Distribution, Sources, and Risk of Polychlorinated Biphenyls in the Largest Irrigation Area in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Material and Reagents
2.4. Sample Extraction and Analysis
2.5. Statistical Analysis
2.6. Health Risk Assessment Methods
2.6.1. Exposure Assessment
2.6.2. The Carcinogenic Risk
2.6.3. The Non-Carcinogenic Risk
3. Results
3.1. Distribution Characteristics of Polychlorinated Biphenyls (PCBs) in Soil Profiles
3.1.1. Vertical Distribution of PCBs
3.1.2. Spatial Distribution of PCBs
3.2. Source Apportionment of PCBs in Shallow Soil
3.3. Health Risk Assessment of PCBs in Shallow Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Consent to Participate
Consent for publish
References
- United Nations. World Water Development Report. 2019. Available online: https://www.unwater.org/publications/world-water-development-report2019/ (accessed on 17 October 2022).
- United Nations. World Water Development Report. 2021. Available online: https://www.unwater.org/publications/world-water-development-report2021/ (accessed on 17 October 2022).
- Wu, F.; Li, F.; Zhao, X.; Bolan, N.S.; Fu, P.; Lam, S.S.; Mašek, O.; Ong, H.C.; Pan, B.; Qiu, X.; et al. Meet the challenges in the “Carbon Age”. Carbon Res. 2022, 1, 1. [Google Scholar] [CrossRef]
- Pei, G.X.; Zhang, Y.; Ma, T.L.; Tian, C.Y.; Ren, Z.H. Distribution of HCHs and PCBs in water body of Inner Mongolia section of Yellow River. J. Water Resour. Water Eng. 2010, 21, 25–27, 33. [Google Scholar]
- Net, S.; Henry, F.; Rabodonirina, S.; Diop, M.; Merhaby, D.; Mahfouz, C.; Amara, R.; Ouddane, B. Accumulation of PAHs, Me-PAHs, PCBs and total Mercury in sediments and Marine Species in Coastal Areas of Dakar, Senegal: Contamination level and impact. Int. J. Environ. Res. 2015, 9, 419–432. [Google Scholar]
- Ranjbaran, S.; Sobhanardakani, S.; Cheraghi, M.; Lorestani, B.; Sadr, M.K. Ecological and human health risks assessment of some polychlorinated biphenyls (PCBs) in surface soils of central and southern parts of city of Tehran, Iran. J. Environ. Health Sci. Eng. 2021, 19, 1491–1503. [Google Scholar] [CrossRef]
- Donato, F.; Moneda, M.; Portolani, N.; Rossini, A.; Molfino, S.; Ministrini, S.; Contessi, G.B.; Pesenti, S.; De Palma, G.; Gaia, A.; et al. Polychlorinated biphenyls and risk of hepatocellular carcinoma in the population living in a highly polluted area in Italy. Sci. Rep. 2021, 11, 3064. [Google Scholar] [CrossRef]
- Khalid, F.; Hashmi, M.Z.; Jamil, N.; Qadir, A.; Ali, M.I. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: A review. Environ. Sci. Pollut. Res. 2021, 28, 10474–10487. [Google Scholar] [CrossRef]
