.; Reinds, G.J. Throughfall Nitrogen Deposition Has Different Impacts on Soil Solution Nitrate Concentration in European Coniferous and Deciduous Forests. Ecosystems 2004, 7, 180–192. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Tu, J. Spatial Variations in the Relationships between Land Use and Water Quality across an Urbanization Gradient in the Watersheds of Northern Georgia, USA. Environ. Manag. 2013, 51, 1–17. [Google Scholar] [CrossRef]
- Lysoviene, J.; Gasiunas, V. The impact of rural settlements on water quality in small rivers and drainage channels. In Environmental Engineering, Proceedings of the International Conference on Environmental Engineering, Vilnius, Lithuania, 19–20 May 2011; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2011. [Google Scholar]
- Delesantro, J.M.; Duncan, J.M.; Riveros-Iregui, D.; Blaszczak, J.R.; Bernhardt, E.S.; Urban, D.L.; Band, L.E. Characterizing and classifying urban watersheds with compositional and structural attributes. Hydrol. Process. 2021, 35, e14339. [Google Scholar] [CrossRef]
- Aalipour, M.; Antczak, E.; Dostál, T.; Amiri, B.J. Influences of Landscape Configuration on River Water Quality. Forests 2022, 13, 222. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Li, B.; Wang, C.; Su, W. Measuring the zonal responses of nitrogen output to landscape pattern in a flatland with river network: A case study in Taihu Lake Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 34624–34636. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, S.-L.; Zhong, J.; Li, C. Spatial scale effects of the variable relationships between landscape pattern and water quality: Example from an agricultural karst river basin, Southwestern China. Agric. Ecosyst. Environ. 2020, 300, 106999. [Google Scholar] [CrossRef]
- Schmidt, T.S.; Van Metre, P.C.; Carlisle, D.M. Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling. Environ. Sci. Technol. 2018, 53, 452–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwaijengo, G.N.; Msigwa, A.; Njau, K.N.; Brendonck, L.; Vanschoenwinkel, B. Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 2020, 715, 134825. [Google Scholar] [CrossRef]
- Nielsen, A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Bjerring, R.; Olesen, J.E.; Jeppesen, E. Watershed land use effects on lake water quality in Denmark. Ecol. Appl. 2012, 22, 1187–1200. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, X.; Li, W.; Aini, G. Relating landscape characteristics to non-point source pollution in a typical urbanized watershed in the municipality of Beijing. Landsc. Urban Plan. 2014, 123, 96–107. [Google Scholar] [CrossRef]
- Wu, J.; Jin, Y.; Hao, Y.; Lu, J. Identification of the control factors affecting water quality variation at multi-spatial scales in a headwater watershed. Environ. Sci. Pollut. Res. 2021, 28, 11129–11141. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W.; Li, Y.; Schaffer, B.; Kiker, G.A.; Brown, M.T. Land use disturbance indicators and water quality variability in the Biscayne Bay Watershed, Florida. Ecol. Indic. 2021, 11, 1093–1104. [Google Scholar] [CrossRef]
- Miranda, L.S.; Deilami, K.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Influence of land use class and configuration on water-sediment partitioning of heavy metals. Sci. Total Environ. 2022, 804, 150116. [Google Scholar] [CrossRef]
- Amiri, B.J.; Nakane, K. Entire catchment and buffer zone approaches to modeling linkage between river water quality and land cover—A case study of Yamaguchi Prefecture, Japan. Chin. Geogr. Sci. 2008, 18, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Sliva, L.; Williams, D.D. Buffer Zone versus Whole Catchment Approaches to Studying Land Use Impact on River Water Quality. Water Res. 2001, 35, 3462–3472. [Google Scholar] [CrossRef]
- Huang, Z.; Han, L.; Zeng, L.; Xiao, W.; Tian, Y. Effects of land use patterns on stream water quality: A case study of a small-scale watershed in the Three Gorges Reservoir Area, China. Environ. Sci. Pollut. Res. 2016, 23, 3943–3955. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. CATENA 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Li, B. Exploring the pivotal response relationship between landscape composition–configuration–intensity metrics and water quality in Taihu basin, China. Ecol. Indic. 2022, 136, 108638. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Newbold, J.D. Streamside Forest Buffer Width Needed to Protect Stream Water Quality, Habitat, and Organisms: A Literature Review. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 560–584. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Sentinel-2 Global Land Cover. Project Summary. Available online: https://s2glc.cbk.waw.pl/project-summary (accessed on 9 October 2022).
- Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef]
- Liu, P.; Pei, J.; Guo, H.; Tian, H.; Fang, H.; Wang, L. Evaluating the Accuracy and Spatial Agreement of Five Global Land Cover Datasets in the Ecologically Vulnerable South China Karst. Remote Sens. 2022, 14, 3090. [Google Scholar] [CrossRef]
- Stępniewski, K.; Łaszewski, M. Spatial and Seasonal Dynamics of Inorganic Nitrogen and Phosphorous Compounds in an Orchard-Dominated Catchment with Anthropogenic Impacts. Sustainability 2021, 13, 11337. [Google Scholar] [CrossRef]
Land Cover Type | CLC 2018 Classes | S2GLC Classes |
---|---|---|
Urban areas | All types belonged to class 1. (artificial surfaces) | 1.1.1. Artificial surfaces and constructions |
Arable lands | 2.1.1. Non-irrigated arable land | 2.1.1. Cultivated areas |
Orchards | 2.2.2. Fruit trees and berry plantations | - |
Meadows | 2.3.1. Pastures, meadows, and other permanent grasslands under agricultural use | 2.3.1. Herbaceous vegetation |
Deciduous forests | 3.1.1. Broad-leaved forest | 3.1.1. Broadleaf tree cover |
Coniferous forests | 3.1.2. Coniferous forest | 3.1.2. Coniferous tree cover |
Total forests | Sum of 3.1.1. and 3.1.2. classes | Sum of 3.1.1. and 3.1.2. classes |
Parameter | Land Cover Type | TCA | BZ 50 m | BZ 250 m | BZ 500 m | BCZ 50 m−1 km | BCZ 250 m−1 km | BCZ 500 m−1 km | Radius 1000 m |
---|---|---|---|---|---|---|---|---|---|
NO3− | UA | −0.027 | 0.191 | 0.179 | 0.063 | −0.103 | −0.037 | −0.054 | −0.121 |
ARA | 0.256 | 0.188 | 0.308 | 0.347 | 0.044 | 0.130 | 0.148 | 0.161 | |
ORCH | 0.140 | 0.162 | 0.140 | 0.164 | 0.232 | 0.249 | 0.246 | 0.246 | |
MEAD | −0.365 | −0.185 | −0.303 | −0.354 | −0.229 | −0.268 | −0.315 | −0.300 | |
DF | −0.055 | −0.186 | −0.158 | −0.137 | −0.081 | −0.132 | −0.175 | −0.165 | |
CF | −0.355 | −0.099 | −0.200 | −0.222 | −0.011 | −0.062 | −0.047 | −0.131 | |
TF | −0.407 | −0.153 | −0.212 | −0.282 | −0.004 | −0.054 | −0.109 | −0.152 | |
NO2− | UA | 0.104 | 0.242 | 0.256 | 0.188 | −0.060 | −0.005 | 0.018 | −0.035 |
ARA | 0.264 | 0.135 | 0.294 | 0.343 | 0.089 | 0.176 | 0.196 | 0.206 | |
ORCH | 0.147 | 0.142 | 0.156 | 0.174 | 0.275 | 0.282 | 0.281 | 0.280 | |
MEAD | −0.305 | −0.150 | −0.268 | −0.314 | −0.182 | −0.227 | −0.268 | −0.250 | |
DF | −0.057 | −0.173 | −0.141 | −0.121 | −0.092 | −0.139 | −0.184 | −0.174 | |
CF | −0.489 | −0.257 | −0.353 | −0.371 | −0.105 | −0.216 | −0.206 | −0.286 | |
TF | −0.479 | −0.237 | −0.293 | −0.367 | −0.096 | −0.196 | −0.255 | −0.304 | |
NH4+ | UA | 0.142 | 0.199 | 0.177 | 0.184 | 0.047 | 0.108 | 0.095 | 0.021 |
ARA | −0.256 | −0.226 | −0.194 | −0.195 | −0.120 | −0.138 | −0.157 | −0.152 | |
ORCH | 0.036 | 0.061 | 0.075 | 0.035 | 0.185 | 0.217 | 0.223 | 0.224 | |
MEAD | −0.214 | −0.196 | −0.218 | −0.234 | −0.067 | −0.109 | −0.140 | −0.121 | |
DF | 0.004 | 0.123 | 0.087 | 0.038 | −0.034 | −0.032 | −0.055 | −0.057 | |
CF | 0.108 | 0.015 | 0.031 | 0.019 | 0.029 | −0.031 | −0.065 | −0.054 | |
TF | 0.139 | 0.088 | 0.070 | 0.055 | −0.052 | −0.063 | −0.056 | −0.054 | |
EC | UA | 0.159 | 0.244 | 0.309 | 0.277 | −0.006 | −0.032 | −0.038 | 0.054 |
ARA | 0.057 | −0.108 | 0.003 | 0.087 | −0.252 | −0.197 | −0.182 | −0.174 | |
ORCH | 0.583 | 0.511 | 0.594 | 0.620 | 0.497 | 0.570 | 0.568 | 0.570 | |
MEAD | −0.198 | −0.015 | −0.104 | −0.130 | −0.015 | −0.077 | −0.102 | −0.101 | |
