Species Composition and Distribution in the Mangrove Ecosystem in the City of Bengkulu, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analyses
3. Results
3.1. Composition of Vegetation in the Coastal Area of the City of Bengkulu
3.2. Distribution of True Mangrove Species in the City of Bengkulu
3.3. Characteristic Mangrove Species in the City of Bengkulu
3.3.1. Avicennia alba
3.3.2. Avicennia marina
3.3.3. Bruguiera gymnorhiza
3.3.4. Excoecaria agallocha
3.3.5. Rhizophora mucronata
3.3.6. Rhizophora apiculata
3.3.7. Rhizophora stylosa
3.3.8. Sonneratia alba
3.3.9. Sonneratia caseolaris
3.3.10. Acanthus ilicifolius
3.3.11. Nypha fruticans
3.3.12. Casuarina equisetifolia
3.4. Water Quality in Mangrove Ecosystem Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Giri, C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Global Ecol. Biogeogr. 2016, 20, 154–159. [Google Scholar] [CrossRef]
- Widyastuti, A.; Yani, E.; Nasution, E.K.; Rochmatino, R. Diversity of mangrove vegetation and carbon sink estimation of segara anakan mangrove forest, Cilacap, central Java, Indonesia. Biodiversitas 2018, 19, 246–252. [Google Scholar] [CrossRef]
- Nyanga, C. The Role of Mangroves Forests in Decarbonizing the Atmosphere. In Carbon-Based Material for Environmental Protection and Remediation; IntechOpen: London, UK, 2020; pp. 153–163. [Google Scholar] [CrossRef]
- Getzner, M.; Islam, M.S. Ecosystem services of mangrove forests: Results of a meta-analysis of economic values. Int. J. Environ. Res. Public Health 2020, 17, 5830. [Google Scholar] [CrossRef]
- Widagdo, R.F.; Sugiri, A. Study of Control in Overcoming Damage to Mangrove Ecosystems in Pekalongan Regency Coastal Areas (Kajian Pengendalian Dalam Mengatasi Kerusakan Ekosistem Mangrove Di Kawasan Pesisir Kabupaten Pekalongan). Teknik PWK 2014, 3, 285–294. (In Indonesian) [Google Scholar] [CrossRef]
- Umilia, E.; Asbar. Formulation of Mangrove Ecosystem Management Model Based on Eco-minawisata in the Coastal Sinjai, South Sulawesi. Procedia—Soc. Behav. Sci. 2016, 227, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Eddy, S.; Rasyid, R.M.; Iskandar, I.; Mulyana, A. Community-Based Mangrove Forests Conservation for Sustainable Fisheries. J. Silvikultur Trop. 2016, 7, 42–47. [Google Scholar] [CrossRef]
- Alongi, D.M. Impact of global change on nutrient dynamics in Mangrove Forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests. Forests 2022, 13, 149. [Google Scholar] [CrossRef]
- Nur, S.H.; Hilmi, E. The correlation between mangrove ecosystem with shoreline change in Indramayu coast. IOP Conf. Ser. Earth Environ. Sci. 2021, 819, 012015. [Google Scholar] [CrossRef]
- Sarhan, M.; Tawfik, R. The Economic Valuation of Mangrove Forest Ecosystem Services: A Review. Georg. Wright Forum 2018, 35, 341–349. [Google Scholar]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.D.; Friess, D.A.; Day, R.H.; Mackenzie, R.A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2016, 2, e01211. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Rudianto, R.; Bengen, D.G.; Kurniawan, F. Causes and effects of mangrove ecosystem damage on carbon stocks and absorption in East Java, Indonesia. Sustainability 2020, 12, 10319. [Google Scholar] [CrossRef]
- Cahyaningsih, A.P.; Deanova, A.K.; Pristiawati, C.M. Review: Causes and impacts of anthropogenic activities on mangrove deforestation and degradation in Indonesia. Bonorowo Wetl. 2022, 12, 12–22. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Arifanti, V.B.; Sidik, F.; Mulyanto, B.; Susilowati, A.; Wahyuni, T.; Yuniarti, N.; Aminah, A.; Suita, E.; Karlina, E.; Suharti, S.; et al. Challenges and Strategies for Sustainable Mangrove Management in Indonesia: A Review. Forests 2022, 13, 695. [Google Scholar] [CrossRef]
- Presidential Regulation of the Republic of Indonesia No. 1 of 2016, about Peat Restoration Agency. (Peraturan Presiden Republik Indonesia No.1 Tahun 2016, Tentang Badan Restorasi Gambut). (In Indonesian). Available online: https://peraturan.bpk.go.id/Home/Details/38084/perpres-no-1-tahun-2016 (accessed on 7 March 2022).
