Multilayer Feedforward Artificial Neural Network Model to Forecast Florida Bay Salinity with Climate Change
Abstract
:1. Introduction
Florida Bay Study Sites
2. Materials and Methods
2.1. Baseline Data Sources
2.2. Forecasted Data Sources
2.3. Description of Baseline and Forecasted Input Variables
2.4. Hydrologic Data Sources
2.5. Input Variable Selection
2.6. Artificial Neural Network Modeling Formulation
2.7. Coastal Salinity Index
3. Results
3.1. Climate Forecast and Hydrological Modeling Results
3.2. Salinity in Florida Bay
3.3. Coastal Salinity Index
3.4. Artificial Neural Network Modeling
3.5. Impact of Climate Change on Salinities in Florida Bay
3.6. Coastal Salinity Index for Salinities under Climate Change
4. Discussion
Implications for Sustainable Management of Estuaries
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennish, M.J. Environmental Threats and Environmental Future of Estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R. Accelerating Loss of Seagrasses across the Globe Threatens Coastal Ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [Green Version]
- Gillanders, B.M.; Elsdon, T.S.; Halliday, I.A.; Jenkins, G.P.; Robins, J.B.; Valesini, F.J. Potential Effects of Climate Change on Australian Estuaries and Fish Utilising Estuaries: A Review. Mar. Freshw. Res. 2011, 62, 1115–1131. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.M.; Borja, A.; Carstensen, J.; Elliott, M.; Krause-Jensen, D.; Marbà, N. Paradigms in the Recovery of Estuarine and Coastal Ecosystems. Estuaries Coasts 2015, 38, 1202–1212. [Google Scholar] [CrossRef]
- Barbier, E.B. Marine Ecosystem Services. Curr. Biol. 2017, 27, R507–R510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal Filho, W.; Nagy, G.J.; Martinho, F.; Saroar, M.; Erache, M.G.; Primo, A.L.; Pardal, M.A.; Li, C. Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 585. [Google Scholar] [CrossRef] [PubMed]
- Orlando, S.P. Salinity Characteristics of Gulf of Mexico Estuaries; Strategic Environmental Assessments Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1993. [Google Scholar]
- Rudnick, D.T.; Ortner, P.B.; Browder, J.A.; Davis, S.M. A Conceptual Ecological Model of Florida Bay. Wetlands 2005, 25, 870–883. [Google Scholar] [CrossRef]
- Brophy, L.S.; Greene, C.M.; Hare, V.C.; Holycross, B.; Lanier, A.; Heady, W.N.; O’Connor, K.; Imaki, H.; Haddad, T.; Dana, R. Insights into Estuary Habitat Loss in the Western United States Using a New Method for Mapping Maximum Extent of Tidal Wetlands. PLoS ONE 2019, 14, e0218558. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.L.; Costanza, R.; Perez-Maqueo, O. Ecosystem Services Provided by Estuarine and Coastal Ecosystems: Storm Protection as a Service from Estuarine and Coastal Ecosystems. In Treatise on Estuarine and Coastal Science; Academic Press: Cambridge, MA, USA, 2011; ISBN 0-12-374711-2. [Google Scholar]
- UNESCO. Operational Guidelines for the Implementation of the World Heritage Convention; UNESCO World Heritage Center: Paris, France, 2015. [Google Scholar]
- Smith, T.J., III; Hudson, H.J.; Robblee, M.B.; Powell, G.N.; Isdale, P.J. Freshwater Flow from the Everglades to Florida Bay: A Historical Reconstruction Based on Fluorescent Banding in the Coral Solenastrea Bournoni. Bull. Mar. Sci. 1989, 44, 274–282. [Google Scholar]
- Marshall, F.; Brewster-Wingard, G.L. Florida Bay Salinity and Everglades Wetlands Hydrology circa 1900 CE: A Compilation of Paleoecology-Based Statistical Modeling Analyses; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- McIvor, C.C.; Ley, J.A.; Bjork, R.D. Changes in Freshwater Inflow from the Everglades to Florida Bay Including Effects on Biota and Biotic Processes: A Review. In Everglades: The Ecosystem and Its Restoration; Routledge Taylor & Francis Group: Abingdon, UK, 1994; pp. 117–146. [Google Scholar]
- Marshall, F.; Smith, D.; Nuttle, W. Simulating and Forecasting Salinity in Florida Bay: A Review of Model; Critical Ecosystem Studies Initiative Final Project Report. 2008. Available online: https://scholar.google.co.uk/scholar?hl=en&as_sdt=0%2C5&q=Simulating+and+Forecasting+Salinity+in+Florida+Bay%3A+A+Review+of+Model&btnG= (accessed on 10 December 2021).
