Effects of Fires on Microbial and Metazoan Communities in Peatlands
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Site
2.2. Abiotic Variables
2.3. Microbial Communities and Nematodes
2.4. Data Analyses
3. Results
3.1. Abiotic Variables
3.2. Microbial Communities
3.3. Redundancy Analysis (RDA) and Correlations
3.4. Relationships between Food Web Components in the Peat Bog
4. Discussion
4.1. Effects of Fire on Environmental Factors
4.2. Effects of Fire on Micro- and Macroorganisms
4.3. Effects of Fire on Food Webs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flannigan, M.D.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim. Change 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Rutigliano, F.A.; Fierro, A.R.; De Pascale, R.A.; De Marco, A.; Virzo De Santo, A. Role of fire on soil organic matter turnover and microbial activity in a mediterranean burned area. Dev. Soil Sci. 2002, 2, 205–215. [Google Scholar] [CrossRef]
- Sibitate, Z.E.; Dube, K.; Lekaota, L. Global Warming and Its Implications on Nature Tourism at Phinda Private Game Reserve, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 5487. [Google Scholar] [CrossRef]
- Pèrez-Valera, E.; Goberna, M.; Verdú, M. Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biol. Biochem. 2019, 129, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Bier, R.L.; Bernhardt, E.S.; Boot, C.M.; Graham, E.B.; Hall, E.K.; Lennon, J.T.; Nemergut, D.R.; Osborne, B.B.; Ruiz-Gonzălez, C.; Schimel, J.P.; et al. Linking microbial community structure and microbial processes. An empirical and conceptual overview. FEMS Microbiol. Ecol. 2015, 91, fiv113. [Google Scholar] [CrossRef]
- Limpens, J.; Heijmans, M.M.P.D.; Berendse, F. The nitrogen cycle in boreal peatlands. In Boreal Peatlands Ecosystems; Wieder, R.K., Witt, D.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 195–230. [Google Scholar]
- Weber, C.F.; Lackhart, J.S.; Charaska, E.; Aho, K.; Lohse, K.A. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol. Biochem. 2014, 69, 242–250. [Google Scholar] [CrossRef]
- Xiang, X.; Shi, Y.; Yang, J.; Kong, J.; Lin, X.; Zhang, H.; Zeng, J.; Chu, H. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci. Rep. 2014, 4, 3829. [Google Scholar] [CrossRef] [Green Version]
- Whitman, T.; Whitman, E.; Woolet, J.; Flannigan, M.D.; Thompson, D.K.; Parisien, M.A. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 2019, 138, 107571. [Google Scholar] [CrossRef]
- Marcisz, K.; Tinner, W.; Colombaroli, D.; Kołaczek, P.; Słowiński, M.; Fiałkiewicz-Kozieł, B.; Łokas, B.; Lamentowicz, M. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatenary Sci. Rev. 2015, 112, 138–152. [Google Scholar] [CrossRef]
- Coyle, D.R.; Nagendra, U.J.; Taylor, M.K.; Campbell, J.H.; Cunard, C.E.; Joslin, A.H.; Mundepi, A.; Carly, A.P.; Callaham, M.A., Jr. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biol. Biochem. 2017, 110, 116–132. [Google Scholar] [CrossRef]
- Hart, S.C.; DeLuca, T.H.; Newman, G.S.; Mac Kenzie, M.D.; Boyle, S.I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 2005, 220, 166–184. [Google Scholar] [CrossRef]
- Certini, G. Effect of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Ficken, C.D.; Wright, J.P. Contributions of microbial activity and ash deposition in post-fire nitrogen availability in a pine savanna. Biogeosciences 2017, 14, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, D.H. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 2008, 14, 2661–2677. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Randerson, J.; Goulden, M.; Goetz, S.J. Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophys. Res. Lett. 2012, 32, 4. [Google Scholar] [CrossRef] [Green Version]
