Atmospheric Water Harvesting with Metal-Organic Frameworks and Their Composites: From Materials to Devices
Abstract
:1. Introduction
2. MOFs for Sorption-Based AWH
3. MOF-Based Composites for Sorption-Based AWH
3.1. MOF-Hydrogel Composites
3.2. MOF Complexed with Carbon-Based Materials
3.3. Salt-in-MOF Composite Sorbents
4. MOF-Based Devices for Sorption-Based AWH
4.1. Passive Water Harvesting Device
4.2. Active Water Harvesting Device
4.3. Adaptive Water Harvesting Device
5. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World Freshwater Resources. Water in Crisis: A Guide to the World’s Fresh Water Resources. Clim. Chang. 1993, 45, 379–382. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, W.; Li, J.; Mu, X.; Yan, X.; Wang, Z.; Su, J.; Lei, T.; Wang, C. Universal Strategy to Prepare a Flexible Photothermal Absorber Based on Hierarchical Fe-MOF-74 toward Highly Efficient Solar Interfacial Seawater Desalination. ACS Appl. Mater. Interfaces 2021, 13, 45944–45956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, Y.; Shi, L.; Li, H.; Li, R.; Hong, S.; Zhuo, S.; Zhang, T.; Wang, P. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 2021, 12, 998. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Brozinski, J.M.; Lahti, M.; Meierjohann, A.; Oikari, A.; Kronberg, L. The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ. Sci. Technol. 2013, 47, 342. [Google Scholar] [CrossRef]
- Hai, F.I.; Yang, S.F.; Asif, M.B.; Sencadas, V.; Shawkat, S.; Sanderson-Smith, M.; Gorman, J.; Xu, Z.; Yamamoto, K. Carbamazepine as a possible anthropogenic marker in water: Occurrences, toxicological effects, regulations and removal by wastewater treatment technologies. Water 2018, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Umans, A.S.; Yaghi, O.M.; Wang, E.N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430–432. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhou, X.; Liu, Y.; Shi, Y.; Dai, Y.; Yu, G. Super Moisture-Absorbent Gels for All-Weather Atmospheric Water Harvesting. Adv. Mater. 2019, 31, e1806446. [Google Scholar] [CrossRef]
- Bilal, M.; Sultan, M.; Morosuk, T.; Den, W.; Sajjad, U.; Aslam, M.M.A.; Shahzad, M.W.; Farooq, M. Adsorption-based atmospheric water harvesting: A review of adsorbents and systems. Int. Commun. Heat Mass Transfer. 2022, 133, 105961. [Google Scholar] [CrossRef]
- Fessehaye, M.; Abdul-Wahab, S.A.; Savage, M.J.; Kohler, T.; Gherezghiher, T.; Hurni, H. Fog-water collection for community use. Renew. Sustain. Energy Rev. 2014, 29, 52–62. [Google Scholar] [CrossRef]
- Salehi, A.A.; Ghannadi-Maragheh, M.; Torab-Mostaedi, M.; Torkaman, R.; Asadollahzadeh, M. A review on the water-energy nexus for drinking water production from humid air. Renew. Sustain. Energy Rev. 2020, 120, 109627. [Google Scholar] [CrossRef]
- Azeem, M.; Noman, M.T.; Wiener, J.; Petru, M.; Louda, P. Structural design of efficient fog collectors: A review. Environ. Technol. Innovation. 2020, 20, 101169. [Google Scholar] [CrossRef]
- Hamilton, W.J.; Seely, M.K. Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature 1976, 262, 284–285. [Google Scholar] [CrossRef]
- Klemm, O.; Schemenauer, R.S.; Lummerich, A.; Cereceda, P.; Marzol, V.; Corell, D.; van Heerden, J.; Reinhard, D.; Gherezghiher, T.; Olivier, J.; et al. Fog as a Fresh-Water Resource: Overview and Perspectives. AMBIO 2012, 41, 221–234. [Google Scholar] [CrossRef] [Green Version]
- LaPotin, A.; Kim, H.; Rao, S.R.; Wang, E.N. Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance. Acc. Chem. Res. 2019, 52, 1588–1597. [Google Scholar] [CrossRef]
- Lee, A.; Moon, M.W.; Lim, H.; Kim, W.D.; Kim, H.Y. Water harvest via dewing. Langmuir 2012, 28, 10183–10191. [Google Scholar] [CrossRef]