- Kotun, K.; Renshaw, A. Taylor Slough Hydrology. Wetlands 2014, 34, 9–22. [Google Scholar] [CrossRef]
- Wanless, H.R.; Tagett, M.G. Origin, Growth and Evolution of Carbonate Mudbanks in Florida Bay. Bull. Mar. Sci. 1989, 44, 454–489. [Google Scholar]
- Nuttle, W.K.; Fourqurean, J.W.; Cosby, B.J.; Zieman, J.C.; Robblee, M.B. Influence of Net Freshwater Supply on Salinity in Florida Bay. Water Resour. Res. 2000, 36, 1805–1822. [Google Scholar] [CrossRef]
- Robblee, M.B.; Barber, T.; Carlson, P., Jr.; Durako, M.; Fourqurean, J.W.; Muehlstein, L.; Porter, D.; Yarbro, L.; Zieman, R.; Zieman, J.C. Mass Mortality of the Tropical Seagrass Thalassia Testudinum in Florida Bay (USA). Mar. Ecol. Prog. Ser. 1991, 71, 297–299. [Google Scholar] [CrossRef]
- Hall, M.O.; Furman, B.T.; Merello, M.; Durako, M.J. Recurrence of Thalassia Testudinum Seagrass Die-off in Florida Bay, USA: Initial Observations. Mar. Ecol. Prog. Ser. 2016, 560, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Blakesley, B.A.; Berns, D.M.; Hall, M.O. Infection, Infestation, and Disease: Differential Impacts of Labyrinthula Sp. on the Seagrass Thalassia Testudinum (Banks Ex König) in Florida Bay, USA. In Proceedings of the Florida Bay Program & Abstracts, Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem; University of Florida: Gainesville, FL, USA, 2003; pp. 135–137. [Google Scholar]
- Fourqurean, J.W.; Robblee, M.B. Florida Bay: A History of Recent Ecological Changes. Estuaries Coasts 1999, 22, 345–357. [Google Scholar] [CrossRef]
- Butler IV, M.J.; Hunt, J.H.; Herrnkind, W.F.; Childress, M.J.; Bertelsen, R.; Sharp, W.; Matthews, T.; Field, J.M.; Marshall, H.G. Cascading Disturbances in Florida Bay, USA: Cyanobacteria Blooms, Sponge Mortality, and Implications for Juvenile Spiny Lobsters Panulirus Argus. Mar. Ecol. Prog. Ser. 1995, 129, 119–125. [Google Scholar] [CrossRef]
- Swart, P.; Price, R. Origin of Salinity Variations in Florida Bay. Limnol. Oceanogr. 2002, 47, 1234–1241. [Google Scholar] [CrossRef]
- Kelble, C.R.; Johns, E.M.; Nuttle, W.K.; Lee, T.N.; Smith, R.H.; Ortner, P.B. Salinity Patterns of Florida Bay. Estuar. Coast. Shelf Sci. 2007, 71, 318–334. [Google Scholar] [CrossRef]
- CERP–SEPM. System-Wide Performance Measure: Southern Estuaries Performance Measure–Salinity; CERP: Lahore, Pakistan, 2008. [Google Scholar]
- Southeast Florida Regional Climate Change Compact Sea Level Rise Work Group (Compact). A Document Prepared for the Southeast Florida Regional Climate Change Compact Climate Leadership Committee; Southeast Florida Regional Climate Change Compact Sea Level Rise Work Group (Compact): Miami, FL, USA, 2020; p. 36. [Google Scholar]
- Cosby, B.J.; Marshall, F.E.; Nuttle, W.K. FATHOM Model Structure and Salinity Simulation; South Florida Water Management District: Palm Beach, FL, USA, 2010. [Google Scholar]
- Herbert, D.A.; Perry, W.B.; Cosby, B.J.; Fourqurean, J.W. Projected Reorganization of Florida Bay Seagrass Communities in Response to the Increased Freshwater Inflow of Everglades Restoration. Estuaries Coasts 2011, 34, 973–992. [Google Scholar] [CrossRef]
- Marshall, F.; Smith, D.; Nickerson, D. Empirical Tools for Simulating Salinity in the Estuaries in Everglades National Park, Florida. Estuar. Coast. Shelf Sci. 2011, 95, 377–387. [Google Scholar] [CrossRef]
- Park, J.; Stabenau, E.; Kotun, K. Florida Bay Assessment Model: User Manual. In South Florida Natural Resources Center, US Department of the Interior, Everglades National Park, Homestead, FL, Hydrologic Model Manual; SFNRC: Homestead, FL, USA, 2016; pp. 7–27. [Google Scholar]