- Pressler, Y.; Moore, J.C.; Cotrufo, F. Belowground community responses to fire: Meta-analyses reveals contrasting responses of soil microorganisms and mesofauna. Oikos 2019, 128, 309–327. [Google Scholar] [CrossRef]
- Barreiro, A.; Diaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Curr. Opt. Environ. Sci. Health 2021, 22, 100264. [Google Scholar] [CrossRef]
- Qin, Q.; Liu, Y. Changes in microbial communities at different soil depths trought the first rainy season following severe wildfire in North China artificial Pinus tabulaeformis forest. J. Environ. Manag. 2021, 280, 111865. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.P.; Veach, A.M.; Horton, J.L.; Ford, E.; Jumpponen, A.; Baird, R. Context dependent fungal and bacterial soil community shifts in response to recent wildfires in Southern Appalachian Mountains. Ecol. Manag. 2019, 451, 117520. [Google Scholar] [CrossRef]
- Golterman, H.L. Methods for Chemical Analysis of Freshwaters; Blackwell Scientific Publications: Oxford, UK; Edinburgh, Scotland, 1969. [Google Scholar]
- Porter, K.G.; Feig, Y.S. The use of DAPI for identification and counting aquatic microflora. Limnol. Oceanogr. 1980, 25, 943–984. [Google Scholar] [CrossRef]
- Caron, D.A. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures. Appl. Environ. Microbiol. 1983, 46, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Utermöhl, H. Zur vervollkommung der quantative phytoplankton methodic. Mitt. Int. Ver. Limnol. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Gilbert, D.; Amblard, C.; Bourdier, G.; Francez, A.J. The microbial loop at the surface of a peatland: Structure, functioning and impact of nutrients inputs. Microb. Ecol. 1998, 35, 89–93. [Google Scholar] [CrossRef]
- Foissner, W.; Berger, H.; Schaumburg, J. Identification and ecology of limnetic plankton ciliates. In Informationsberichte des Bayer; Landesamtes für Wasserwirtschaft: München, Germany, 1999. [Google Scholar]
- Clarke, K.J. Guide to the Identification of Soil Protozoa—Teatate Amoebae; Freshwater Biological Association: Ambleside, UK, 2003. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available online: https://www.R-project.org/ (accessed on 7 July 2022).
- Kruk, M. Biogeochemical multifunctionality of wetland ecotones in Lakeland agricultural landscape. Pol. J. Ecol. 2003, 2, 247–254. [Google Scholar]
- Fernández, I.; Cabaniero, A.; Carballas, T. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparision with laboratory soil cheating. Soil Biol. Biochem. 1997, 29, 1–11. [Google Scholar] [CrossRef]
- Widden, P.; Parkinson, D. The effect of a forest fire on soil microbiology. Soil Biol. Biochem. 1997, 7, 125–138. [Google Scholar] [CrossRef]
- Neary, D.; DeBano, L.F. Wildland fire in ecosystems effects of fire on soil and water. In Wildland Fire in Ecosystems: Effect of Fire; Neary, D., Ryan, K.C., DeBano, L.F., Eds.; General Technical Report RMRS-GTR 42 vol. 4; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Odgen, UT, USA, 2005. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.R.; Berhe, A.A.; Treseder, K.K. Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire. Soil Biol. Biochem. 2015, 87, 1–9. [Google Scholar] [CrossRef]
- Mieczan, T.; Adamczuk, M.; Pawlik-Skowrońska, B.; Toporowska, M. Eutrophication of peatbogs: Consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments. Aquat. Microb. Ecol. 2015, 74, 121–141. [Google Scholar] [CrossRef]
