Environmental Assessment of Surface Seawater in Al-Uqair Coastline, Eastern Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Metal Content, Quality Assurance, and Statistics
3. Results and Discussion
3.1. EC, pH, and HMs
3.2. Pollution Indices and Multivariate Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akoto, O.; Bismark, E.F.; Darko, G.; Adei, E. Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int. J. Environ. Res. (IJER) 2014, 8, 403–410. [Google Scholar]
- Hanfi, M.Y.; Seleznev, A.A.; Yarmoshenko, I.V.; Malinovsky, G.; Konstantinova, E.Y.; Alsafi, K.G.; Sakr, A.K. Poten-tially harmful elements in urban surface deposited sediment of Ekaterinburg, Russia: Occurrence, source appointment and risk assessment. Chemosphere 2022, 307 Pt 2, 135898. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.; Nasiru, R.; Garbab, N.N.; Adeyemoc, D.J. Carcinogenic and non-carcinogenic health risk assessment of heavy metals exposure from Shanono and Bagwai artisanal gold mines, Kano state, Nigeria. Sci. Afr. 2019, 6, e00197. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Sun, X.; Hu, Z.; Fan, D. Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf. Environ. Pollut. 2019, 245, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.O.; Hower, J.C.; Dotto, G.L.; Oliveira, M.L.S.; Pinto, D. Titanium nanoparticles in sedimented dust ag-gregates from urban children’s parks around coal ashes wastes. Fuel 2021, 285, 119162. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- Kalani, N.; Riazi, B.; Karbassi, A.R.; Moattara, F. Measurement and ecological risk assessment of heavy metals ac-cumulated in sediment and water collected from Gomishan international wetland, Iran. Water Sci. Technol. 2021, 84, 1498–1508. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Zadeh, S.; Turral, H.; Burke, J. Water Pollution from Agriculture: A Global Review; Food and Agriculture Organization of the United Nations: Rome, Italy; International Water Management Institute: Colombo, Sri Lanka, 2017; p. 29. [Google Scholar]
- Spanton, P.I.; Saputra, A. Analysis of sea water pollution in coastal marine district Tuban to the quality standards of sea water with using storet method. J. Kelaut. 2017, 10, 103–112. [Google Scholar] [CrossRef] [Green Version]
- El-Sorogy, A.S.; Youssef, M. Pollution assessment of the Red Sea-Gulf of Aqaba seawater, northwest Saudi Arabia. Environ. Monit. Assess. 2021, 193, 141. [Google Scholar] [CrossRef]
- Tan, W.H.; Tair, R.; Ali, S.A.M.; Sualin, F.; Payus, C. Distribution of heavy metals in seawater and surface sediment in coastal area of Tuaran, Sabah. Trans. Sci. Technol. 2016, 3, 114–122. [Google Scholar]
- Alharbi, T.; Alfaifi, H.; El-Sorogy, A.S. Metal pollution in Al-Khobar seawater, Arabian Gulf, Saudi Arabia. Mar. Pollut. Bull. 2017, 119, 407–415. [Google Scholar] [CrossRef]
- Youssef, M.; El-Sorogy, A.S.; Al-Kahtany, K.; Madkour, H. Status of trace metals in surface seawater of Sharm Al-Kharrar lagoon, Saudi Arabia. Arab. J. Geosci. 2021, 14, 748. [Google Scholar] [CrossRef]
- Tornero, V.; Hanke, G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Mar. Pollut. Bull. 2016, 112, 17–38. [Google Scholar] [CrossRef]
- Lloyd-Smith, M.; Immig, J. Ocean Pollutants Guide Toxic Threats to Human Health and Marine Life; IPEN: Bangalow, Australia, 2018; p. 107. [Google Scholar]