- Agbo, I.A.; Abaye, D. Levels of Polychlorinated Biphenyls in Plastic Resin Pellets from Six Beaches on the Accra-Tema Coastline, Ghana. J. Health Pollut. 2016, 6, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wei, B.K.; Bao, J.S.; Wang, Y.; Hu, J.C.; Tang, Y.E.; Chen, T.; Jin, J. Polychlorinated biphenyls in the soil-crop-atmosphere system in e-waste dismantling areas in Taizhou: Concentrations, congener profiles, uptake, and translocation. Environ. Pollut. 2020, 257, 113622. [Google Scholar] [CrossRef]
- Sun, L.X.; Mao, J.; Liu, T.F.; Yang, D.F. Analysis of polychlorinated biphenyls pollution status in farmland soils of south Jiangsu under different land-use types. J. Food Saf. Qual. 2019, 10, 5615–5620. [Google Scholar] [CrossRef]
- Lu, Y.T.; Liu, M.L.; Wang, J.; Zhang, S.C.; Yao, H.; Sun, S.B. Distribution characteristics and ecological risk assessment of polychlorinated biphenyls in farmland soil of Tongliao City. J. Beijing Jiaotong Univ. 2017, 41, 61–69. [Google Scholar] [CrossRef]
- Cetin, B. Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Sci. Total Environ. 2016, 560, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Haddaoui, I.; Mahjoub, O.; Mahjoub, B.; Boujelben, A.; Di Bella, G. Occurrence and. distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere 2016, 146, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Han, S.L.; Wang, B.S.; Ruan, T.; Wang, Y.W.; Fu, J.J.; Hu, J.T.; Jiang, G.B. Within-field spatial distribution of polychlorinated biphenyls and polybrominated diphenyl ethers in farm soils with different irrigation sources. Environ. Chem. 2012, 31, 958–965. [Google Scholar]
- Kumar, B.; Mishra, M.; Verma, V.K.; Rai, P.; Kumar, S. Organochlorines in urban soils from Central India: Probabilistic health hazard and risk implications to human population. Environ. Geochem. Health 2018, 40, 2465–2480. [Google Scholar] [CrossRef]
- Abrahao, R.; Sarasa, J.; Causape, J.; Garcia-Garizabal, I.; Ovelleiro, J.L. Influence of irrigation on the occurrence of organic and inorganic pollutants in soil, water and sediments of a Spanish agrarian basin (Lerma). Span. J. Agric. Res. 2011, 9, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Teng, M.; Zhang, H.; Fu, Q.; Lu, X.; Chen, J.; Wei, F. Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River Plain, China. Chin. Sci. Bull. 2013, 58, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Ngweme, G.N.; Al Salah, D.M.o.h.a.m.m.e.d.M.; Laffite, A.; Sivalingam, P.; Grandjean, D.; Konde, J.N.; Mulaji, C.K.; Breider, F.; Poté, J. Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo. Sci. Total Environ. 2021, 754, 142175. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund (Volume 1) Human Health Evaluation Manual; EPA/540/189/002; Office of Emergency and Remedial Response: Washington, DC, USA, 1989. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. 2021. Available online: http://www.epa.gov/region9/superfund/prg/ (accessed on 25 May 2022).