- Riemann, B. Potential importance of fish pre-dation and zooplankton grazing on natural populations of freshwater bacteria. Appl. Environ. Microb. 1985, 50, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.G.; Bobrov, A.; Lara, E. Diversity and biogeography of testate amoebae. Biodivers. Conserv. 2008, 17, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Turner, T.E.; Swindles, G.T. Ecology of testate amoebae in Moorland with a complex fire history: Implications for ecosystem monitoring and sustainable land management. Protist 2012, 163, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.J.; Mitchell, E.A.D. Ecology of testate amoebae from mires in the central Rhodope Mountains, Greece and development of a transfer function for paleohydrological reconstruction. Protists 2007, 158, 159–171. [Google Scholar] [CrossRef]
- Mazei, Y.A.; Tsyganov, A.N.; Bubnova, O.A. Structure of community of testate amoebae in a sphagnum dominated bog in upper sura flow (Middle Volga Territory). Ecology 2007, 4, 462–474. [Google Scholar] [CrossRef]
- Finlay, B.J. Procedures for the isolation, cultivation and identification of protozoa. Exp. Microb. Ecol. 1982, 1, 44–65. [Google Scholar]
- Walsh, E.J. Habitat-specific predation susceptibilities of a littoral rotifer to two invertebrate predators. Hydrobiologia 1995, 313, 205–211. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. On body size and habitat selection in rotifers in a macrophyte-dominated lake Budzyńskie, Poland. Aquat. Ecol. 2005, 39, 447–454. [Google Scholar] [CrossRef]
- Foissner, W.; Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshw. Biol. 1996, 35, 375–470. [Google Scholar] [CrossRef]
- Hansen, B.; Christoffersen, K. Specyfic growth rates of heterotrophic plankton organisms in a eutrophic lake during a spring bloom. J. Plankton Res. 1995, 17, 413–430. [Google Scholar] [CrossRef]
- Grygoruk, Ł.; Szałkiewicz, E.; Grodzka-Łukaszewska, M.; Mirosław Świątek, M.; Oglęcki, P.; Pusłowska-Tyszewska, D.; Sinicyn, G.; Okruszko, T. Revealing the influence of hyporheic water exchange on the composition and abundance of bottom-dwelling macroinvertebrates in a temperate lowland river. Knowl. Manag. Aquat. Ecosyst. 2001, 37, 9. [Google Scholar] [CrossRef]
- Auer, B.; Arndt, H. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshw. Biol. 2001, 46, 959–972. [Google Scholar] [CrossRef]
Parameters | Before Fire | After Fire | |||||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2020–2 Months | 2020–4 Months | 2020–8 Months | 2021–12 Months | ||
WL | (cm) | 7 | 7 | 1 | 1 | 3 | 5 |
Temp. | (°C) | 15 | 16 | 23 | 21 | 16 | 16 |
Cond. | (µS cm−1) | 87 | 79 | 90 | 138 | 160 | 190 |
O2 | (mg O2 L−1) | 8 | 8 | 3 | 2 | 3 | 8 |
pH | 4 | 4.3 | 6 | 7.6 | 8.5 | 6 | |
N-NH4 | (mg NH4 L−1) | 0.124 | 0.132 | 0.221 | 0.734 | 0.124 | 0.264 |
N-NO3 | (mg NO3 L−1) | 0.193 | 0.194 | 0.312 | 0.470 | 0.207 | 0.223 |
Ntot | (mg N L−1) | 1.567 | 1.884 | 1.676 | 1.852 | 1.567 | 1.631 |
P-PO4 | (mg PO43- L−1) | 0.078 | 0.021 | 0.039 | 0.112 | 0.033 | 0.033 |
Ptot | (mg P L−1) | 0.137 | 0.136 | 0.237 | 0.341 | 0.211 | 0.235 |
Chlorophyll a | (mg L−1) | 11.00 | 11.00 | 1.00 | 2.00 | 5.00 | 8.00 |
TOC | (mg C L−1) | 15.0 | 15.0 | 21.0 | 46.0 | 58.0 | 65.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieczan, T.; Bronowicka-Mielniczuk, U.; Rudyk-Leuska, N. Effects of Fires on Microbial and Metazoan Communities in Peatlands. Water 2022, 14, 3402. https://doi.org/10.3390/w14213402
Mieczan T, Bronowicka-Mielniczuk U, Rudyk-Leuska N. Effects of Fires on Microbial and Metazoan Communities in Peatlands. Water. 2022; 14(21):3402. https://doi.org/10.3390/w14213402
Chicago/Turabian StyleMieczan, Tomasz, Urszula Bronowicka-Mielniczuk, and Natalia Rudyk-Leuska. 2022. "Effects of Fires on Microbial and Metazoan Communities in Peatlands" Water 14, no. 21: 3402. https://doi.org/10.3390/w14213402
APA StyleMieczan, T., Bronowicka-Mielniczuk, U., & Rudyk-Leuska, N. (2022). Effects of Fires on Microbial and Metazoan Communities in Peatlands. Water, 14(21), 3402. https://doi.org/10.3390/w14213402