- Claisse, D.; Alzieu, C. Copper contamination as a result of antifouling paint regulations? Mar. Pollut. Bull. 1993, 26, 395–397. [Google Scholar] [CrossRef]
- Millward, G.E.; Turner, A. Metal pollution. In Encyclopaedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, S.A., Eds.; Academic: San Diego, CA, USA, 2001; pp. 1730–1737. [Google Scholar]
- El-Sorogy, A.S.; Youssef, M.; Al-Kahtany, K. Integrated assessment of the Tarut Island coast, Arabian Gulf, Saudi Ara-bia. Environ. Earth Sci. 2016, 75, 1336. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Youssef, M.; Al-Kahtany, K.; Al-Otaibi, N. Assessment of arsenic in coastal sediments, seawaters and molluscs in the Tarut Island, Arabian Gulf, Saudi Arabia. J. Afr. Earth Sci. 2016, 113, 65–72. [Google Scholar] [CrossRef]
- Alharbi, T.; Al-Kahtany, K.; Nour, H.E.; Giacobbe, S.; El-Sorogy, A.S. Contamination and health risk assessment of arsenic and chromium in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia. Mar. Pollut. Bull. 2022, 185, 114255. [Google Scholar] [CrossRef] [PubMed]
- El-Sorogy, A.; Al-Kahtany, K.; Youssef, M.; Al-Kahtany, F.; Al-Malky, M. Distribution and metal contamination in the coastal sediments of Dammam Al-Jubail area, Arabian Gulf, Saudi Arabia. Mar. Pollut. Bull. 2018, 128, 8–16. [Google Scholar] [CrossRef] [PubMed]
- El-Sorogy, A.S.; Alharbi, T.; Richiano, S. Bioerosion structures in high-salinity marine environments: A case study from the Al–Khafji coastline, Saudi Arabia. Estuar. Coast. Shelf Sci. 2018, 204, 264–272. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Alharbi, T.; Almadani, S.; Al-Hashim, M. Molluscan assemblage as pollution indicators in Al-Khobar coastal plain, Arabian Gulf, Saudi Arabia. J. Afr. Earth Sci. 2019, 158, 103564. [Google Scholar] [CrossRef]
- El-Sorogy, A.; Youssef, M.; Al-Kahtany, K.; Saleh, M.M. Distribution, source, contamination and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coastal sediments, Saudi Arabia. Mar. Pollut. Bull. 2020, 158, 111411. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, T.; El-Sorogy, A.S. Assessment of seawater pollution of the Al-Khafji coastal area, Arabian Gulf, Saudi Arabia. Environ. Monit. Assess. 2019, 191, 383. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Youssef, M. Assessment of heavy metal contamination in intertidal gastropod and bivalve shells from central Arabian Gulf coastline, Saudi Arabia. J. Afr. Earth Sci. 2015, 111, 41–53. [Google Scholar] [CrossRef]
- Youssef, M.; El-Sorogy, A.S.; Al-Kahtany, K. Distribution of mercury in molluscs, seawaters and coastal sedi-ments of Tarut Island, Arabian Gulf, Saudi Arabia. J. Afr. Earth Sci. 2016, 124, 365–370. [Google Scholar] [CrossRef]
- Al-Kahtany, K.; Youssef, M.; El-Sorogy, A. Geochemical and foraminiferal analyses of the bottom sediments of Dammam coast, Arabian Gulf, Saudi Arabia. Arab. J. Geosci. 2015, 8, 11121–11133. [Google Scholar] [CrossRef]
- Al-Kahtany, K.; Youssef, M.; El-Sorogy, A.S.; Al-Kahtany, F. Benthic foraminifera as bioindicators of environmental quality of Dammam Al-Jubail area, Arabian Gulf, Saudi Arabia. Arab. J. Geosci. 2020, 13, 427. [Google Scholar] [CrossRef]
- Al-Hashim, M.H.; El-Sorogy, A.S.; Al Qaisi, S.; Alharbi, T. Contamination and ecological risk of heavy metals in Al-Uqair coastal sediments, Saudi Arabia. Mar. Pollut. Bull. 2021, 171, 112748. [Google Scholar] [CrossRef] [PubMed]
- APHA Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005.
