Monitoring and Analysis of Water Surface Slope of the Yarlung Zangbo River Based on Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Sentinel-2 Data
2.2.2. Hydroweb Data
2.2.3. ICESat-2 Altimetry Data
2.2.4. ICESat-2 ATL13 Data Preprocessing
- (1)
- ICESat-2 ATL13 data download and variable interpretation
- (2)
- Correction of ATL13 observations
- (3)
- ICESat-2 ATL13 data mask
2.3. Acquisition of Water Level Values
2.4. Water Level Anomaly Removal
2.5. Estimation of Water Surface Slope of Yarlung Zangbo River
3. Results
3.1. Analysis of Spatial and Temporal Variation of Water Surface Slope of Yarlung Zangbo River
3.2. Characteristics of Water Surface Slope in Different River Sections of the Yarlung Zangbo River
3.3. Comparison of ICESat-2 Based Estimation of Yarlung Zangbo River Water Level with Hydroweb Data
4. Conclusions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demelash, A.M.; Tena, A.A.; Job, R.K.; Nguyen, T.T.L.; Tesfa, G.A. Analysis of rainfall and streamflow trend and variability over Birr River watershed. Abbay basin Ethiopia. Environ. Chall. 2022, 7, 100528. [Google Scholar]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Netrgui, N.; Miguel, A.; Dawei, H.; Huan, W.; Qiang, D.; Jun, Z. Uncertainty assessment of radar-raingauge merged rainfall estimates in river discharge simulations. J. Hydrol. 2021, 603, 127093. [Google Scholar]
- Sichangi, A.W.; Wang, L.; Yang, K.; Chen, D.; Wang, Z.; Li, X.; Zhou, J.; Liu, W.; Liu, W.; David, K. Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ. 2016, 179, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Durand, M.; Gleason, C.; Garambois, P.-A.; Bjerklie, D.; Smith, L.C.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J.; et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 2016, 52, 4527–4549. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.M.; Liu, D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Li, H.; Liu, L.; Akash, K.; Baoying, S.; Liu, X.; Li, X.; Niu, Q.; Cheng, L.; Diego, M. Vegetation greening concurs with increases in dry season water yield over the Upper Brahmaputra River basin. J. Hydrol. 2021, 203, 126981. [Google Scholar] [CrossRef]
- Gogoi, P.; Sharma, N. Spatio-temporal study of morpho-dynamics of the Brahmaputra River along its Majuli Island reach. Environ. Chall. 2021, 5, 100217. [Google Scholar]
- Qi, P.; Guo, X.L.; Chang, Y.; Tang, J.; Li, S. Cloud water path, precipitation amount, and precipitation efficiency derived from multiple datasets on the Qilian Mountains, Northeastern Tibetan Plateau. Atmos. Res. 2022, 274, 106204. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, T.; Li, R.; Wang, S.; Hu, G.; Wang, W.; Qin, Y.; Yang, S. Characteristics of the ratios of snow, rain and sleet to precipitation on the Qinghai-Tibet Plateau during 1961—2014. Quat. Int. 2017, 444, 137–150. [Google Scholar] [CrossRef]
- Chen, X.; Long, D.; Hong, Y.; Zeng, C.; Yan, D. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res. 2017, 53, 2431–2466. [Google Scholar] [CrossRef]
- Li, F.; Xu, Z.; Feng, Y.; Liu, M.; Liu, W. Changes of land cover in the Yarlung Tsangpo River basin from 1985 to 2005. Environ. Earth Sci. 2013, 68, 181–188. [Google Scholar] [CrossRef]
- Dajun, S.; Chuanyou, C. Water resources of the Qinghai2Xizang Plateau and its exploitation. J. Nat. Resour. 1996, 11, 8–14. [Google Scholar]