- Presidential Regulation of the Republic of Indonesia No. 120 of 2020, about Peat and Mangrove Restoration Agency. (Peraturan Presiden Republik Indonesia No. 120 Tahun 2020, Tentang Badan Restorasi Gambut dan Mangrove). (In Indonesian). Available online: https://peraturan.bpk.go.id/Home/Details/161452/perpres-no-120-tahun-2020 (accessed on 7 March 2022).
- Sumartono, E.; Mulyasari, G.; Sukiyono, K. Assessment Model Impact of Climate Change on Potential Production for Food and Energy Needs for the Coastal Areas of Bengkulu, Indonesia. Agro Bali Agric. J. 2021, 4, 159–169. [Google Scholar] [CrossRef]
- Hasanudin, M.; Kusmanto, E. Coastal Abrasion and Sedimentation in the Coastal Area of Bengkulu City (Abrasi dan Sedimentasi Pantai di Kawasan Pesisir Kota Bengkulu). Oseanologi Limnolo. Indones. 2018, 3, 245–252. (In Indonesian) [Google Scholar] [CrossRef]
- Lestari, D.A.; Susiloningtyas, D.; Supriatna, S. Spatial dynamics model of land availability and population growth prediction in Bengkulu City. Indonesia J. Geogr. 2020, 52, 427–436. [Google Scholar] [CrossRef]
- Permana, E.; Kamaludin, K.; Yefriza, Y. Perspective of Integrated Management of Bengkulu Coastal Areas Based on Space, Social and Economic Utilization. In BISIC 2020: Proceedings of the 3rd Beehive International Social Innovation Conference, BISIC 2020, Bengkulu, Indonesia, 3–4 October 2020; European Alliance for Innovation: Gent, Belgium, 2021; pp. 52–65. [Google Scholar]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Senoaji, G.; Hidayat, M.F. The Role of Mangrove Ecosystem in the Coastal City of Bengkulu in Mitigating Global Warming through Carbon sequestration. J. Mns Lingkung 2017, 23, 327. [Google Scholar] [CrossRef] [Green Version]
- BPS-Statistic of Bengkulu Municipality. Bengkulu Municipality in Figures; BPS-Statistic of Bengkulu Municipality: Bengkulu, Indonesia, 2021; 72p. [Google Scholar]
- English, S.; Wilkinson, C.; Baker, V. Survey Manual for Marine Resources, 2nd ed.; Australian Institute of Marine Science: Townsville, QLD, Australia, 1997; 408p. [Google Scholar]
- Backer, C.A.; Bakhuisen van den Brink, R.C. Flora of Java (Spermatophytes Only); Wolters-Noordhoff N.V.: Groningen, The Netherlands, 1968; Volume 3, 761p. [Google Scholar]
- Berg, C.C.; Corner, E.J.H. Flora Malesiana (Moraceae-Ficus); National Herbarium Nederland, Universiteit Leiden: Leiden, The Netherlands, 2005; Volume 17, 702p. [Google Scholar]
- Noor, Y.R.; Khazali, M.; Suryadiputra, I.N.N. Pengenalan Mangrove di Indonesia; Dirjen Perlindungan Hutan dan Konservasi Alam (PHKA)/Wetlands Indonesia- Indonesia Programme (WI-IP): Bogor, Indonesia, 2006; 219p. (In Indonesian) [Google Scholar]
- PictureThis. Available online: https://www.picturethisai.com/ (accessed on 20 June 2022).
- Plant.id. Available online: https://plant.id/ (accessed on 25 June 2022).
- Pl@ntNet. Available online: https://identify.plantnet.org/idtle (accessed on 15 June 2022).
- The Plant List (TPL). Available online: http://www.theplantlist.org/ (accessed on 4 July 2022).
- WFO. Available online: http://www.worldfloraonline.org/ (accessed on 10 July 2022).
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 19th ed.; ASTM Anuual Book of Standards; American Society for Testing & Materials: Philadelphia, PA, USA, 1995. [Google Scholar]
- Government Regulation Number 22 of 2021 about Implementation of Environmental Management Protection. (Peraturan Pemeintah No. 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup). (In Indonesian). Available online: https://peraturan.bpk.go.id/Home/Details/161852/pp-no-22-tahun-2021 (accessed on 4 July 2022).
