Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam
Abstract
:1. Introduction
2. Methods
2.1. Study Area
- (i)
- Drought levels were calculated for 1-month and 12-month periods, and seasonal rice cropping (summer–autumn and winter–spring) over the 40-year dataset;
- (ii)
- Trend of droughts, and the maximum number of sequential arid years using trends in the SPI 12-month from the Mann–Kendall test and Sen’s slope [46];
- (iii)
- Cluster analysis and Thiessen were conducted for spatial analysis using SPI 12-month and SPI 1-month;
- (iv)
- Drought characteristics, such as drought frequency, length, and severity, were examined, as well as probability analysis;
- (v)
- The Pearson correlation technique were conducted the relationship between SPI seasons indices with saline water intrusion and rice yields.
2.2. SPI Calculation and Classification
2.3. SPI Trend Estimation Using the Mann–Kendall Test and Sen’s Slope Estimation
2.4. SPI Spatial Pattern Analysis
3. Results and Discussion
3.1. SPI 12-Month Spatiotemporal Drought Analysis for the VMD
3.2. SPI 1-Month Spatiotemporal Drought Analysis for the VMD
3.3. Seasonal Drought Assessment in the VMD and Its Relationship with Rice Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Station | Summer-Autumn | Winter-Spring | ||||||
---|---|---|---|---|---|---|---|---|
Kendall’s Tau | S | Var (S) | p-Value (Two-Tailed) | Kendall’s Tau | S | Var (S) | p-Value (Two-Tailed) | |
Ca Mau | 0.038 | 30 | 7366.667 | 0.735 | 0.301 | 235 | 7365.667 | 0.0064 ** |
Rach Gia | −0.029 | −24 | 7926.667 | 0.796 | 0.283 | 232 | 7926.667 | 0.009 ** |
Soc Trang | −0.059 | −51 | 8514.333 | 0.588 | 0.104 | 89 | 8509.667 | 0.340 |
Vi Thanh | 0.134 | 115 | 8514.333 | 0.217 | 0.352 | 303 | 8512.333 | 0.001 ** |
Bac Lieu | 0.077 | 63 | 7925.667 | 0.486 | 0.159 | 130 | 7926.667 | 0.147 |
Cao Lanh | 0.108 | 84 | 7366.667 | 0.334 | 0.153 | 119 | 7365.667 | 0.169 |
Chau Doc | 0.108 | 84 | 7366.667 | 0.334 | −0.023 | −21 | 9128.333 | 0.834 |
Ba Tri | −0.087 | −75 | 8514.333 | 0.423 | 0.294 | 253 | 8514.333 | 0.006 ** |
My Tho | 0.085 | 70 | 7926.667 | 0.438 | 0.349 | 286 | 7926.667 | 0.001 ** |
Vinh Long | 0.215 | 168 | 7366.667 | 0.052 | 0.236 | 184 | 7366.667 | 0.03 * |
Moc Hoa | −0.116 | −100 | 8513.333 | 0.283 | 0.137 | 118 | 8513.333 | 0.205 |
Cang Long | −0.087 | −75 | 8514.333 | 0.423 | 0.294 | 253 | 8514.333 | 0.0063 ** |
Can Tho | −0.052 | −47 | 9130.333 | 0.630 | 0.238 | 215 | 9130.333 | 0.025 * |
Tri Ton | −0.265 | −239 | 9130.333 | 0.013 * | 0.205 | 185 | 9130.333 | 0.054 |
Appendix B
References
- Senbeta, T.B.; Romanowicz, R.J. Evaluating Historical Drought Using Different Drought Indices and Data Processing Schemes. In Proceedings of the 1st IAHR Young Professionals Congress, Online, 17 November 2020. [Google Scholar]
- Sivakumar, M.V. Agricultural Drought—WMO Perspectives; World Meteorological Organization: Geneva, Switzerland, 2011; p. 24. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Hagman, G.; Beer, H.; Bendz, M.; Wijkman, A. Prevention Better than Cure. Report on Human and Environmental Disasters in the Third World; Swedish Red Cross: Stockholm, Sweden, 1984; p. 187. [Google Scholar]
- Wilhite, D. Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment; Drought Mitigation Center Faculty Publications: Lincoln, NE, USA, 2000; Volume 69, pp. 3–18. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1068&context=droughtfacpub (accessed on 6 April 2022).