- Backman, B.; Bodis, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a groundwater contamination index in Finland and Slovakia. Environ. Geol. 1997, 36, 55–64. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Praveena, S.M.; Chidambaram, S.; Nagarajan, R.R.; Elayaraja, A. Evaluation of water quality pollu-tion indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environ. Earth Sci. 2012, 67, 1987–2001. [Google Scholar] [CrossRef]
- Tanjung, R.H.R.; Hamuna, B.; Alianto, A. Assessment of water quality and pollution index in coastal waters of Mimika, Indonesia. J. Ecol. Eng. 2019, 20, 87–94. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Uddin, S.; Gevao, B.; Al-Ghadban, A.N.; Nithyandan, M.; Al-Shamroukh, D. Acidification in Arabian Gulf – insights from pH and temperature measurements. J. Environ. Monit. 2012, 14, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Al-Ghadban, A.N.; Behnahani, M. Baseline concentration of strontium and 90Sr in seawater from the north-ern Gulf. Mar. Pollut. Bull. 2013, 75, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Broecker, W.; Peng, T. Tracers in the Sea. In Lamont-Doherty Geological Observatory; Columbia University: New York, NY, USA, 1982. [Google Scholar]
- Donat, J.R.; Bruland, K.W. Trace Elements in the Oceans. In Trace Elements in Natural Waters; Salbu, B., Steinnes, E., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 247–292. [Google Scholar]
- Shriadah, M.A.; Okbah, M.A.; El-Deek, M.S. Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water Air Soil Pollut. 2004, 153, 115–124. [Google Scholar] [CrossRef]
- Ali, A. Sudanese Coastal Water—Composition and Some Environmental Aspects. Master’s Thesis, Universitas Bergensis, Bergen, Norway, 2012. [Google Scholar]
- Al-Taani, A.A.; Batayneh, A.; Nazzal, Y.; Ghrefat, H.; Elawadi, E.; Zaman, H. Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia. Mar. Pollut. Bull. 2014, 86, 582–590. [Google Scholar] [CrossRef] [PubMed]
- El-Sorogy, A.; Attiah, A. Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Medi-terranean Sea coast, Egypt. Mar. Pollut. Bull. 2015, 101, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Zamani, A.; Parizanganeh, A.; Khosravi, Y.; Badiee, H. Heavy metals and arsenic content in water along the southern Caspian coasts in Iran. Environ. Sci. Pollut. Res. 2018, 25, 23725–23735. [Google Scholar] [CrossRef]
- Sun, Q.; Gao, F.; Chen, Z.; Wang, Y.; Li, D. The content and pollution evaluation of heavy metals in surface seawater in Dalian Bay. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 227, p. 062021. [Google Scholar]
- Alshehri, F.; Almadani, S.; El-Sorogy, A.S.; Alwaqdani, E.; Alfaifia, H.J.; Alharbi, T. Influence of seawater intrusion and heavy metals contamination on groundwater quality, Red Sea coast, Saudi Arabia. Mar. Pollut. Bull. 2021, 165, 112094. [Google Scholar] [CrossRef]