- Hanikel, N.; Prevot, M.S.; Yaghi, O.M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355. [Google Scholar] [CrossRef]
- Ejeian, M.; Wang, R.Z. Adsorption-based atmospheric water harvesting. Joule 2021, 5, 1678–1703. [Google Scholar] [CrossRef]
- Elmer, T.H.; Hyde, J.F. Recovery of Water from Atmospheric Air in Arid Climates. Sep. Sci. Technol. 1986, 21, 251–266. [Google Scholar] [CrossRef]
- Heidari, A.; Roshandel, R.; Vakiloroaya, V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates. Energy Convers. Manag. 2019, 185, 396–409. [Google Scholar] [CrossRef]
- Ge, T.S.; Dai, Y.J.; Wang, R.Z.; Peng, Z.Z. Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers. Energy 2010, 35, 2893–2900. [Google Scholar] [CrossRef]
- Jänchen, J.; Ackermann, D.; Stach, H.; Brösicke, W. Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 2004, 76, 339–344. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, H.; Zhao, F.; Yu, G. Atmospheric Water Harvesting: A Review of Material and Structural Designs. ACS Mater. Lett. 2020, 2, 671–684. [Google Scholar] [CrossRef]
- Barreneche, C.; Fernández, A.I.; Cabeza, L.F.; Cuypers, R. Thermophysical Characterization of Sorption TCM. Energy Procedia 2014, 48, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Sögütoglu, L.C.; Steiger, M.; Houben, J.; Biemans, D.; Fischer, H.R.; Donkers, P.; Huinink, H.; Adan, O.C.G. Understanding the Hydration Process of Salts: The Impact of a Nucleation Barrier. Cryst. Growth Des. 2019, 19, 2279–2288. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Shi, L.; Alsaedi, M.; Wang, P. Harvesting Water from Air: Using Anhydrous Salt with Sunlight. Environ. Sci. Technol. 2018, 52, 5398–5406. [Google Scholar] [CrossRef] [PubMed]
- Kallenberger, P.A.; Fröba, M. Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix. Commun. Chem. 2018, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, X.; Li, X.; Wang, B. Tuning Surface Functionalization and Pore Structure of UiO-66 Metal–Organic Framework Nanoparticles for Organic Pollutant Elimination. ACS Appl. Nano Mater. 2021, 4, 5486–5495. [Google Scholar] [CrossRef]
- Chen, L.; Hao, Y.; Guo, Y.; Zhang, Q.; Li, J.; Gao, W.; Ren, L.; Su, X.; Hu, L.; Zhang, N.; et al. Metal–Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. J. Am. Chem. Soc. 2021, 143, 5727–5736. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Dai, L.; Li, J.; Lv, J.; Zhu, Z.; Yin, A.; Li, P.; Wang, B. The Synthesis of Hexaazatrinaphthylene-Based 2D Conjugated Copper Metal-Organic Framework for Highly Selective and Stable Electroreduction of CO2 to Methane. Angew. Chem. Int. Ed. 2021, 60, 16409–16415. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, S.; Du, Y.; Wang, B. A ZIF-67-derived–sulfur sandwich structure for high performance Li–S batteries. APL Mater. 2019, 7, 091115. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Islamoglu, T.; Farha, O.K. Green Synthesis of a Functionalized Zirconium-Based Metal–Organic Framework for Water and Ethanol Adsorption. Inorganics 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Hanikel, N.; Prevot, M.S.; Fathieh, F.; Kapustin, E.A.; Lyu, H.; Wang, H.; Diercks, N.J.; Glover, T.G.; Yaghi, O.M. Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester. ACS Cent. Sci. 2019, 5, 1699–1706. [Google Scholar] [CrossRef]
- Logan, M.W.; Langevin, S.; Xia, Z. Reversible Atmospheric Water Harvesting Using Metal-Organic Frameworks. Sci. Rep. 2020, 10, 1492. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, D.; Bendix, P.; Reinsch, H.; Frohlich, D.; Kummer, H.; Mollers, M.; Hugenell, P.P.C.; Glaser, R.; Henninger, S.; Stock, N. Scalable Green Synthesis and Full-Scale Test of the Metal-Organic Framework CAU-10-H for Use in Adsorption-Driven Chillers. Adv. Mater. 2018, 30, 1705869. [Google Scholar] [CrossRef]