- Hahn, M.B.; Riederer, A.M.; Foster, S.O. The Livelihood Vulnerability Index: A Pragmatic Approach to Assessing Risks from Climate Variability and Change—A Case Study in Mozambique. Glob. Environ. Chang. 2009, 19, 74–88. [Google Scholar] [CrossRef]
- Zarei, A.R.; Shabani, A.; Moghimi, M.M. Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure Appl. Geophys. 2021, 178, 1387–1403. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Tannehill, I.R. Drought, Its Causes and Effects; LWW: Philadelphia, PA, USA, 1947; Volume 64, ISBN 0038-075X. [Google Scholar]
- Soleimani, H.; Ahmadi, H.; Zehtabian, G. Comparison of Temporal and Spatial Trend of SPI, DI and CZI as Important Drought Indices to Map Using IDW Method in Taleghan Watershed. Ann. Biol. Res. 2013, 4, 46–55. [Google Scholar]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the Definition of Droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar]
- Jain, V.K.; Pandey, R.P.; Jain, M.K.; Byun, H.-R. Comparison of Drought Indices for Appraisal of Drought Characteristics in the Ken River Basin. Weather Clim. Extrem. 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; Volume 17, pp. 179–183. [Google Scholar]
- McKee, T.B. Drought Monitoring with Multiple Time Scales; American Meteorological Society: Boston, MA, USA, 1995. [Google Scholar]
- Svoboda, M.; Fuchs, B.A. Handbook of Drought Indicators and Indices; Integrated Drought Management Tools and Guidelines Series; World Meteorological Organization: Geneva, Switzerland, 2016; Volume 2. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A Drought Climatology for Europe. Int. J. Climatol. J. R. Meteorol. Soc. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Osuch, M.; Romanowicz, R.J.; Lawrence, D.; Wong, W.K. Trends in Projections of Standardized Precipitation Indices in a Future Climate in Poland. Hydrol. Earth Syst. Sci. 2016, 20, 1947–1969. [Google Scholar] [CrossRef]
- Masoudi, M.; Afrough, E. Analyzing Trends of Precipitation for Humid, Normal and Drought Classes Using Standardized Precipitation Index (SPI), a Case of Study: Fars Province, Iran. Int. J. AgriSci. 2011, 1, 85–96. [Google Scholar]
- Lei, Y.; Wang, J.; Luo, L. Drought Risk Assessment of China’s Mid-Season Paddy. Int. J. Disaster Risk Sci. 2011, 2, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Romero-Jiménez, E.; García-Valdecasas Ojeda, M.; Rosa-Cánovas, J.J.; Yeste, P.; Castro-Díez, Y.; Esteban-Parra, M.J.; Gámiz-Fortis, S.R. Hydrological Response to Meteorological Droughts in the Guadalquivir River Basin, Southern Iberian Peninsula. Water 2022, 14, 2849. [Google Scholar] [CrossRef]
- Thắng, N.V.; Khiêm, M.V. Nghiên cứu đánh giá aà dự tính điều kiện khô hạn theo chỉ số SPI cho khu vực Đồng bằng Sông Cửu Long. Tạp chí Khí tượng Thủy văn 2017, 6, 1–9. [Google Scholar]
- Ty, T.V.; Hoai, D.T.T.H.; Minh, H.V.T. Mapping Meteorological Drought in the Mekong Delta under Climate Change. Can Tho Univ. J. Sci. 2015, 2025, 1980–2012. [Google Scholar]
- Hồng, N.V.; nh Thơ, P.T.; Giai, N.S. Khả năng sử dụng chỉ số SPI trong đánh giá ảnh hưởng của điều kiện khô hạn và ẩm ướt đến năng suất lúa ở vùng Cần Thơ-Hậu Giang. Tạp Chí Khoa học Biến đổi khí hậu 2018, 5, 36–42. [Google Scholar]
- FAO. Guidelines on Irrigation Investment Projects; Food and Agriculture Organization: Rome, Italy, 2018; p. 120. [Google Scholar]
- Tondel, F.; D’Alessandro, C.; Dekeyser, K. The Effects of Major Economies’ Policies on Climate Action, Food Security and Water in Developing Countries; ECDPM: Maastricht, The Netherlands, 2022. [Google Scholar]