- Javed, J.; Ahmad, N.; Mashiatullah, A. Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake, Pakistan. Pol. J. Environ. Stud. 2018, 27, 675–688. [Google Scholar] [CrossRef]
- Vrhovnik, P.; Šmuc, N.R.; Dolenec, T.; Serafimovski, T.; Dolenec, M. An evaluation of trace metal distribution and envi-ronmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environ. Earth Sci. 2013, 70, 761–775. [Google Scholar] [CrossRef]
- Hao, J.; Ren, J.; Tao, L.; Fang, H.; Gao, S.; Chen, Y. Pollution evaluation and sources identification of heavy metals in surface sediments from upstream of Yellow River. Pol. J. Environ. Stud. 2021, 30, 1161–1169. [Google Scholar] [CrossRef]
- Obinna, I.B.; Ebere, E.C. A Review: Water pollution by heavy metal and organic pollutants: Brief review of sources, ef-fects and progress on remediation with aquatic plants. Anal. Methods Environ. Chem. J. 2019, 2, 5–38. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.B.; Padhi, R.K.; Mohanty, A.K.; Satpathy, K.K. Distribution and ecological- and health-risk assessment of heavy metals in the seawater of the southeast coast of India. Mar. Pollut. Bull. 2020, 161, 111712. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, X. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotoxicol. Environ. Saf. 2018, 151, 153–160. [Google Scholar] [CrossRef]
- Arikibe, J.E.; Prasad, S. Determination and comparison of selected heavy metal concentrations in seawater and sediment samples in the coastal area of Suva, Fiji. Mar. Pollut. Bull. 2020, 157, 111157. [Google Scholar] [CrossRef] [PubMed]
Indices | Classifications | ||||||
---|---|---|---|---|---|---|---|
Degree of contamination (Cd) | CF = C (heavy metal)/C (Background) Cd = ∑CF where CF is the contamination factor, C (heavy metal) is the analytical value and C (Background) is the upper permissible concentration for the ith component. Three degrees of contamination were classified [32]: | ||||||
Cd < 4 | Cd = 4–8 | Cd > 8 | |||||
Low contamination | Medium contamination | High contamination | |||||
Heavy metal pollution index (HPI) | HPI = where Qi is the subindex of the ith parameter, and Wi is the unit weight for the ith parameter. Qi = where Mi, Ii, and Si are the measured heavy-metal, ideal, and standard values of the ith parameter, respectively. “-“, numerical difference of the two values. Three classes of HPI were classified [33]: | ||||||
HPI < 5 | HPI = 5–10 | HPI > 10 | |||||
Low | Medium | High | |||||
Water Pollution Index (PIj) | PIj = where Lij is the standard water quality parameter for each parameter at a specific quality purpose; Ci is the measured water quality parameters; (Ci/Lij) M is the maximal value of Ci/Lij; (Ci/Lij) R is the average value of Ci/Lij. The water pollution index has four categories [34]: | ||||||
0 ≤ PIj ≤ 1 | 1 ≤ PIj ≤ 5 | 5 ≤ PIj ≤ 10 | PIj > 10 | ||||