- Furukawa, H.; Gandara, F.; Zhang, Y.B.; Jiang, J.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381. [Google Scholar] [CrossRef]
- Lu, Z.; Duan, J.; Du, L.; Liu, Q.; Schweitzer, N.M.; Hupp, J.T. Incorporation of free halide ions stabilizes metal–organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. J. Mater. Chem. A 2022, 10, 6442–6447. [Google Scholar] [CrossRef]
- Fröhlich, D.; Pantatosaki, E.; Kolokathis, P.D.; Markey, K.; Reinsch, H.; Baumgartner, M.; van der Veen, M.A.; De Vos, D.E.; Stock, N.; Papadopoulos, G.K.; et al. Water adsorption behaviour of CAU-10-H: A thorough investigation of its structure–property relationships. J. Mater. Chem. A 2016, 4, 11859–11869. [Google Scholar] [CrossRef] [Green Version]
- Canivet, J.; Bonnefoy, J.; Daniel, C.; Legrand, A.; Coasne, B.; Farrusseng, D. Structure–property relationships of water adsorption in metal–organic frameworks. New J. Chem. 2014, 38, 3102–3111. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Benin, A.I.; Jakubczak, P.; Willis, R.R.; LeVan, M.D. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 2010, 26, 14301–14307. [Google Scholar] [CrossRef]
- Hanikel, N.; Pei, X.; Chheda, S.; Lyu, H.; Jeong, W.; Sauer, J.; Gagliardi, L.; Yaghi, O.M. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454–459. [Google Scholar] [CrossRef]
- Cmarik, G.E.; Kim, M.; Cohen, S.M.; Walton, K.S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 2012, 28, 15606–15613. [Google Scholar] [CrossRef]
- Schoenecker, P.M.; Carson, C.G.; Jasuja, H.; Flemming, C.J.J.; Walton, K.S. Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519. [Google Scholar] [CrossRef]
- Ko, N.; Choi, P.G.; Hong, J.; Yeo, M.; Sung, S.; Cordova, K.E.; Park, H.J.; Yang, J.K.; Kim, J. Tailoring the water adsorption properties of MIL-101 metal–organic frameworks by partial functionalization. J. Mater. Chem. A 2015, 3, 2057–2064. [Google Scholar] [CrossRef]
- Towsif Abtab, S.M.; Alezi, D.; Bhatt, P.M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł.J.; Alsadun, N.; Samin, U.; Hedhili, M.N.; et al. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. Chem 2018, 4, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Drisdell, W.S.; Poloni, R.; McDonald, T.M.; Long, J.R.; Smit, B.; Neaton, J.B.; Prendergast, D.; Kortright, J.B. Probing adsorption interactions in metal-organic frameworks using X-ray spectroscopy. J. Am. Chem. Soc. 2013, 135, 18183–18190. [Google Scholar] [CrossRef]
- Dietzel, P.D.; Johnsen, R.E.; Blom, R.; Fjellvag, H. Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. Chemistry 2008, 14, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Kalmutzki, M.J.; Diercks, C.S.; Yaghi, O.M. Metal-Organic Frameworks for Water Harvesting from Air. Adv. Mater. 2018, 30, e1704304. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Guan, W.; Lei, C.; Yu, G. Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications. Angew. Chem. Int. Ed. 2022, 61, e202211267. [Google Scholar] [CrossRef] [PubMed]
- Jeremias, F.; Khutia, A.; Henninger, S.K.; Janiak, C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—A promising application. J. Mater. Chem. 2012, 22, 10148–10151. [Google Scholar] [CrossRef]
- Akiyama, G.; Matsuda, R.; Sato, H.; Hori, A.; Takata, M.; Kitagawa, S. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 2012, 157, 89–93. [Google Scholar] [CrossRef]
- Xu, J.; Li, T.; Chao, J.; Wu, S.; Yan, T.; Li, W.; Cao, B.; Wang, R. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt. Angew. Chem. Int. Ed. 2020, 59, 5202–5210. [Google Scholar] [CrossRef]