- Xu, R.; Hu, H.; Tian, F.; Li, C.; Mohd, Y.A.K. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Glob. Planet. Chang. 2019, 175, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Papa, F.; Marieu, V.; Malbeteau, Y.; Jordy, F.; Calmant, S.; Durand, F.; Bala, S. Preliminary assessment of SARAL/AltiKa observations over the Ganges-Brahmaputra and Irrawaddy Rivers. Mar. Geod. 2015, 38, 568–580. [Google Scholar] [CrossRef]
- Papa, F.; Durand, F.; Rossow, W.B.; Atiqur, R.; Sujit, K.B. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. J. Geophys. Res. Ocean. 2010, 115, C12013. [Google Scholar] [CrossRef] [Green Version]
- Papa, F.; Bala, S.K.; Pandey, R.K.; Fabien, D.; Gopalakrishna, V.V.; Atiqur, R.; William, B.R. Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J. Geophys. Res. Ocean. 2012, 117, 13. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Long, D.; Du, M.; Zeng, C.; Qiao, G.; Li, X.; Hou, A.; Hong, Y. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River. Remote Sens. Environ. 2018, 219, 115–134. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z.; Liu, L. Distributed hydrological simulation in the Lhasa River basin based on VIC model. J. Beijing Norm. Univ. (Nat. Sci.) 2012, 48, 524–529. [Google Scholar]
- Huang, X.; Wang, Z.; Sang, Y.; Yang, M.; Liu, X.; Gong, T. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin. Prog. Geogr. 2016, 35, 339–348. [Google Scholar]
- Bai, H.-Z.; Ma, Z.-F.; Dong, W.-J.; Li, D.-L.; Feng, F.; Fang, D.-X. Climatic properties and sandstorm causes in Tibet Plateau. J. Desert Res. 2006, 26, 249–253. [Google Scholar]
- Du, S.; Wu, Y.; Tan, L.; Huang, W.; Hao, C. Geochemical characteristics of fine and coarse fractions of sediments in the Yarlung Zangbo River Basin (southern Tibet, China). Environ. Earth Sci. 2018, 77, 337. [Google Scholar] [CrossRef]
- Bai, J.; Li, C.; Kang, S.; Chen, P.; Wang, J. Chemical speciation and risk assessment of heavy metals in the middle part of Yarlung Zangbo surface sediments. Huan Jing Ke Xue 2014, 35, 3346–3351. [Google Scholar] [PubMed]
- Yang, Z.; Zhuo, M.; Lu, H.; Da, W.; Ma, P.; Zhou, K. Characteristics of precipitation variation and its effects on runoff in the Yarlung Zangbo River basin during 1961–2010. J. Glaciol. Geocryol. 2014, 36, 166–172. [Google Scholar]
- Tianchou, L. Hydrological characteristics of Yarlung Zangbo river. Acta Geogr. Sin. 1999, 54, 157–164. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Lsola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Dandan, J.; Juan, Y.; Wenjuan, W.; Xingwu, G. Object-oriented urban water body extraction based on Sentinel-2 satellite images. Geospat. Inf. 2019, 17, 10–13. [Google Scholar]
- Crétaux, J.-F.; Calmant, S.; Romanovski, V.; Anton, S.; Florent, L.; Muriel, B.-N.; Anny, G.; Fabrice, H.; Flix, P. An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia. J. Geod. 2008, 83, 723–735. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s Lake Level and Volume Changes From NASA’s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Milutin, M.; Johannes, R.; John, A.; Amy, N.; Wanda, D.; Martin, H.; Jan, V. Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data. Sci. Remote Sens. 2022, 8, 100051. [Google Scholar]
- Eumann, T.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, J.; Lee, J.; Luthcke, S.B.; Rebold, T.; et al. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020; Volume 10. [Google Scholar]