Excellent water quality | Good water quality | Poor water quality | Very poor water quality |
Minimum | Maximum | Mean | Standard Deviation | MAC | |
---|---|---|---|---|---|
pH | 8.1 | 8.17 | 8.12 | 0.08 | 7–8.5 |
EC (dS/m) | 72.4 | 122.5 | 81.04 | 3.39 | |
Al (μg/L) | 0.31 | 1.43 | 0.68 | 0.301 | 200 |
As (μg/L) | 4.40 | 7.60 | 5.45 | 0.822 | 10 |
Cd (μg/L) | 0.04 | 0.08 | 0.05 | 0.0113 | 3 |
Cr (μg/L) | 7.00 | 14.50 | 9.64 | 1.785 | 50 |
Cu (μg/L) | 1.10 | 3.80 | 2.48 | 0.786 | 2000 |
Fe (μg/L) | 3.00 | 8.80 | 6.13 | 1.522 | 200 |
Hg (μg/L) | 0.18 | 1.10 | 0.65 | 0.257 | 6 |
Pb (μg/L) | 0.09 | 0.43 | 0.26 | 0.094 | 10 |
Sb (μg/L) | 0.02 | 0.10 | 0.07 | 0.018 | 20 |
Se (μg/L) | 2.50 | 3.10 | 2.69 | 0.163 | 40 |
V (μg/L) | 2.30 | 4.70 | 3.45 | 0.677 | NA |
Zn (μg/L) | 3.30 | 9.90 | 6.72 | 1.489 | 40 |
Ni (μg/L) | 1.20 | 6.90 | 3.01 | 1.360 | 20 |
Sr (μg/L) | 7109 | 7398 | 7214.11 | 56.989 | NA |
Se | V | Pb | Cd | Zn | Ni | Cr | Cu | Hg | As | Sr | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Uqair coastaline, Saudi Arabia | 2.69 | 3.45 | 0.26 | 0.05 | 6.72 | 3.01 | 9.64 | 2.48 | 0.65 | 5.45 | 7214 | Present study |
Sharm Al-Kharrar lagoon, Saudi Arabia | 0.28 | 0.06 | 4.19 | 5.76 | 0.26 | 1.24 | 2.07 | [13] | ||||
Gulf of Aqaba, Red Sea, Saudi Arabia | 1.31 | 0.05 | 5.51 | 2.45 | 0.26 | 2.34 | 0.008 | 2.43 | [24] | |||
Al-Khobar beach, Saudi Arabia | 0.38 | 1.25 | 0.04 | 0.11 | 16.21 | 4.36 | 1.38 | 5.24 | 0.68 | 2.41 | 200.9 | [12] |
Al-Khafji beach, Saudi Arabia | 2.86 | 0.28 | 0.07 | 1.53 | 4.40 | 2.44 | 2.44 | 0.06 | 1.74 | 1513 | [25] | |
Average oceanic concentration | 0.001 | 0.07 | 0.4 | - | 0.33 | 0.12 | - | - | [38] | |||
North Atlantic | 125 | 5.5 | 0.15 | 2 | 3.5 | 1.15 | 1–7 | 20 | [39] | |||
North Pacific | 32 | 5.5 | 0.15 | 2 | 3 | 0.9 | 0.5–10 | 20 | [39] | |||
Gulf of Aqaba | 0.32 | 0.57 | 0.24 | 0.22 | - | 0.14 | - | - | [40] | |||
Red sea coast, Egypt | 0.03 | 0.06 | 5.5 | 0.76 | 0.18 | 0.97 | - | - | [41] | |||
Gulf of Aqaba, Saudi Arabia | 0.20 | 0.03 | 3.32 | - | 0.96 | 6.18 | 0.06 | 0.82 | [42] | |||
Tarut coastline, Saudi Arabia | 1.52 | 0.48 | 0.03 | 0.97 | - | 12.95 | 2.65 | 0.30 | 11.13 | [18] | ||
Rosetta coast, Mediterranean Sea, Egypt | 0.426 | - | 1.694 | 1.92 | 0.133 | - | - | 0.30 | 5860 | [43] | ||
Caspian beach, Iran | 1.67 | 0.27 | 16.94 | 9.93 | - | 5.02 | - | - | [44] |
pH | EC | Al | As | Cd | Cr | Cu | Fe | Hg | Pb | Sb | Se | V | Zn | Ni | Sr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1.0 | |||||||||||||||
EC | –0.084 | 1.0 | ||||||||||||||
Al | 0.010 | 0.043 | 1.0 | |||||||||||||
As | –0.002 | 0.039 | –0.077 | 1.0 | ||||||||||||
Cd | –0.045 | 0.460 ** | –0.073 | –0.121 | 1.0 | |||||||||||
Cr | 0.222 | –0.310 | 0.117 | 0.261 | –0.009 | 1.0 | ||||||||||
Cu | 0.077 | 0.025 | 0.206 | 0.208 | 0.083 | 0.346 * | 1.0 | |||||||||
Fe | –0.306 | 0.282 | 0.167 | –0.046 | 0.095 | 0.062 | 0.236 | 1.0 | ||||||||