- Li, Y.; Huang, G.H.; Gu, H.; Huang, Q.Z.; Li, L.; Liu, H.L. Assessment of Contamination Risk of PCBs in Soils and Agricultural Products in Typical Irrigation District in Beijing. Trans. Chin. Soc. Agric. Mach. 2018, 49, 313–322. [Google Scholar] [CrossRef]
- Lu, Y.T.; Liu, M.L.; Liu, Y.Z.; Zhang, S.C.; Xiang, X.X.; Yao, H. Characteristics and health risk assessment of polychlorinated biphenyls in surface soil of the Yangtze River. China Environ. Sci. 2018, 38, 4617–4624. [Google Scholar] [CrossRef]
- Chen, X.R.; Wang, Y.; Liu, Q.; Zhang, J.J.; Rui, Y.U.; Cui, Z.W.; Liu, J.S. Residual Characteristics and Health Risk Assessment of Polychlorinated Biphenyls in Suburban Vegetable Soils in Different Industrial Cities. Soils Crops 2016, 5, 14–23. [Google Scholar] [CrossRef]
- Adeyinka, G.C.; Moodley, B. Kinetic and thermodynamic studies on partitioning of polychlorinated biphenyls (PCBs) between aqueous solution and modeled individual soil particle grain sizes. J. Environ. Sci. 2019, 76, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.N.; Cao, W.M.; Qu, R.J.; Zhou, D.M.; Sun, C.; Wang, Z.Y. Photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of microplastics in aqueous solution. Chem. Eng. J. 2021, 420, 129813. [Google Scholar] [CrossRef]
- Sako, T.; Sugeta, T.; Otake, K.; Kamizawa, C.; Okano, M.; Negishi, A.; Tsurumi, C. Dechlorination of PCBs with Supercritical Water Hydrolysis. J. Chem. Eng. Jpn. 1999, 32, 830–832. [Google Scholar] [CrossRef]
- Lohmann, R.; Klanova, J.; Kukucka, P.; Yonis, S.; Bollinger, K. PCBs and OCPs on a East-to-West Transect: The Importance of Major Currents and Net Volatilization for PCBs in the Atlantic Ocean. Environ. Sci. Technol. 2012, 46, 10471–10479. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Abraham, J. Biodegradation of Polychlorinated Biphenyls. Microb. Metab. Xenobiotic Compd. 2019, 10, 263–284. [Google Scholar] [CrossRef]
- Palladini, J.; Bagnati, R.; Passoni, A.; Davoli, E.; Lanno, A.; Terzaghi, E.; Falakdin, P.; Di Guardo, A. Bioaccumulation of PCBs and their hydroxy and sulfonated metabolites in earthworms: Comparing lab and field results. Environmental Pollution. 2021, 293, 11507. [Google Scholar] [CrossRef]