- Bignoli, J.D. Acanthus ilicifolius. In The IUCN Red List of Threatened Species 2013; e.T168780A6536949; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T. Avicennia alba. In The IUCN Red List of Threatened Species 2010; e.T178830A7620385; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; et al. Avicennia marina. In The IUCN Red List of Threatened Species 2010; e.T178828A7619457; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T. Bruguiera gymnorhiza. In The IUCN Red List of Threatened Species 2010; e.T178803A7610926; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Ellison, J.; Koedam, N.E.; Wang, Y.; Primavera, J.; Jin Eong, O.; Wang-Hong Yong, J.; Ngoc Nam, V. Excoecaria agallocha. In The IUCN Red List of Threatened Species 2010; e.T178842A7623953; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T. Rhizophora mucronata. In The IUCN Red List of Threatened Species 2010; e.T178825A7618520; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Ellison, J.; Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T. Rhizophora stylosa. In The IUCN Red List of Threatened Species 2010; e.T178850A7626520; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T. Rhizophora Apiculata. In The IUCN Red List of Threatened Species 2010; e.T31382A9623321; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; Primavera, J.; et al. Sonneratia alba. In The IUCN Red List of Threatened Species 2010; e.T178804A7611432; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; Primavera, J.; et al. Sonneratia caseolaris. In The IUCN Red List of Threatened Species 2010; e.T178796A7608551; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Ellison, A.; Farnsworth, E.; Moore, G. Conocarpus erectus. In The IUCN Red List of Threatened Species 2010; e.T178806A7612125; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Rivers, M.C.; Mark, J. Hibiscus tilliaceus (Amended Version of 2018 Assessment). In The IUCN Red List of Threatened Species 2019; e.T61786470A143753393; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Rowe, J.; Wood, J.; Scotland, R.; Muñoz-Rodríguez, P. Ipomoea cordatotriloba. In The IUCN Red List of Threatened Species 2019; e.T20681691A20694946; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Bárrios, S.; Copeland, A. Ipomoea pes-caprae. In The IUCN Red List of Threatened Species 2021; e.T68149961A192132442; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- IUCN SSC Global Tree Specialist Group; Botanic Gardens Conservation International (BGCI). Pandanus helicopus. In The IUCN Red List of Threatened Species 2020; e.T180379456A180379458; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Bárrios, S.; Copeland, A. Sesuvium portulacastrum. In The IUCN Red List of Threatened Species 2021; e.T124232167A192137469; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Thomson, L.; Evans, B. Terminalia catappa. In The IUCN Red List of Threatened Species 2019; e.T61989853A61989855; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Contu, S. Bauhinia purpurea. In The IUCN Red List of Threatened Species 2012; e.T19891953A20027617; IUCN: Gland, Switzerland, 2012. [Google Scholar]
- Barstow, M. Casuarina equisetifolia. In The IUCN Red List of Threatened Species 2019; e.T16728404A16728408; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Lansdown, R.V. Cyperus fuscus. In The IUCN Red List of Threatened Species 2013; e.T164079A13545918; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Botanic Gardens Conservation International (BGCI); IUCN SSC Global Tree Specialist Group. Enterolobium cyclocarpum. In The IUCN Red List of Threatened Species 2019; e.T62025161A149017370; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Martínez Salas, E.; Samain, M.; Oldfield, S. Manilkara zapota. In The IUCN Red List of Threatened Species 2021; e.T61964429A61964470; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Bárrios, S.; Copeland, A. Stachytarpheta jamaicensis. In The IUCN Red List of Threatened Species 2021; e.T96816126A192132046; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Lakhey, P.; Pathak, J. Tabernaemontana divaricata. In The IUCN Red List of Threatened Species 2020; e.T149853146A149853842; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2020-1. 2020. Available online: https://www.iucnredlist.org (accessed on 4 July 2022).