Hg | –0.051 | 0.272 | 0.028 | –0.346 * | 0.024 | –0.174 | –0.012 | 0.110 | 1.0 | |||||||
Pb | 0.169 | 0.178 | –0.077 | –0.129 | 0.032 | –0.161 | –0.123 | 0.142 | –0.182 | 1.0 | ||||||
Sb | –0.212 | 0.150 | –0.024 | 0.272 | 0.054 | –0.029 | 0.108 | 0.135 | 0.153 | –0.381 * | 1.0 | |||||
Se | 0.057 | –0.031 | –0.203 | 0.056 | 0.184 | 0.300 | 0.157 | 0.261 | 0.027 | 0.292 | –0.155 | 1.0 | ||||
V | –0.337 * | 0.286 | 0.199 | –0.066 | 0.043 | 0.017 | 0.131 | 0.420 * | 0.168 | –0.227 | 0.385 * | 0.047 | 1.0 | |||
Zn | 0.358 * | 0.412 * | 0.001 | 0.364 * | 0.042 | 0.061 | 0.127 | –0.115 | 0.119 | 0.010 | 0.011 | 0.146 | 0.111 | 1.0 | ||
Ni | 0.356 * | 0.420 * | 0.056 | 0.048 | 0.297 | –0.264 | –0.155 | –0.049 | –0.128 | 0.403 * | –0.341 * | –0.106 | –0.214 | 0.381 * | 1.0 | |
Sr | 0.299 | 0.388 * | 0.095 | 0.441 ** | 0.148 | 0.084 | 0.241 | –0.039 | 0.084 | 0.041 | 0.109 | –0.240 | –0.181 | 0.418 * | 0.394 * | 1.0 |
Component | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
pH | 0.55 | –0.33 | 0.30 | 0.03 | 0.26 | 0.37 |
EC | 0.53 | 0.60 | –0.44 | –0.02 | –0.08 | –0.02 |
Al | –0.01 | 0.23 | 0.08 | –0.02 | 0.80 | –0.27 |
As | 0.28 | 0.21 | 0.65 | –0.11 | –0.42 | –0.33 |
Cd | 0.31 | 0.29 | –0.29 | 0.23 | –0.19 | 0.05 |
Cr | –0.07 | 0.04 | 0.71 | 0.40 | 0.13 | 0.11 |
Cu | 0.05 | 0.40 | 0.49 | 0.30 | 0.26 | 0.01 |
Fe | –0.14 | 0.54 | –0.20 | 0.51 | 0.11 | –0.28 |
Hg | –0.06 | 0.36 | –0.32 | –0.15 | 0.20 | 0.69 |
Pb | 0.40 | –0.31 | –0.35 | 0.48 | –0.02 | –0.24 |
Sb | –0.25 | 0.61 | 0.17 | –0.35 | –0.30 | 0.003 |
Se | 0.01 | 0.03 | 0.079 | 0.82 | –0.29 | 0.29 |
V | –0.30 | 0.70 | −0.134 | 0.09 | 0.06 | –0.02 |
Zn | 0.65 | 0.29 | 0.219 | –0.04 | –0.07 | 0.30 |
Ni | 0.81 | –0.11 | –0.297 | –0.01 | 0.09 | –0.19 |
Sr | 0.69 | 0.28 | 0.283 | –0.27 | 0.07 | –0.07 |
% of Variance | 16.19 | 13.15 | 13.15 | 11.82 | 8.86 | 8.35 |
Cumulative % | 16.19 | 29.34 | 42.48 | 54.31 | 63.17 | 71.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hashim, M.H.; El-Sorogy, A.S.; Alshehri, F.; Qaisi, S. Environmental Assessment of Surface Seawater in Al-Uqair Coastline, Eastern Saudi Arabia. Water 2022, 14, 3423. https://doi.org/10.3390/w14213423
Al-Hashim MH, El-Sorogy AS, Alshehri F, Qaisi S. Environmental Assessment of Surface Seawater in Al-Uqair Coastline, Eastern Saudi Arabia. Water. 2022; 14(21):3423. https://doi.org/10.3390/w14213423
Chicago/Turabian StyleAl-Hashim, Mansour H., Abdelbaset S. El-Sorogy, Fahad Alshehri, and Saleh Qaisi. 2022. "Environmental Assessment of Surface Seawater in Al-Uqair Coastline, Eastern Saudi Arabia" Water 14, no. 21: 3423. https://doi.org/10.3390/w14213423
APA StyleAl-Hashim, M. H., El-Sorogy, A. S., Alshehri, F., & Qaisi, S. (2022). Environmental Assessment of Surface Seawater in Al-Uqair Coastline, Eastern Saudi Arabia. Water, 14(21), 3423. https://doi.org/10.3390/w14213423