- Smyle, J.; Cooke, R. Comprehensive Environment and Climate Change Assessment in Viet Nam; International Fund for Agricultural Development IFAD: Rome, Italy, 2014. [Google Scholar]
- Setia, R.; Gottschalk, P.; Smith, P.; Marschner, P.; Baldock, J.; Setia, D.; Smith, J. Soil Salinity Decreases Global Soil Organic Carbon Stocks. Sci. Total Environ. 2013, 465, 267–272. [Google Scholar] [CrossRef]
- Yin, Y.; Gao, Y.; Lin, D.; Wang, L.; Ma, W.; Wang, J. Mapping the Global-Scale Maize Drought Risk Under Climate Change Based on the GEPIC-Vulnerability-Risk Model. Int. J. Disaster Risk Sci. 2021, 12, 428–442. [Google Scholar] [CrossRef]
- Opiyo, F.; Wasonga, O.; Nyangito, M.; Schilling, J.; Munang, R. Drought Adaptation and Coping Strategies among the Turkana Pastoralists of Northern Kenya. Int. J. Disaster Risk Sci. 2015, 6, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Tang, Z.; Wu, J.; McMillan, K. Drought Planning Research in the United States: An Overview and Outlook. Int. J. Disaster Risk Sci. 2013, 4, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Abedin, M.; Habiba, U.; Shaw, R. Community Perception and Adaptation to Safe Drinking Water Scarcity: Salinity, Arsenic, and Drought Risks in Coastal Bangladesh. Int. J. Disaster Risk Sci. 2014, 5, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Barlow, P.M.; Reichard, E.G. Saltwater Intrusion in Coastal Regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Kretsinger Grabert, V.; Narasimhan, T. California’s Evolution toward Integrated Regional Water Management: A Long-Term View. Hydrogeol. J. 2006, 14, 407–423. [Google Scholar] [CrossRef]
- Thu Minh, H.V.; Avtar, R.; Kumar, P.; Le, K.N.; Kurasaki, M.; Ty, T.V. Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach. Water 2020, 12, 1710. [Google Scholar] [CrossRef]
- Giao, N.T. Surface Water Quality in Aquacultural Areas in An Giang Province, Vietnam. Int. J. Environ. Agric. Biotechnol. 2020, 5, 1054–1061. [Google Scholar] [CrossRef]
- Chea, R.; Grenouillet, G.; Lek, S. Evidence of Water Quality Degradation in Lower Mekong Basin Revealed by Self-Organizing Map. PLoS ONE 2016, 11, e0145527. [Google Scholar] [CrossRef] [Green Version]
- Le Huy, B.; Xuan, H.N.; Van, N.T.; Le, H.H. The Dangers of the Construction of Hydroelectric Dams Upstream of the Mekong River Adversely Effect on the Ecosystems and Livelihoods of People in the Mekong Delta, Viet Nam. Environ. Chall. 2021, 5, 100349. [Google Scholar] [CrossRef]
- Tran, T.; Thang, N.; Huong, H.; Khiem, M.; Hien, N.; Ha Phong, D. Climate Change and Sea Level Rise Scenarios for Viet Nam; IPCC Summary for Policymakers: Geneva, Switzerland, 2016. [Google Scholar]
- Dat, T.Q.; Kanchit, L.; Thares, S.; Trung, N.H. Modeling the Influence of River Discharge and Sea Level Rise on Salinity Intrusion in Mekong Delta. In Proceedings of the 1st Environment Asia International Conference, Thailand, Bangkok, 22–25 March 2011; Volume 35, pp. 685–701. [Google Scholar]
- Loc, H.H.; Van Binh, D.; Park, E.; Shrestha, S.; Dung, T.D.; Son, V.H.; Truc, N.H.T.; Mai, N.P.; Seijger, C. Intensifying Saline Water Intrusion and Drought in the Mekong Delta: From Physical Evidence to Policy Outlooks. Sci. Total Environ. 2021, 757, 143919. [Google Scholar] [CrossRef]