- Kearney, K.A.; Butler, M.; Glazer, R.; Kelble, C.R.; Serafy, J.E.; Stabenau, E. Quantifying Florida Bay Habitat Suitability for Fishes and Invertebrates under Climate Change Scenarios. Environ. Manag. 2015, 55, 836–856. [Google Scholar] [CrossRef] [PubMed]
- Aumen, N.; Berry, L.; Best, R.; Edwards, A.; Havens, K.; Obeysekera, J.; Rudnick, D.; Scerbo, M. Predicting Ecological Changes in the Florida Everglades under a Future Climate Scenario; US Geological Survey, Florida Sea Grant, Florida Atlantic University: Boca Raton, FL, USA, 2013; Available online: http://wwwcesfauedu/climate_change/ecology-february-2013/PECFEFCS_Reportpdf (accessed on 10 December 2021).
- Bonafe, A.; Galeati, G.; Sforna, M. Neural Networks for Daily Mean Flow Forecasting. WIT Trans. Ecol. Environ. 1970, 7, 8. [Google Scholar]
- ASCE. Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in Hydrology II: Hydrologic Applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- ASCE. Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in Hydrology I: Preliminary Concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.-W.; Duan, H.-F. Machine Learning Based Marine Water Quality Prediction for Coastal Hydro-Environment Management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef] [PubMed]
- Ubah, J.; Orakwe, L.; Ogbu, K.; Awu, J.; Ahaneku, I.; Chukwuma, E. Forecasting Water Quality Parameters Using Artificial Neural Network for Irrigation Purposes. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Liang, S. Prediction of Estuarine Water Quality Using Interpretable Machine Learning Approach. J. Hydrol. 2022, 605, 127320. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z. A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory. Water 2022, 14, 610. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F. The Representative Concentration Pathways: An Overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Jubb, I.; Canadell, P.; Dix, M. Representative Concentration Pathways (RCPs); Australian Government, Department of the Environment: Canberra, Australia, 2013. [Google Scholar]
- Schomer, N.S.; Drew, R.D. An Ecological Characterization of the Lower Everglades, Florida Bay and the Florida Keys; Bureau of Land Management; Fish and Wildlife Service: Washington, DC, USA, 1982. [Google Scholar]
- Boyer, J.N.; Fourqurean, J.W.; Jones, R.D. Spatial Characterization of Water Quality in Florida Bay and Whitewater Bay by Multivariate Analyses: Zones of Similar Influence. Estuaries 1997, 20, 743–758. [Google Scholar] [CrossRef]
- Abiy, A.Z.; Melesse, A.M.; Abtew, W.; Whitman, D. Rainfall Trend and Variability in Southeast Florida: Implications for Freshwater Availability in the Everglades. PLoS ONE 2019, 14, e0212008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Obeysekera, J. Validating Climate Models for Computing Evapotranspiration in Hydrologic Studies: How Relevant Are Climate Model Simulations over Florida? Reg. Environ. Change 2013, 13, 81–90. [Google Scholar] [CrossRef]
- Stefanova, L.; Sura, P.; Griffin, M.; Chan, S.; Misra, V. Non-Gaussian Winter Daily Minimum and Maximum Temperatures in a Regional Climate Model: Downscaling of Reanalysis, Historical Simulations and Future Projections for the Southeast United States; American Geophysical Union: Washington, DC, USA, 2011; Volume 2011, p. GC51D-1015. [Google Scholar]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D0 5109.