- Uhler, A.D.; Hardenstine, J.H.; Edwards, D.A.; Lotufo, G.R. Leaching Rate of Polychlorinated Biphenyls (PCBs) from Marine Paint Chips. Arch. Environ. Contam. Toxicol. 2021, 81, 324–334. [Google Scholar] [CrossRef]
- Frame, G.M.; Cochran, J.W.; Bowadt, S.S. Complete PCB congener distributions for 17 aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J. High Resolut. Chromatogr. 1996, 19, 657–668. [Google Scholar] [CrossRef]
- Jiang, Q.L.; Zhou, H.Y.; Xu, D.D.; Chai, Z.F.; Li, Y.F. Characteristics of PCB congenersand homologues in Chinese transformer oil. China Environ. Sci. 2007, 27, 608–612. [Google Scholar] [CrossRef]
- Gomathy, M.; Sabarinathan, K.G.; Subramanian, K.S.; Ananthi, K.; Kalaiyarasi, V.; Jeyshri, M.; Dutta, P. Rhizosphere: Niche for microbial rejuvenation and biodegradation of pollutants. In Microbial Rejuvenation of Polluted Environment; Springer: Singapore, 2021; Volume 25, pp. 1–22. [Google Scholar] [CrossRef]
- Cai, Z.; Yan, X.; Gu, B. Applying C:N ratio to assess the rationality of estimates of carbon sequestration in terrestrial ecosystems and nitrogen budgets. Carbon Res. 2022, 1, 2. [Google Scholar] [CrossRef]
- Zhang, Z. Polychlorinated Biphenyls in Chinese Air and Surface Soil: Spatial Distribution Characteristics and Thrie Inherent Causes; Harbin Institute of Technology: Shenyang, China, 2010; pp. 41–43. [Google Scholar]
- Zhang, X.H. Distribution Characteristics of Polychlorinated Biphenyls (PCBs) in Main Urban Atmospheric Particles of Inner Mongolia; Inner Mongolia normal University: Hohhot, China, 2015. [Google Scholar]
- Zhang, Q.; Pei, G.X.; Liu, G.Y.; Zhang, Y. Temporal Distribution of PCBs in River Water at Toudaoguai Section of the Yellow River. Arid. Zone Res. 2014, 31, 937–942. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Song, X.L.; Xue, Z.S.; Lv, X.G.; Jiang, M.; Wu, H.T.; Wang, X.H. Effects of Climate Change on Molecular Structure and Stability of Soil Carbon Pool: A General Review. Acta Pedol. Sin. 2018, 55, 273–282. [Google Scholar] [CrossRef]
- Wu, J.; Bian, J.; Wan, H.; Ma, Y.; Sun, X. Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Ecotoxicol. Environ. Saf. 2021, 207, 111245. [Google Scholar] [CrossRef] [PubMed]
Symbol | Meaning of Parameters | Selected Values | |
---|---|---|---|
Adults | Children | ||
CF | Conversion factor (kg·mg−1) | 10−6 | 10−6 |
EF | Exposure frequency (d·a−1) | 350 | 350 |
ED | Exposure frequency (a) | 24 | 6 |
BW | Body weight (kg) | 70 | 15 |
AT | Averaging time, non-carcinogenic/carcinogenic (d) | 8760/25,550 | 2190/25,550 |
IngR | Ingestion rate of soil particle (mg·d−1) | 100 | 200 |
SA | Contact surface area of skin with soil (cm2) | 5700 | 2800 |
AF | Soil-to-skin adherence factor (mg·cm−2) | 0.07 | 0.2 |