- Tran, D.D.; Dang, M.M.; Du Duong, B.; Sea, W.; Vo, T.T. Livelihood Vulnerability and Adaptability of Coastal Communities to Extreme Drought and Salinity Intrusion in the Vietnamese Mekong Delta. Int. J. Disaster Risk Reduct. 2021, 57, 102183. [Google Scholar] [CrossRef]
- Tín, N.Đ. Xây Dựng Công Nghệ Dự Báo Hạn Khí Tượng ở Khu Vực Đồng Bằng Sông Cửu Long. Tạp Chí Khoa Học Kĩ Thuật Thủ Lợi Và Môi Trường Số 2012, 37, 2012. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Agnew, C. Using the SPI to Identify Drought. Natl. Drought Mitig. Cent. Univ. Neb. Linc. 2000, 1, 6–12. [Google Scholar]
- Łabędzki, L. Estimation of Local Drought Frequency in Central Poland Using the Standardized Precipitation Index SPI. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hartomo, K.D.; Sri Yulianto, J.; Gumilanggeng, E. Spatial Model of Koppen Climate Classification using Thiessen Polygon Optimization Algorithm. J. Theor. Appl. Inf. Technol. 2018, 96, 2. [Google Scholar]
- William, K.H.; Hutomo, K.D. The Natural Disaster Prone Index Map Model in Indonesia Using the Thiessen Polygon Method. INTENSIF J. Ilm. Penelit. Dan Penerapan Teknol. Sist. Inf. 2021, 5, 148–160. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, K.; Liu, C.; Jackson, E. Investigating the Effects of Monthly Weather Variations on Connecticut Freeway Crashes from 2011 to 2015. J. Saf. Res. 2019, 71, 153–162. [Google Scholar]
- Asrari, E.; Masoudi, M.; Hakimi, S.S. GIS Overlay Analysis for Hazard Assessment of Drought in Iran Using Standardized Precipitation Index (SPI). J. Ecol. Environ. 2012, 35, 323–329. [Google Scholar] [CrossRef]
- Fiedler, F.R. Simple, Practical Method for Determining Station Weights Using Thiessen Polygons and Isohyetal Maps. J. Hydrol. Eng. 2003, 8, 219–221. [Google Scholar] [CrossRef]
- Boots, B.N. Weighting Thiessen Polygons. Econ. Geogr. 1980, 56, 248–259. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, Z.; Liu, F. Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Tatalovich, Z.; Wilson, J.P.; Cockburn, M. A Comparison of Thiessen Polygon, Kriging, and Spline Models of Potential UV Exposure. Cartogr. Geogr. Inf. Sci. 2006, 33, 217–231. [Google Scholar] [CrossRef]
- Ian, H. An Introduction to Geographical Information Systems; Pearson Education: Nodia, India, 2010; ISBN 81-317-3193-6. [Google Scholar]
- Richter, A.; Ng, K.T.; Karimi, N.; Wu, P.; Kashani, A.H. Optimization of Waste Management Regions Using Recursive Thiessen Polygons. J. Clean. Prod. 2019, 234, 85–96. [Google Scholar] [CrossRef]
- Mu, L. Thiessen Polygon. In International Encyclopedia of Human Geography; Kitchin, R., Thrift, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 231–236. ISBN 978-0-08-044910-4. [Google Scholar]
- Park, E.; Loc, H.H.; Van Binh, D.; Kantoush, S. The Worst 2020 Saline Water Intrusion Disaster of the Past Century in the Mekong Delta: Impacts, Causes, and Management Implications. Ambio 2022, 51, 691–699. [Google Scholar] [CrossRef]
- Phan, V.H.; Dinh, V.T.; Su, Z. Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam. Remote Sens. 2020, 12, 2974. [Google Scholar] [CrossRef]
- Sebastian, L.; Sander, B.; Simelton, E.; Zheng, S.; Hoanh, C.; Tran, N.; Buu, C.; Quyen, C.; Ninh, N. The Drought and Salinity Intrusion in the Mekong River Delta of Vietnam-Assessment Report; CGIAR Research Program on Climate Change, Agriculture and Food Security: Bogor, Indonesia, 2016; Available online: https://ccafs.cgiar.org/resources/publications/drought-and-salinity-intrusion-mekong-river-delta-vietnam-assessment (accessed on 6 April 2022).