DF | −0.012 | 0.017 | 0.007 | −0.007 | 0.206 | 0.158 | 0.149 | 0.157 | |
CF | −0.732 | −0.654 | −0.691 | −0.721 | −0.335 | −0.449 | −0.452 | −0.456 | |
TF | −0.733 | −0.361 | −0.555 | −0.696 | −0.082 | −0.185 | −0.282 | −0.310 |
Parameter | Land Cover Type | TCA | BZ 50 m | BZ 250 m | BZ 500 m | BCZ 50 m−1 km | BCZ 250 m−1 km | BCZ 500 m−1 km | Radius 1000 m |
---|---|---|---|---|---|---|---|---|---|
NO3- | UA | 0.312 | 0.319 | 0.391 | 0.371 | 0.198 | 0.209 | 0.325 | 0.214 |
ARA | 0.461 | 0.652 | 0.610 | 0.556 | 0.262 | 0.129 | 0.467 | 0.435 | |
MEAD | −0.069 | −0.182 | −0.318 | −0.253 | −0.271 | −0.045 | −0.414 | −0.360 | |
DF | −0.019 | −0.101 | −0.103 | −0.145 | 0.080 | −0.121 | −0.092 | −0.098 | |
CF | −0.469 | −0.129 | −0.231 | −0.270 | 0.171 | 0.003 | −0.141 | −0.158 | |
TF | −0.411 | −0.093 | −0.201 | −0.297 | 0.095 | −0.115 | −0.201 | −0.212 | |
NO2- | UA | 0.452 | 0.429 | 0.511 | 0.479 | 0.216 | 0.211 | 0.341 | 0.222 |
ARA | 0.489 | 0.628 | 0.636 | 0.598 | 0.393 | 0.165 | 0.530 | 0.489 | |
MEAD | −0.001 | −0.127 | −0.253 | −0.186 | −0.229 | 0.062 | −0.354 | −0.290 | |
DF | −0.024 | −0.094 | −0.084 | −0.121 | −0.004 | −0.157 | −0.148 | −0.175 | |
CF | −0.566 | −0.225 | −0.301 | −0.385 | 0.141 | −0.078 | −0.283 | −0.307 | |
TF | −0.472 | −0.129 | −0.250 | −0.364 | 0.018 | −0.201 | −0.279 | −0.309 | |
NH4+ | UA | 0.172 | 0.222 | 0.135 | 0.162 | 0.143 | −0.142 | 0.122 | −0.012 |
ARA | −0.188 | −0.164 | −0.143 | −0.132 | −0.061 | −0.146 | −0.080 | −0.096 | |
MEAD | −0.054 | −0.257 | −0.090 | −0.042 | −0.182 | 0.000 | −0.087 | −0.043 | |
DF | 0.205 | 0.329 | 0.343 | 0.266 | 0.164 | −0.069 | 0.250 | 0.210 | |
CF | 0.087 | 0.040 | 0.136 | 0.084 | 0.249 | 0.038 | 0.089 | 0.036 | |
TF | 0.188 | 0.290 | 0.234 | 0.168 | 0.176 | 0.032 | 0.149 | 0.082 | |
EC | UA | 0.692 | 0.646 | 0.698 | 0.733 | 0.307 | 0.171 | 0.437 | 0.453 |
ARA | 0.419 | 0.510 | 0.535 | 0.499 | 0.142 | 0.112 | 0.370 | 0.340 | |
MEAD | 0.307 | −0.075 | 0.087 | 0.194 | −0.266 | 0.050 | −0.153 | −0.118 | |
DF | −0.118 | −0.218 | −0.321 | −0.322 | 0.122 | −0.039 | 0.021 | −0.034 | |
CF | −0.813 | −0.495 | −0.708 | −0.754 | 0.062 | 0.044 | −0.478 | −0.428 | |
TF | −0.699 | −0.273 | −0.573 | −0.673 | 0.065 | −0.101 | −0.270 | −0.310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łaszewski, M.; Fedorczyk, M.; Stępniewski, K. The Impact of Land Cover on Selected Water Quality Parameters in Polish Lowland Streams during the Non-Vegetative Period. Water 2022, 14, 3295. https://doi.org/10.3390/w14203295
Łaszewski M, Fedorczyk M, Stępniewski K. The Impact of Land Cover on Selected Water Quality Parameters in Polish Lowland Streams during the Non-Vegetative Period. Water. 2022; 14(20):3295. https://doi.org/10.3390/w14203295
Chicago/Turabian StyleŁaszewski, Maksym, Michał Fedorczyk, and Krzysztof Stępniewski. 2022. "The Impact of Land Cover on Selected Water Quality Parameters in Polish Lowland Streams during the Non-Vegetative Period" Water 14, no. 20: 3295. https://doi.org/10.3390/w14203295
APA StyleŁaszewski, M., Fedorczyk, M., & Stępniewski, K. (2022). The Impact of Land Cover on Selected Water Quality Parameters in Polish Lowland Streams during the Non-Vegetative Period. Water, 14(20), 3295. https://doi.org/10.3390/w14203295