ABS | Dermal absorption factor (%) | 0.13 | 0.13 |
InhR | Inhalation rate (m3·d−1) | 16 | 8 |
PEF | Particle emission factor (m3·kg−1) | 1.36 × 109 | 1.36 × 109 |
Soil Profiles | Statistical Characteristics | Low-Chlorinated PCBs | High-Chlorinated PCBs | ||||||
---|---|---|---|---|---|---|---|---|---|
PCB1 | PCB5 | PCB29 | PCB47 | PCB98 | PCB154 | PCB171 | PCB201 | ||
0–20 cm | Concentration range/ng·g−1 | 0–71.13 | 0–9.40 | 0–10.21 | 0–18.19 | 0–15.23 | 0–3.32 | 0–0.88 | 0–1.05 |
Mean of monomer/ng·g−1 | 6.55 | 1.71 | 2.37 | 5.77 | 2.29 | 0.37 | 0.11 | 0.11 | |
Coefficient of variation/% | 229.01 | 135.35 | 107.24 | 83.13 | 183.07 | 214.81 | 264.7 | 272.45 | |
Detection rate/% | 90 | 60 | 85 | 80 | 50 | 35 | 10 | 10 | |
Mean/ng·g−1 | 16.4 | 2.75 | |||||||
20–40 cm | Concentration range/ng·g−1 | 0–56.14 | 0–8.22 | 0–20.14 | 0–22.42 | 0–18.15 | 0–1.12 | 0–1.84 | 0–3.25 |
Mean of monomer/ng·g−1 | 10.23 | 2.24 | 2.53 | 5.22 | 2.82 | 0.23 | 0.21 | 0.34 | |
Coefficient of variation/% | 185.63 | 127.43 | 166.93 | 114.87 | 170.96 | 146.85 | 248.48 | 255.18 | |
Detection rate/% | 85 | 75 | 85 | 85 | 60 | 40 | 20 | 20 | |
Mean/ng·g−1 | 20.23 | 3.61 | |||||||
40–60 cm | Concentration range/ng·g−1 | 0–22.73 | 0–5.20 | 0–11.13 | 0–12.82 | 0–6.51 | 0–2.74 | 0–1.22 | 0–2.74 |
Mean of monomer/ng·g−1 | 3.9 | 1.33 | 2.93 | 3.59 | 0.72 | 0.25 | 0.17 | 0.06 | |
Coefficient of variation/% | 125.84 | 115.01 | 99.78 | 100.68 | 201.29 | 244.33 | 191.84 | 435.89 | |
Detection rate/% | 90 | 60 | 90 | 70 | 40 | 30 | 25 | 5 | |
Mean/ng·g−1 | 11.76 | 1.21 | |||||||
60–80 cm | Concentration range/ng·g−1 | 0–87.71 | 0–19.49 | 0–6.08 | 0–21.92 | 0–22.49 | 0–6.69 | 0–0.63 | 0–1.69 |
Mean of monomer/ng·g−1 | 8.73 | 2.76 | 1.44 | 4.53 | 2.24 | 0.59 | 0.05 | 0.17 | |
Coefficient of variation/% | 216.41 | 164.73 | 110.48 | 111.34 | 223.26 | 258.25 | 272.44 | 237.49 | |
Detection rate/% | 80 | 80 | 80 | 75 | 50 | 25 | 20 | 25 | |
Mean/ng·g−1 | 17.46 | 3.05 | |||||||
80–100 cm | Concentration range/ng·g−1 | 0–36.11 | 0–11.24 | 0–77.09 | 0–15.56 | 0–9.53 | 0–1.17 | 0–1.25 | 0–1.21 |
Mean of monomer/ng·g−1 | 4.82 | 2.3 | 5.4 | 4.72 | 1.73 | 0.2 | 0.14 | 0.12 | |
Coefficient of variation/% | 166.79 | 140.04 | 306.98 | 98.44 | 155.22 | 155.13 | 224.77 | 255.94 | |
Detection rate/% | 80 | 65 | 75 | 70 | 50 | 40 | 25 | 15 | |
Mean/ng·g−1 | 17.24 | 2.2 |
Homologue | Soil Profiles | Jiefangzha Irrigation | Wulanbuhe Irrigation | Madihao Irrigation | Dengkou and National Unity Irrigation | ||||
---|---|---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | Range | Mean | ||
Low–chlorinated PCBs | 0–20 cm | 4.21–29.98 | 12.37 | 4.28–74.01 | 28.03 | 9.77–14.48 | 12.13 | 10.23–26.10 | 20.88 |