- Permyakova, A.; Wang, S.; Courbon, E.; Nouar, F.; Heymans, N.; D’Ans, P.; Barrier, N.; Billemont, P.; De Weireld, G.; Steunou, N.; et al. Design of salt–metal organic framework composites for seasonal heat storage applications. J. Mater. Chem. A 2017, 5, 12889–12898. [Google Scholar] [CrossRef]
- Garzón-Tovar, L.; Pérez-Carvajal, J.; Imaz, I.; Maspoch, D. Composite Salt in Porous Metal-Organic Frameworks for Adsorption Heat Transformation. Adv. Funct. Mater. 2017, 27, 1606424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, L.; Wang, X.; Yu, J.; Ding, B. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun. 2020, 11, 3302. [Google Scholar] [CrossRef]
- Yilmaz, G.; Meng, F.L.; Lu, W.; Abed, J.; Peh, C.K.N.; Gao, M.; Sargent, E.H.; Ho, G.W. Autonomous atmospheric water seeping MOF matrix. Sci. Adv. 2020, 6, 2375–2548. [Google Scholar] [CrossRef]
- Karmakar, A.; Mileo, P.G.M.; Bok, I.; Peh, S.B.; Zhang, J.; Yuan, H.; Maurin, G.; Zhao, D. Thermo-Responsive MOF/Polymer Composites for Temperature-Mediated Water Capture and Release. Angew. Chem. Int. Ed. 2020, 59, 11003–11009. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yu, Y.; Ma, C.; Xiao, J.; Xia, Q.; Li, Y.; Li, Z. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl. Therm. Eng. 2015, 84, 118–125. [Google Scholar] [CrossRef]
- Li, A.; Xiong, J.; Liu, Y.; Wang, L.; Qin, X.; Yu, J. A Rapid-Ab/Desorption and Portable Photothermal MIL-101(Cr) Nanofibrous Composite Membrane Fabricated by Spray-Electrospinning for Atmosphere Water Harvesting. Energy Environ. Mater. 2022, 12254. [Google Scholar] [CrossRef]
- Laha, S.; Maji, T.K. Binary/Ternary MOF Nanocomposites for Multi-Environment Indoor Atmospheric Water Harvesting. Adv. Funct. Mater. 2022, 32, 2203093. [Google Scholar] [CrossRef]
- Wickenheisser, M.; Paul, T.; Janiak, C. Prospects of monolithic MIL-MOF@poly(NIPAM)HIPE composites as water sorption materials. Microporous Mesoporous Mater. 2016, 220, 258–269. [Google Scholar] [CrossRef]
- Ehrenmann, J.; Henninger, S.K.; Janiak, C. Water Adsorption Characteristics of MIL-101 for Heat-Transformation Applications of MOFs. Eur. J. Inorg. Chem. 2010, 2011, 471–474. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, Q.; Huang, C.; Su, W.; Ying, Y.; Zhu, D.; Li, H. Sandwich-Structured Carbon Paper/Metal-Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand. ACS Appl. Mater. Interfaces 2022, 14, 10966–10975. [Google Scholar] [CrossRef]
- Li, Q.; Ying, Y.; Tao, Y.; Li, H. Assemblable Carbon Fiber/Metal–Organic Framework Monoliths for Energy-Efficient Atmospheric Water Harvesting. Ind. Eng. Chem. Res. 2022, 61, 1344–1354. [Google Scholar] [CrossRef]
- Yang, K.; Shi, Y.; Wu, M.; Wang, W.; Jin, Y.; Li, R.; Shahzad, M.W.; Ng, K.C.; Wang, P. Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 2020, 8, 1887–1895. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Shi, Y.; Alsaedi, M.; Wu, M.; Shi, L.; Wang, P. Hybrid Hydrogel with High Water Vapor Harvesting Capacity for Deployable Solar-Driven Atmospheric Water Generator. Environ. Sci. Technol. 2018, 52, 11367–11377. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Wu, M.; Hong, S.; Wang, P. Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano Energy 2020, 67, 104255. [Google Scholar] [CrossRef]
- Song, Y.; Xu, N.; Liu, G.; Qi, H.; Zhao, W.; Zhu, B.; Zhou, L.; Zhu, J. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 2022, 17, 857–863. [Google Scholar] [CrossRef]