- Price, R.M.; Nuttle, W.K.; Cosby, B.J.; Swart, P.K. Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay. Estuaries Coasts 2007, 30, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Abtew, W.; Obeysekera, J.; Shih, G. Spatial Analysis for Monthly Rainfall in South Florida 1. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 179–188. [Google Scholar] [CrossRef]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States; U.S. Department of Commerce: Silver Spring, MD, USA, 2017. [Google Scholar]
- Parris, A.S.; Bromirski, P.; Burkett, V.; Cayan, D.R.; Culver, M.E.; Hall, J.; Horton, R.M.; Knuuti, K.; Moss, R.H.; Obeysekera, J. Global Sea Level Rise Scenarios for the United States National Climate Assessment; NOAA: Washington, DC, USA, 2012. [Google Scholar]
- Paudel, R.; Van Lent, T.; Naja, G.M.; Khare, Y.; Wiederholt, R.; Davis, S.E., III. Assessing the Hydrologic Response of Key Restoration Components to Everglades Ecosystem. J. Water Resour. Plan. Manag. 2020, 146, 04020084. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers and South Florida Water Management District. South Florida Water Management District. Central and Southern Florida Project Comprehensive Review Study, Final Integrated Feasibility Report and Programmatic Environmental Impact Statement; South Florida Water Management District: Jacksonville, FL, USA; South Florida Water Management District: West Palm Beach, FL, USA, 1999; p. 4033. [Google Scholar]
- Klimberg, R.; McCullough, B.D. Fundamentals of Predictive Analytics with JMP; SAS Institute: Cary, NC, USA, 2016; ISBN 1-62960-803-3. [Google Scholar]
- Dematos, G.; Boyd, M.S.; Kermanshahi, B.; Kohzadi, N.; Kaastra, I. Feedforward versus Recurrent Neural Networks for Forecasting Monthly Japanese Yen Exchange Rates. Financ. Eng. Jpn. Mark. 1996, 3, 59–75. [Google Scholar] [CrossRef]
- Wang, Z.; Di Massimo, C.; Tham, M.T.; Morris, A.J. A Procedure for Determining the Topology of Multilayer Feedforward Neural Networks. Neural Netw. 1994, 7, 291–300. [Google Scholar] [CrossRef]
- Pilarz, J.; Polishuk, I.; Chorążewski, M. Prediction of Sound Velocity for Selected Ionic Liquids Using a Multilayer Feed-Forward Neural Network. J. Mol. Liq. 2022, 347, 118376. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Artificial Intelligence for Surface Water Quality Monitoring and Assessment: A Systematic Literature Analysis. Modeling Earth Syst. Environ. 2021, 7, 669–681. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Homaei, F.; Farhadi, H. Reliability Assessment of Water Quality Index Based on Guidelines of National Sanitation Foundation in Natural Streams: Integration of Remote Sensing and Data-Driven Models. Artif. Intell. Rev. 2021, 54, 4619–4651. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Ghaemi, A.; Emamgholizadeh, S. Prediction of Water Quality Parameters Using Evolutionary Computing-Based Formulations. Int. J. Environ. Sci. Technol. 2019, 16, 6377–6396. [Google Scholar] [CrossRef]