20–40 cm | 3.21–49.16 | 10.82 | 54.82–57.39 | 55.74 | 7.82–14.58 | 11.2 | 17.11–37.99 | 23.96 | |
40–60 cm | ND–14.01 | 8.24 | 12.00–29.56 | 22.07 | 10.76–12.39 | 11.57 | 4.24–23.23 | 13.79 | |
60–80 cm | ND–20.93 | 7.99 | 3.56–96.51 | 43.5 | 12.79–17.94 | 15.37 | 9.12–40.58 | 25.02 | |
80–100 cm | ND–23.46 | 8.8 | 0.28–120.65 | 42.95 | 5.73–16.44 | 11.09 | ND–35.91 | 24.24 | |
High–chlorinated PCBs | 0–20 cm | ND–2.40 | 0.83 | 9.68–15.23 | 12.92 | 2.33–2.57 | 2.45 | ND–2.29 | 0.57 |
20–40 cm | ND–8.75 | 1.93 | 6.39–18.15 | 12.77 | 2.36–6.53 | 4.45 | ND–37.00 | 0.92 | |
40–60 cm | ND–3.71 | 1.2 | ND–6.51 | 2.17 | 2.06–2.38 | 2.22 | ND | ND | |
60–80 cm | ND–12.58 | 1.97 | ND–22.49 | 10.17 | 3.88–4.87 | 4.37 | ND | ND | |
80–100 cm | ND–6.38 | 1.28 | ND–9.53 | 5.67 | 5.36–6.20 | 5.78 | ND–1.40 | 0.35 | |
Σ8PCBs | 0–20 cm | 4.72–29.98 | 13.2 | 15.46–89.24 | 40.95 | 12.10–17.05 | 14.57 | 10.23–26.10 | 21.45 |
20–40 cm | ND–57.91 | 12.75 | 61.39–75.54 | 68.5 | 10.19–21.11 | 15.65 | 17.11–37.99 | 24.88 | |
40–60 cm | ND–17.72 | 9.44 | 18.51–29.56 | 24.24 | 13.13–14.45 | 13.79 | 4.24–23.23 | 13.79 | |
60–80 cm | ND–30.44 | 9.97 | 11.58–119.00 | 53.67 | 16.67–22.81 | 19.74 | 9.12–40.58 | 25.02 | |
80–100 cm | ND–29.82 | 10.07 | 7.77–120.65 | 48.62 | 11.09–22.64 | 16.86 | ND–35.91 | 24.59 |
Homologue | Aroclor | Domestic Transformers | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1016 | 1221 | 1232 | 1242 | 1248 | 1254 | 1260 | 1262 | 1268 | ||
Monochlorobiphenyl | 1.1 | 63 | 35 | 1.4 | 2 | |||||
Dichlorobiphenyl | 17 | 31 | 19 | 18 | 18 | 0.3 | 0.24 | 0.33 | 9 | |
Trichlorinated biphenyl | 48 | 4.3 | 19 | 37 | 4 | 0.7 | 0.41 | 1.1 | 63 | |
Tetrachlorobiphenyl | 33 | 1.4 | 21 | 37 | 36 | 14 | 0.95 | 1.3 | 0.1 | 24 |
Pentachlorinated biphenyl | 0.77 | 0.18 | 4.2 | 6.5 | 4 | 54 | 8.2 | 2.9 | 0.15 | 4 |
Hexachlorinated biphenyl | 0.56 | 26 | 39 | 22 | 0.49 | |||||
Heptachlorobiphenyl | 4.1 | 43 | 53 | 5.6 | ||||||
Octachlorobiphenyl | 0.43 | 7.3 | 17 | 41 |
Receptors | Monomer | Carcinogenic | Non-Carcinogenic | ||||||
---|---|---|---|---|---|---|---|---|---|
Ring | Rder | Rinh | RT | HQing | HQder | HQinh | HI | ||
Adults | PCB1 | 1.23 × 10−7 | 6.38 × 10−8 | 1.58 × 10−14 | 1.87 × 10−7 | 7.80 × 10−3 | 4.05 × 10−3 | 9.18 × 10−7 | 1.19 × 10−2 |
PCB5 | 3.22 × 10−8 | 1.67 × 10−8 | 4.13 × 10−15 | 4.89 × 10−8 | 2.04 × 10−3 | 1.06 × 10−3 | 2.40 × 10−7 | 3.10 × 10−3 | |
PCB29 | 4.45 × 10−8 | 2.31 × 10−8 | 5.71 × 10−15 | 6.76 × 10−8 | 2.82 × 10−3 | 1.46 × 10−3 | 3.32 × 10−7 | 4.29 × 10−3 | |
PCB47 | 1.08 × 10−7 | 5.62 × 10−8 | 1.39 × 10−14 | 1.64 × 10−7 | 6.87 × 10−3 | 3.56 × 10−3 | 8.08 × 10−7 | 1.04 × 10−2 | |