- Pang, D.; Wang, G.; Liu, Y.; Cao, J.; Wan, L.; Wu, X.; Zhou, J. The impacts of vegetation types and soil properties on soil microbial activity and metabolic diversity in subtropical forests. Forests 2019, 10, 497. [Google Scholar] [CrossRef] [Green Version]
- Pillai, N.G.; Harial, C.C. Evaluation of the growth sustaining attributes of Sonneratia alba Sm. for strategic afforestation protocols. Int. J. Basic Appl. Res. 2018, 8, 626–634. [Google Scholar]
- Amaliyah, S.; Hariyanto, S.; Purnobasuki, H. Roots morphology of Rhizophora apiculata blume as an adaptation strategy of waterlogging and sediment. J. Biol. Sci. 2017, 17, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Thampanya, U.; Vermaat, J.E.; Terrados, J. The effect of increasing sediment accretion on the seedlings of three common Thai mangrove species. Aquat. Bot. 2002, 74, 315–325. [Google Scholar] [CrossRef]
- Widodo, P.; Sukarsa; Herawati, W.; Hidayah, H.A.; Chasanah, T.; Proklamasiningsih, E. Distribution and Characteristics of Nypa Palm (Nypa fruticans Wurmb.) in Southern Part of Cilacap Regency. IOP Conf. Ser. Earth Environ. Sci. 2020, 550, 012010. [Google Scholar] [CrossRef]
- Frederika, Y.C.; Ihsan, Y.N.; Riyantini, I. Nutrient Profile and Mangrove Vegetation Composition in the Coastal Waters of Indramayu. J. Ilmu Kelaut. SPERMONDE 2021, 7, 42–51. [Google Scholar] [CrossRef]
- Renta, P.P.; Saputra, Y.H.; Purnama, D.; Zamdial. Mangrove Rehabilitation in Bengkulu City. In Proceedings of the International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020), Bengkulu, Indonesia, 8 October 2020; Atlantis Press: Amsterdam, The Netherlands, 2021; pp. 447–456. [Google Scholar] [CrossRef]
- Sari, K.; Soeprobowati, T.R. Impact of Water Quality Detorioration in Mangrove Forest in Semarang Coastal Area. Indones. J. Limnol. 2021, 2, 37–48. [Google Scholar] [CrossRef]
- Guntur, G.; Sambah, A.B.; Arisandi, D.M.; Jauhari, A.; Jaziri, A.A. Study on water quality around mangrove ecosystem for coastal rehabilitation. IOP Conf. Ser. Earth Environ. Sci. 2018, 106, 012041. [Google Scholar] [CrossRef]
- Putri, Y.D.; Yuliza, E.; Lizalidiawati. Study of Water Quality and Pollution Index in the Waters of Kampung Sejahtera Baai Island Bengkulu City. Newton-Maxwell J. Phys. 2021, 2, 46–53. (In Indonesian) [Google Scholar]
- Mohammadpour, A.; Gharehchahi, E.; Badeenezhad, A.; Parseh, I.; Khaksefidi, R.; Golaki, M.; Dehbandi, R.; Azhdarpoor, A.; Derakhsgan, Z.; Chueca, J.G.; et al. Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water 2022, 14, 564. [Google Scholar] [CrossRef]
- Wong, W.Y.; Al-Ani, A.K.I.; Hasikin, K.; Khairuddin, A.S.M.; Razak, S.A.; Hizaddin, H.F.; Mokhtar, M.I.; Azizan, M.M. Water, Soil and Air Pollutants’ Interaction on Mangrove Ecosystem and Corresponding Artificial Intelligence Techniques Used in Decision Support Systems—A Review. IEEE Access 2021, 9, 105532–105563. [Google Scholar] [CrossRef]
- Nisha, K.; Ramdzan, M.; Moss, P.T.; Heijnis, H.; Harrison, M.E.; Yulianti, N. Application of Palaeoecological and Geochemical Proxies in the Context of Tropical Peatland Degradation and Restoration: A Review for Southeast Asia. Wetlands 2022, 42, 95. [Google Scholar]
- Arifanti, V.B.; Novita, N.; Subarno, A.T. Mangrove deforestation and CO2 emissions in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 874, 012006. [Google Scholar] [CrossRef]
- Eddy, S.; Milantara, N.; Sasmito, S.D.; Kajita, T.; Bayuni, M. Anthropogenic Drivers of Mangrove Loss and Associated Carbon Emissions in Anthropogenic Drivers of Mangrove Loss and Associated Carbon Emissions in South Sumatra, Indonesia. Forests 2021, 12, 187. [Google Scholar] [CrossRef]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef]
- Machava-António, V.; Fernando, A.; Cravo, M.; Massingue, M.; Lima, H.; Macamo, C.; Paula, J. A Comparison of Mangrove Forest Structure and Ecosystem Services in Maputo Bay and Príncipe Island (Western Africa). Forests 2022, 13, 1466. [Google Scholar] [CrossRef]
- Godoy, M.D.P.; De Lacerda, L.D. Mangroves response to climate change: A review of recent findings on mangrove extension and distribution. An. Acad. Bras. Cienc. 2015, 87, 651–667. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Sippo, J.Z.; Lovelock, C.E.; Santos, I.R.; Sanders, C.J.; Maher, D.T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 2018, 215, 241–249. [Google Scholar] [CrossRef]
- Zamdial, A.A.; Hartono, D.; Bakhtiar, D.; Nofridiansyah, E.; Renta, P.P.; Muqsit, A. Study on Identification of Damage to Coastal Areas in North Bengkulu Regency, Bengkulu Province. J. Enggano 2020, 5, 510–528. (In Indonesian) [Google Scholar] [CrossRef]
- Susiloningtyas, D.; Lesy, S.A.A. Dynamic System Model of Land Use Affected by Sea Level Rise in the Coastal Area of Bengkulu City, Indonesia. J. Hunan Univ. Nat. Sci. 2021, 48, 119–126. [Google Scholar]
- Ilman, M.; Dargusch, P.; Dart, P.; Onrizal. A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 2016, 54, 448–459. [Google Scholar] [CrossRef]
- Ramadhan, A. Menanam Mangrove untuk Ekonomi dan Ekologi. Available online: https://sains.kompas.com/read/2013/11/01/2122062/Menanam.Mangrove.untuk.Ekonomi.dan.Ekologi?page=all (accessed on 4 October 2022).