- Svozil, D.; Ševčík, J.G.K.; Kvasnicka, V. Neural Network Prediction of the Solvatochromic Polarity/Polarizability Parameter. J. Chem. Inf. Comput. Sci. 1997, 37, 338–342. [Google Scholar] [CrossRef]
- Tak, N. Meta Fuzzy Functions Based Feed-Forward Neural Networks with a Single Hidden Layer for Forecasting. J. Stat. Comput. Simul. 2021, 91, 2800–2816. [Google Scholar] [CrossRef]
- Marini, F.; Magrì, A.L.; Bucci, R. Multilayer Feed-Forward Artificial Neural Networks for Class Modeling. Chemom. Intell. Lab. Syst. 2007, 88, 118–124. [Google Scholar] [CrossRef]
- Rozos, E.; Dimitriadis, P.; Bellos, V. Machine Learning in Assessing the Performance of Hydrological Models. Hydrology 2021, 9, 5. [Google Scholar] [CrossRef]
- Rasamoelina, A.D.; Adjailia, F.; Sinčák, P. A Review of Activation Function for Artificial Neural Network. In Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 23–25 January 2020; pp. 281–286. [Google Scholar]
- Conrads, P.A.; Darby, L.S. Development of a Coastal Drought Index Using Salinity Data. Bull. Am. Meteorol. Soc. 2017, 98, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Petkewich, M.; Lackstrom, K.; McCloskey, B.J.; Rouen, L.F.; Conrads, P.A. Coastal Salinity Index along the Southeastern Atlantic Coast and the Gulf of Mexico, 1983 to 2018; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- McCloskey, B. CSI: Coastal Salinity Index; R Package Version 0.0.1: Vienna, Austria, 2022. [Google Scholar]
- Abdi, H.; Williams, L.J. Newman-Keuls Test and Tukey Test. Encycl. Res. Des. 2010, 2, 897–902. [Google Scholar]
- Navarro, D. Learning Statistics with R; Lulu.com, University of New South Wales: Kensington, Australia, 2013; ISBN 1-326-18972-7. [Google Scholar]
- Games, P.A. Multiple Comparisons of Means. Am. Educ. Res. J. 1971, 8, 531–565. [Google Scholar] [CrossRef]
- Frankovich, T.A.; Fourqurean, J.W. Seagrass Epiphyte Loads along a Nutrient Availability Gradient, Florida Bay, USA. Mar. Ecol. Prog. Ser. 1997, 159, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Marshall, F.E.; Wingard, G.L.; Pitts, P. A Simulation of Historic Hydrology and Salinity in Everglades National Park: Coupling Paleoecologic Assemblage Data with Regression Models. Estuaries Coasts 2009, 32, 37–53. [Google Scholar] [CrossRef]
- Hudson, H.J.; Powell, G.N.; Robblee, M.B.; Smith, T.J., III. A 107-Year-Old Coral from Florida Bay: Barometer of Natural and Man-Induced Catastrophes? Bull. Mar. Sci. 1989, 44, 283–291. [Google Scholar]
- Lorenz, J.J. A Review of the Effects of Altered Hydrology and Salinity on Vertebrate Fauna and Their Habitats in Northeastern Florida Bay. Wetlands 2014, 34, 189–200. [Google Scholar] [CrossRef]