PCB98 | 4.30 × 10−8 | 2.23 × 10−8 | 5.51 × 10−15 | 6.53 × 10−8 | 2.72 × 10−3 | 1.41 × 10−3 | 3.20 × 10−7 | 4.14 × 10−3 | |
PCB154 | 5.56 × 10−9 | 2.89 × 10−9 | 7.14 × 10−16 | 8.45 × 10−9 | 3.53 × 10−4 | 1.83 × 10−4 | 4.15 × 10−8 | 5.36 × 10−4 | |
PCB171 | 1.61 × 10−9 | 8.36 × 10−10 | 2.07 × 10−16 | 2.45 × 10−9 | 1.02 × 10−4 | 5.30 × 10−5 | 1.20 × 10−8 | 1.55 × 10−4 | |
PCB201 | 1.60 × 10−9 | 8.28 × 10−10 | 2.05 × 10−16 | 2.43 × 10−9 | 1.01 × 10−4 | 5.25 × 10−5 | 1.19 × 10−8 | 1.54 × 10−4 | |
Σ8PCBs | 3.60 × 10−7 | 1.87 × 10−7 | 4.61 × 10−14 | 5.46 × 10−7 | 2.28 × 10−2 | 1.18 × 10−2 | 2.68 × 10−6 | 3.47 × 10−2 | |
Children | PCB1 | 2.87 × 10−7 | 1.05 × 10−7 | 9.21 × 10−15 | 3.92 × 10−7 | 7.28 × 10−2 | 2.65 × 10−2 | 2.14 × 10−6 | 9.93 × 10−2 |
PCB5 | 7.51 × 10−8 | 2.73 × 10−8 | 2.41 × 10−15 | 1.02 × 10−7 | 1.90 × 10−2 | 6.93 × 10−3 | 5.60 × 10−7 | 2.60 × 10−2 | |
PCB29 | 1.04 × 10−7 | 3.78 × 10−8 | 3.33 × 10−15 | 1.42 × 10−7 | 2.63 × 10−2 | 9.59 × 10−3 | 7.75 × 10−7 | 3.59 × 10−2 | |
PCB47 | 2.53 × 10−7 | 9.20 × 10−8 | 8.10 × 10−15 | 3.45 × 10−7 | 6.41 × 10−2 | 2.33 × 10−2 | 1.89 × 10−6 | 8.74 × 10−2 | |
PCB98 | 1.00 × 10−7 | 3.65 × 10−8 | 3.21 × 10−15 | 1.37 × 10−7 | 2.54 × 10−2 | 9.26 × 10−3 | 7.48 × 10−7 | 3.47 × 10−2 | |
PCB154 | 1.30 × 10−8 | 4.73 × 10−9 | 4.16 × 10−16 | 1.77 × 10−8 | 3.29 × 10−3 | 1.20 × 10−3 | 9.68 × 10−8 | 4.49 × 10−3 | |
PCB171 | 3.76 × 10−9 | 1.37 × 10−9 | 1.21 × 10−16 | 5.13 × 10−9 | 9.54 × 10−4 | 3.47 × 10−4 | 2.80 × 10−8 | 1.30 × 10−3 | |
PCB201 | 3.73 × 10−9 | 1.36 × 10−9 | 1.19 × 10−16 | 5.08 × 10−9 | 9.45 × 10−4 | 3.44 × 10−4 | 2.78 × 10−8 | 1.29 × 10−3 | |
Σ8PCBs | 8.40 × 10−7 | 3.06 × 10−7 | 2.69 × 10−14 | 1.15 × 10−6 | 2.13 × 10−1 | 7.75 × 10−2 | 6.26 × 10−6 | 2.90 × 10−1 |
Receptors | Monomer | Carcinogenic | Non-Carcinogenic | ||||||
---|---|---|---|---|---|---|---|---|---|
Ring | Rder | Rinh | RT | HQing | HQder | HQinh | HI | ||
Adults | PCB1 | 1.92 × 10−7 | 9.97 × 10−8 | 2.47 × 10−14 | 2.92 × 10−7 | 1.22 × 10−2 | 6.32 × 10−3 | 1.43 × 10−6 | 1.85 × 10−2 |
PCB5 | 4.20 × 10−8 | 2.18 × 10−8 | 5.38 × 10−15 | 6.38 × 10−8 | 2.66 × 10−3 | 1.38 × 10−3 | 3.13 × 10−7 | 4.04 × 10−3 | |
PCB29 | 4.76 × 10−8 | 2.47 × 10−8 | 6.10 × 10−15 | 7.23 × 10−8 | 3.02 × 10−3 | 1.57 × 10−3 | 3.55 × 10−7 | 4.58 × 10−3 | |
PCB47 | 9.81 × 10−8 | 5.09 × 10−8 | 1.26 × 10−14 | 1.49 × 10−7 | 6.22 × 10−3 | 3.23 × 10−3 | 7.32 × 10−7 | 9.45 × 10−3 | |
PCB98 | 5.31 × 10−8 | 2.75 × 10−8 | 6.80 × 10−15 | 8.06 × 10−8 | 3.36 × 10−3 | 1.74 × 10−3 | 3.96 × 10−7 | 5.11 × 10−3 | |