- Fathieh, F.; Kalmutzki, M.J.; Kapustin, E.A.; Waller, P.J.; Yang, J.; Yaghi, O.M. Practical water production from desert air. Sci. Adv. 2018, 4, eaat3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Rao, S.R.; Kapustin, E.A.; Zhao, L.; Yang, S.; Yaghi, O.M.; Wang, E.N. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 2018, 9, 1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almassad, H.A.; Abaza, R.I.; Siwwan, L.; Al-Maythalony, B.; Cordova, K.E. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting. Nat. Commun. 2022, 13, 4873. [Google Scholar] [CrossRef] [PubMed]
MOF Sorbents | Linker | BET (m2 g−1) | Inflection Point (P/P0) | Sorption Capacity (P/P0 = 0.9)/g g−1 | Ref. |
---|---|---|---|---|---|
CAU-10-H | m-BDC | 600 | 0.3 | 0.36 | [39,42] |
UIO-66(NH2) | (NH2)BDC | 1123 | 0.2 | 0.38 | [43] |
(Ni)MOF-74 | DOBDC | 800 | 0 | 0.53 | [44] |
MOF-303 | HPDC | 1335 | 0.1 | 0.44 | [45] |
(Al)MIL-53 | BDC | 1040 | 0.1 | 0.09 | [43] |
MOF-801 | Fumarate | 990 | 0.07 | 0.45 | [40] |
UIO-66 | BDC | 1105 | 0.25 | 0.44 | [46] |
(Mg)MOF-74 | DOT | 1250 | 0 | 0.75 | [47] |
(Cr)MIL-101(NH2) | (NH2)BDC | 1790 | 0.36 | 0.83 | [43] |
(Cr)MIL-101 | BDC | 3070 | 0.4 | 1.29 | [48] |
(Cr)MOF-1 | TCPT | 4549 | 0.58 | 1.95 | [49] |
MOF-Based Composites | Functions of Each Component | Sorption Capacity (g g−1) | Ref. |
---|---|---|---|
LiCl@MIL-101(Cr) | LiCl: absorber; MIL-101(Cr): supporting matrix. | 0.8 (30% RH) | [56] |
CaCl2@MIL-101(Cr) | CaCl2: absorber; MIL-101(Cr): supporting matrix. | 0.60 (30% RH) | [57] |
CaCl2@UiO-66 | CaCl2: absorber; UIO-66: supporting matrix. | 0.67 (30% RH) | [58] |
PAN/MIL@LiCl-PAN/CB | PAN: forming substrate membrane with MIL-101(Cr) and CNTs; MIL-101(Cr): absorber; LiCl: absorber; CB: photothermal conversion. | 3.01 (90% RH) | [59] |
PNIPAM@MIL-101(Cr) | PNIPAM: supporting matrix; MIL-101(Cr): absorber. | 6.39 (90% RH) | [60] |
MIL-101(Cr)@PNIPAM | MIL-101(Cr): supporting matrix, absorbent; PNIPAM: promoting facile regeneration. | 4.4 (96% RH) | [61] |
MIL-101(Cr)@GO | MIL-101(Cr): absorber; GO: enhancing water sorption. | 1.58 (70% RH) | [62] |
MIL-101(Cr)/PAN/CNTs | MIL-101(Cr): absorber; PAN: forming substrate membrane with CNTs; CNTs: photothermal conversion. | 1.04 (98%RH) | [63] |
CuBTC/AC/GO | CuBTC: absorber; AC: enhancing the stability of composite; GO: thermal conductivity. | 0.67 (90%RH) | [64] |
Device Type | Configuration | Sorbents | Water Productivity (L kgMOF−1 day−1) | Characteristics | Ref. |
passive | Adsorption and condenser chamber, test apparatus. | MOF-801 | 0.25 (20% RH) |
| [73] |
The sorption unit, condenser case. | MOF-801/nonporous graphite | 0.1 (5–40% RH) | [9] | ||
active | MOF exchanger, compressor-based condenser, solar cell. | MOF-303 | 0.7 (10–30% RH) 1.3 (40–60% RH) |
| [37] |
MOF layer, solar simulator, acrylic enclosure, and condenser. | MOF-801 | 2.8 (20% RH) |
| [74] | |
adaptive | Air intake compartment, sorption compartment, condensation compartment | MOF-801 | 1.8 (10–30% RH) 3.52 (40–60% RH) |
| [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Qin, Q.; Ma, Q.; Wang, B. Atmospheric Water Harvesting with Metal-Organic Frameworks and Their Composites: From Materials to Devices. Water 2022, 14, 3487. https://doi.org/10.3390/w14213487
Huang X, Qin Q, Ma Q, Wang B. Atmospheric Water Harvesting with Metal-Organic Frameworks and Their Composites: From Materials to Devices. Water. 2022; 14(21):3487. https://doi.org/10.3390/w14213487
Chicago/Turabian StyleHuang, Xiuying, Qin Qin, Qinglang Ma, and Bo Wang. 2022. "Atmospheric Water Harvesting with Metal-Organic Frameworks and Their Composites: From Materials to Devices" Water 14, no. 21: 3487. https://doi.org/10.3390/w14213487
APA StyleHuang, X., Qin, Q., Ma, Q., & Wang, B. (2022). Atmospheric Water Harvesting with Metal-Organic Frameworks and Their Composites: From Materials to Devices. Water, 14(21), 3487. https://doi.org/10.3390/w14213487