- Zieman, J.C. The Ecology of the Seagrasses of South Florida: A Community Profile; Department of the Interior, US Fish and Wildlife Service: Washington, DC, USA, 1982. [Google Scholar]
- Barbier, E.B. Pricing Nature. In Annual Review of Resource Economics; Rausser, G.C., Smith, V.K., Zilberman, D., Eds.; Palo Alto: Santa Clara, CA, USA, 2011; Volume 3, pp. 337–353. ISBN 1941-1340-978-0-8243-4703-1. [Google Scholar]
- RECOVER. The Recover Team’s Recommendations for Revisions to the Interim Goals and Interim Targets for the Comprehensive Everglades Restoration Plan: 2020. Restoration Coordination and Verification; S. Army Corps of Engineers, Jacksonville District, Jacksonville, and South Florida Water Management District: West Palm Beach, FL, USA, 2020. [Google Scholar]
- Marshall, F.E. The Influence of Restoration Efforts in the Freshwater Everglades on the Salinity Regime of Florida Bay. Restor. Ecol. 2017, 25, S99–S106. [Google Scholar] [CrossRef]
- Thurig, B.; Körner, C.; Stöcklin, J. Seed Production and Seed Quality in a Calcareous Grassland in Elevated CO2. Glob. Change Biol. 2003, 9, 873–884. [Google Scholar] [CrossRef]
- Rae, A.M.; Ferris, R.; Tallis, M.J.; Taylor, G. Elucidating Genomic Regions Determining Enhanced Leaf Growth and Delayed Senescence in Elevated CO2. Plant Cell Environ. 2006, 29, 1730–1741. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Bruno, J.F. The Impact of Climate Change on the World’s Marine Ecosystems. Science 2010, 328, 1523–1528. [Google Scholar] [CrossRef]
- Pearlstine, L.G.; Pearlstine, E.V.; Aumen, N.G. A Review of the Ecological Consequences and Management Implications of Climate Change for the Everglades. J. N. Am. Benthol. Soc. 2010, 29, 1510–1526. [Google Scholar] [CrossRef] [Green Version]
- Catano, C.P.; Romañach, S.S.; Beerens, J.M.; Pearlstine, L.G.; Brandt, L.A.; Hart, K.M.; Mazzotti, F.J.; Trexler, J.C. Using Scenario Planning to Evaluate the Impacts of Climate Change on Wildlife Populations and Communities in the Florida Everglades. Environ. Manag. 2015, 55, 807–823. [Google Scholar] [CrossRef] [PubMed]
- Muehllehner, N.; Langdon, C.; Venti, A.; Kadko, D. Dynamics of Carbonate Chemistry, Production, and Calcification of the Florida Reef Tract (2009–2010): Evidence for Seasonal Dissolution. Glob. Biogeochem. Cycles 2016, 30, 661–688. [Google Scholar] [CrossRef]
Predictor | JK | MK | BK | GB | TB | WB |
---|---|---|---|---|---|---|
P33 Stage | 36% | 33% | 38% | 41% | 46% | 25% |
TSB Stage | 20% | 21% | 25% | 32% | 21% | 17% |
Air Temperature (°C) | 19% | 22% | 11% | 9% | 11% | 34% |
ETP | 12% | 14% | 13% | 8% | 13% | 13% |
S333 Flow | 6% | 4% | 6% | 2% | 3% | 5% |
Mean Sea Level | 6% | 4% | 6% | 7% | 5% | 4% |
Rain | 2% | 2% | 1% | 1% | 1% | 2% |
Site | Scenario | Mean | Min | Max | Range | Std Dev | Difference with Baseline | Difference with RCP4.5 |
---|---|---|---|---|---|---|---|---|