- Thao, N.T.T.; Khoi, D.N.; Xuan, T.T.; Tychon, B. Assessment of Livelihood Vulnerability to Drought: A Case Study in Dak Nong Province, Vietnam. Int. J. Disaster Risk Sci. 2019, 10, 604–615. [Google Scholar] [CrossRef]
Drought Level | SPI Values | Drought Level | SPI Values |
---|---|---|---|
Normal | 0–0.24 | Normal | (−0.24)–0 |
Very slightly wet condition | −0.49 | Very slight drought | (−0.49)–(−0.25) |
Slightly wet condition | 0.5–0.99 | Slight drought | (−0.99)–(−0.5) |
Moderately wet condition | 1–1.44 | Moderate drought | (−1.44)–(−1) |
Severely wet condition | 1.5–1.99 | Severe drought | (−1.99)–(−1.5) |
Extremely wet condition | >2 | Extreme drought | <(−2) |
The Summer-Autumn Rice Cropping Season | ||||||
---|---|---|---|---|---|---|
Name of Station | Return Period (Year) SPI ≤ −1 | Return Period (Year) SPI ≤ −0.5 | Return Period (Year) SPI ≤ −0.25 | Return Period (Year) SPI ≥ 0.25 | Return Period (Year) SPI ≥ 0.5 | Return Period (Year) SPI ≥ 1 |
Bac Lieu | 1000 | 12 | 4 | 4 | 9 | 54 |
Ba Tri | 104 | 6 | 4 | 3 | 5 | 110 |
Ca Mau | 118 | 8 | 3 | 4 | 8 | 44 |
Cang Long | 123 | 11 | 4 | 4 | 11 | 120 |
Can Tho | 122 | 20 | 5 | 1 | 20 | 121 |
Cao Lanh | 34 | 7 | 3 | 4 | 8 | 38 |
Chau Doc | 78 | 7 | 3 | 4 | 8 | 78 |
Moc Hoa | 121 | 8 | 3 | 4 | 8 | 60 |
My Tho | 100 | 10 | 3 | 10 | 5 | 139 |
Rach Gia | 123 | 11 | 3 | 4 | 9 | 64 |
Soc Trang | 101 | 10 | 4 | 4 | 12 | 105 |
Vinh Long | 109 | 14 | 5 | 4 | 11 | 106 |
Vi Thanh | 75 | 10 | 4 | 4 | 10 | 65 |
Tri Ton | 53 | 2 | 2 | 9 | 16 | 50 |
The Winter-Spring Rice Cropping Season | ||||||
Bac Lieu | 43 | 7 | 3 | 5 | 11 | 73 |
Ba Tri | 25 | 5 | 3 | 4 | 9 | 41 |
Ca Mau | 26 | 6 | 3 | 4 | 9 | 39 |
Cang Long | 28 | 6 | 3 | 4 | 9 | 37 |
Can Tho | 33 | 7 | 3 | 4 | 9 | 44 |
Cao Lanh | 22 | 5 | 3 | 4 | 7 | 28 |
Chau Doc | 24 | 5 | 3 | 4 | 9 | 38 |
Moc Hoa | 44 | 8 | 4 | 4 | 10 | 60 |
My Tho | 34 | 6 | 3 | 3 | 5 | 33 |
Rach Gia | 20 | 5 | 3 | 4 | 7 | 27 |
Soc Trang | 30 | 6 | 3 | 4 | 8 | 40 |
Vinh Long | 30 | 7 | 3 | 4 | 9 | 40 |
Vi Thanh | 25 | 6 | 3 | 4 | 8 | 32 |
Tri Ton | 24 | 5 | 3 | 4 | 8 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, H.V.T.; Lavane, K.; Ty, T.V.; Downes, N.K.; Hong, T.T.K.; Kumar, P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water 2022, 14, 3499. https://doi.org/10.3390/w14213499
Minh HVT, Lavane K, Ty TV, Downes NK, Hong TTK, Kumar P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water. 2022; 14(21):3499. https://doi.org/10.3390/w14213499
Chicago/Turabian StyleMinh, Huynh Vuong Thu, Kim Lavane, Tran Van Ty, Nigel K. Downes, Tran Thi Kim Hong, and Pankaj Kumar. 2022. "Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam" Water 14, no. 21: 3499. https://doi.org/10.3390/w14213499
APA StyleMinh, H. V. T., Lavane, K., Ty, T. V., Downes, N. K., Hong, T. T. K., & Kumar, P. (2022). Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water, 14(21), 3499. https://doi.org/10.3390/w14213499