PCB154 | 4.27 × 10−9 | 2.21 × 10−9 | 5.47 × 10−16 | 6.48 × 10−9 | 2.70 × 10−4 | 1.40 × 10−4 | 3.18 × 10−8 | 4.11 × 10−4 | |
PCB171 | 4.04 × 10−9 | 2.09 × 10−9 | 5.18 × 10−16 | 6.13 × 10−9 | 2.56 × 10−4 | 1.33 × 10−4 | 3.01 × 10−8 | 3.89 × 10−4 | |
PCB201 | 6.39 × 10−9 | 3.32 × 10−9 | 8.20 × 10−16 | 9.71 × 10−9 | 4.05 × 10−4 | 2.10 × 10−4 | 4.77 × 10−8 | 6.15 × 10−4 | |
Σ8PCBs | 4.48 × 10−7 | 2.32 × 10−7 | 5.74 × 10−14 | 6.80 × 10−7 | 2.84 × 10−2 | 1.47 × 10−2 | 3.34 × 10−6 | 4.31 × 10−2 | |
Children | PCB1 | 4.49 × 10−7 | 1.63 × 10−7 | 1.44 × 10−14 | 6.12 × 10−7 | 1.14 × 10−1 | 4.14 × 10−2 | 3.35 × 10−6 | 1.55 × 10−1 |
PCB5 | 9.80 × 10−8 | 3.57 × 10−8 | 3.14 × 10−15 | 1.34 × 10−7 | 2.49 × 10−2 | 9.05 × 10−3 | 7.31 × 10−7 | 3.39 × 10−2 | |
PCB29 | 1.11 × 10−7 | 4.04 × 10−8 | 3.56 × 10−15 | 1.52 × 10−7 | 2.82 × 10−2 | 1.03 × 10−2 | 8.29 × 10−7 | 3.84 × 10−2 | |
PCB47 | 2.29 × 10−7 | 8.33 × 10−8 | 7.34 × 10−15 | 3.12 × 10−7 | 5.81 × 10−2 | 2.11 × 10−2 | 1.71 × 10−6 | 7.92 × 10−2 | |
PCB98 | 1.24 × 10−7 | 4.51 × 10−8 | 3.97 × 10−15 | 1.69 × 10−7 | 3.14 × 10−2 | 1.14 × 10−2 | 9.23 × 10−7 | 4.28 × 10−2 | |
PCB154 | 9.95 × 10−9 | 3.62 × 10−9 | 3.19 × 10−16 | 1.36 × 10−8 | 2.52 × 10−3 | 9.19 × 10−4 | 7.42 × 10−8 | 3.44 × 10−3 | |
PCB171 | 9.42 × 10−9 | 3.43 × 10−9 | 3.02 × 10−16 | 1.28 × 10−8 | 2.39 × 10−3 | 8.70 × 10−4 | 7.03 × 10−8 | 3.26 × 10−3 | |
PCB201 | 1.49 × 10−8 | 5.43 × 10−9 | 4.78 × 10−16 | 2.03 × 10−8 | 3.78 × 10−3 | 1.38 × 10−3 | 1.11 × 10−7 | 5.16 × 10−3 | |
Σ8PCBs | 1.04 × 10−6 | 3.80 × 10−7 | 3.35 × 10−14 | 1.42 × 10−6 | 2.65 × 10−1 | 9.64 × 10−2 | 7.79 × 10−6 | 3.61 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, Y.; Miao, Q.; Pei, G.; Nan, Y.; Yu, S.; Mei, X.; Feng, W. Distribution, Sources, and Risk of Polychlorinated Biphenyls in the Largest Irrigation Area in the Yellow River Basin. Water 2022, 14, 3472. https://doi.org/10.3390/w14213472
Zhang Q, Li Y, Miao Q, Pei G, Nan Y, Yu S, Mei X, Feng W. Distribution, Sources, and Risk of Polychlorinated Biphenyls in the Largest Irrigation Area in the Yellow River Basin. Water. 2022; 14(21):3472. https://doi.org/10.3390/w14213472
Chicago/Turabian StyleZhang, Qi, Yafang Li, Qingfeng Miao, Guoxia Pei, Yanxia Nan, Shuyu Yu, Xiaole Mei, and Weiying Feng. 2022. "Distribution, Sources, and Risk of Polychlorinated Biphenyls in the Largest Irrigation Area in the Yellow River Basin" Water 14, no. 21: 3472. https://doi.org/10.3390/w14213472
APA StyleZhang, Q., Li, Y., Miao, Q., Pei, G., Nan, Y., Yu, S., Mei, X., & Feng, W. (2022). Distribution, Sources, and Risk of Polychlorinated Biphenyls in the Largest Irrigation Area in the Yellow River Basin. Water, 14(21), 3472. https://doi.org/10.3390/w14213472