Murray Key | Baseline | 35.25 | 20.34 | 46.98 | 34.46 | 3.44 | NA | NA |
RCP4.5 * | 33.66 | 13.48 | 49.28 | 35.81 | 5.5 | −1.59 | NA | |
RCP8.5 * | 33.52 | 13.71 | 48.94 | 35.22 | 5.38 | −1.74 | −0.15 | |
Johnson Key | Baseline | 36.39 | 22.57 | 56.48 | 33.91 | 3.86 | NA | NA |
RCP4.5 * | 41.83 | 29.35 | 66.69 | 37.34 | 6.07 | 5.43 | NA | |
RCP8.5 *‡ | 42.35 | 26.71 | 66.09 | 39.38 | 5.91 | 5.95 | 0.52 | |
Garfield Bight | Baseline | 33.09 | 5.17 | 71.38 | 66.21 | 10.46 | NA | NA |
RCP4.5 * | 38.18 | 2.17 | 71.94 | 69.77 | 11.86 | 5.08 | NA | |
RCP8.5 *‡ | 39.82 | 2.88 | 71.01 | 68.12 | 11.9 | 6.73 | 1.65 | |
Buoy Key | Baseline | 36.16 | 9.94 | 66.07 | 56.13 | 5.44 | NA | NA |
RCP4.5 * | 35.13 | 7.91 | 67.67 | 59.77 | 8.12 | −1.03 | NA | |
RCP8.5 * | 34.92 | 7.16 | 61.29 | 54.13 | 7.69 | −1.24 | −0.21 | |
Terrapin Bay | Baseline | 27.26 | 2.29 | 56.94 | 54.54 | 10.62 | NA | NA |
RCP4.5 * | 36.22 | 6.24 | 69.41 | 63.17 | 11.77 | 8.97 | NA | |
RCP8.5 *‡ | 46.58 | 25.46 | 57.63 | 32.17 | 6.02 | 19.33 | 10.36 | |
Whipray Basin | Baseline | 36.35 | 20.17 | 54.11 | 33.94 | 5.54 | NA | NA |
RCP4.5 * | 45.7 | 23.62 | 65.98 | 8.68 | 6.55 | 9.35 | NA | |
RCP8.5 *‡ | 46.23 | 23.74 | 67.37 | 43.63 | 6.1 | 9.88 | 0.53 |
Input Variables | Murray Key | Johnson Key | Garfield Bight | Buoy Key | Terrapin Bay | Whipray Basin |
---|---|---|---|---|---|---|
Mean Sea Level | 8–12 | 18–21 | 6–7 | 23–35 | 7–8 | 14–21 |
Rainfall | 13–15 | 2–3 | 2–3 | 8–9 | 9–12 | 3–5 |
ETP | 6–7 | 20–24 | 19–22 | 7–9 | 7–9 | 6–7 |
Air Temp | 19–27 | 5–6 | 5–6 | 10–11 | 13–23 | 15–16 |
Shark River Slough Stage | 7–8 | 20–26 | 22–23 | 9–19 | 11–15 | 25–33 |
Shark River Slough Flow | 19–23 | 4–5 | 8–10 | 12–13 | 4–6 | 13–14 |
Taylor Slough Stage | 17–18 | 22–24 | 30–34 | 17–18 | 34–43 | 13–14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abiy, A.Z.; Wiederholt, R.P.; Lagerwall, G.L.; Melesse, A.M.; Davis, S.E. Multilayer Feedforward Artificial Neural Network Model to Forecast Florida Bay Salinity with Climate Change. Water 2022, 14, 3495. https://doi.org/10.3390/w14213495
Abiy AZ, Wiederholt RP, Lagerwall GL, Melesse AM, Davis SE. Multilayer Feedforward Artificial Neural Network Model to Forecast Florida Bay Salinity with Climate Change. Water. 2022; 14(21):3495. https://doi.org/10.3390/w14213495
Chicago/Turabian StyleAbiy, Anteneh Z., Ruscena P. Wiederholt, Gareth L. Lagerwall, Assefa M. Melesse, and Stephen E. Davis. 2022. "Multilayer Feedforward Artificial Neural Network Model to Forecast Florida Bay Salinity with Climate Change" Water 14, no. 21: 3495. https://doi.org/10.3390/w14213495
APA StyleAbiy, A. Z., Wiederholt, R. P., Lagerwall, G. L., Melesse, A. M., & Davis, S. E. (2022). Multilayer Feedforward Artificial Neural Network Model to Forecast Florida Bay Salinity with Climate Change. Water, 14(21), 3495. https://doi.org/10.3390/w14213495