- Jasinski, M.; Stoll, J.; Hancock, D.; Robbins, J.; Nattala, J.; Morison, J.; Jones, B.; Ondrusek, M.; Pavelsky, T.; Parrish, C. Algorithm Theoretical Basis Document (ATBD) for Along Track Inland Surface Water Data, Release 004; NASA GSFC: Greenbelt, MD, USA, 2021. [Google Scholar]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Song, C.; Ke, L.; Zhan, P.; Fan, C.; Liu, K.; Chen, T.; Wang, J.; Zhu, J. Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophys. Res. Lett. 2022, 49, e2021GL096676. [Google Scholar] [CrossRef]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Lao, J.; Wang, C.; Nie, S.; Xi, X.; Wang, J. Monitoring and Analysis of Water Level Changes in Mekong River from ICESat-2 Spaceborne Laser Altimetry. Water 2022, 14, 1613. [Google Scholar] [CrossRef]
- Guo, X.; Jin, S.; Zhang, Z. Evaluation of Water Level Estimation in the Upper Yangtze River from ICESat-2 Data. Photonics Electromagn. Res. Symp. (PIERS) 2021, 2260–2264. [Google Scholar] [CrossRef]
Attribute | Variable | Description |
---|---|---|
location | segment_lat | Latitude. |
segment_lon | Longitude. | |
time | delta_time | Track elapsed time. |
track | rgt | Reference ground track. |
cycle_number | Number of exact repetitions of the reference track. | |
water level | stdev_water_surf | Standard deviation of the water surface. |
ht_ortho | Orthometric height EGM2008 converted from ellipsoidal height. | |
segment_fpb_correction | First photon bias correction; corrected by subtracting the mean height products ht_ortho and ht_water_sur. | |
quality | qf_subsurf_anomaly | The probability that a bottom or other subsurface anomaly is a bottom, based on the threshold for finding anomalies: 1 = possible subsurface anomaly due to bottom; 2 = subsurface signal may indicate bottom or other anomaly; 3 = possible subsurface anomaly; Invalid = no subsurface anomaly detected. |
Year | Season | Percentage (%) | Cumulative Length (km) |
---|---|---|---|
2019 | 2019 winter | 29.39 | 604.55 |
2019 spring | 37.42 | 769.73 | |
2019 summer | 18.96 | 390.01 | |
2019 autumn | 21.62 | 444.72 | |
2020 | 2020 winter | 27.74 | 570.61 |
2020 spring | 16.40 | 337.35 | |
2020 summer | 28.25 | 581.10 | |
2020 autumn | 33.27 | 684.36 |
FID | Latitude (°) | Longitude (°) |
---|---|---|
VS1 | 83.08 | 30.18 |
VS2 | 83.49 | 29.96 |
VS4 | 84.70 | 29.25 |
VS5 | 85.18 | 29.31 |
VS7 | 86.72 | 29.20 |
VS9 | 87.69 | 29.22 |
VS11 | 88.47 | 29.35 |
VS12 | 89.07 | 29.33 |
VS13 | 89.48 | 29.34 |
VS16 | 91.71 | 29.27 |
VS18 | 92.61 | 29.10 |
VS19 | 93.35 | 29.05 |
VS23 | 94.64 | 29.47 |
VS24 | 94.87 | 29.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Cui, D.; Xu, J. Monitoring and Analysis of Water Surface Slope of the Yarlung Zangbo River Based on Remote Sensing. Water 2022, 14, 3304. https://doi.org/10.3390/w14203304
Wang S, Cui D, Xu J. Monitoring and Analysis of Water Surface Slope of the Yarlung Zangbo River Based on Remote Sensing. Water. 2022; 14(20):3304. https://doi.org/10.3390/w14203304
Chicago/Turabian StyleWang, Shidong, Dunyue Cui, and Jiahui Xu. 2022. "Monitoring and Analysis of Water Surface Slope of the Yarlung Zangbo River Based on Remote Sensing" Water 14, no. 20: 3304. https://doi.org/10.3390/w14203304
APA StyleWang, S., Cui, D., & Xu, J. (2022). Monitoring and Analysis of Water Surface Slope of the Yarlung Zangbo River Based on Remote Sensing. Water, 14(20), 3304. https://doi.org/10.3390/w14203304