- Marini, H. Lanal Bengkulu tanam 4.500 Mangrove. Available online: https://bengkulu.antaranews.com/berita/81218/lanal-bengkulu-tanam-4500-mangrove (accessed on 4 October 2022).
- Handayani, S.; Adrianto, L.; Nurjaya, I.W.; Bengen, D.G.; Wardiatno, Y. Strategies for optimizing mangrove ecosystem management in the rehabilitation area of Sayung coastal zone, Demak Regency, Central Java. J. Nat. Resour. Environ. Manag. 2021, 11, 387–396. [Google Scholar] [CrossRef]
Number | Species | Family | Local Name | IUCN Red List |
---|---|---|---|---|
1 | Acanthus ilicifolius | Acanthaceae | jeruju | LC [40] |
2 | Avicennia alba | Avicenniaceae | api api hitam | LC [41] |
3 | Avicennia marina | Avicenniaceae | apiapi putih | LC [42] |
4 | Bruguiera gymnorhiza | Rhizophoraceae | putut | LC [43] |
5 | Excoecaria agallocha | Euphorbiaceae | kayu buto | LC [44] |
6 | Nypha fruticans | Arecaceae | nipah | - |
7 | Rhizophora mucronata | Rhizophoraceae | bakau biru | LC [45] |
8 | Rhizophora stylosa | Rhizophoraceae | bakau putih | LC [46] |
9 | Rhizophora apiculata | Rhizophoraceae | bakau merah | LC [47] |
10 | Sonneratia alba | Sonneratiaceae | pedada | LC [48] |
11 | Sonneratia caseolaris | Sonneratiaceae | apel mangrove | LC [49] |
Number | Species | Family | Local Name | IUCN Red List |
---|---|---|---|---|
1 | Acrostichum aureum | Pteridaceae | paku kulit | - |
2 | Conocarpus erectus | Combretaceae | buton mangrove | LC [50] |
3 | Hibiscus tiliaceus | Malvaceae | waru laut | LC [51] |
4 | Ipomoea cordatotriloba | Convolvulaceae | tievine | LC [52] |
5 | Ipomoea pes caprae | Convolvulaceae | batata pantai | LC [53] |
6 | Pandanus helicopus | Pandanaceae | pandan | DD [54] |
7 | Sesuvium portulacastrum | Aizoaceae | krokot laut | LC [55] |
8 | Terminalia catappa | Combretaceae | ketapang | LC [56] |
9 | Wedelia biflora | Asteraceae | sernai | - |
Number | Species | Family | Local Name | IUCN Red List |
---|---|---|---|---|
1 | Acacia sp. | Fabaceae | Akasia | - |
2 | Artocarpus altilis | Moraceae | sukun | - |
3 | Artocarpus heterophyllum | Moraceae | nangka | - |
4 | Bauhinia purpurea | Fabaceae | tayuman | LC [57] |
5 | Casuarina equisetifolia | Casuarinaceae | cemara udang | LC [58] |
6 | Cervera manghas | Apocynaceae | bintaro | - |
7 | Chloris barbata | Poaceae | giant finger | - |
8 | Crepis foetida | Asteraceae | foetida | - |
9 | Cyperus fuscus | Cyperaceae | rumput teki | LC [59] |
10 | Cyperus iria | Cyperaceae | rumput jekeng | - |
11 | Dactyloctenium aegyptium | Poaceae | rumput katelan | - |
12 | Desmodium tortuosum | Fabaceae | jukut jarem | - |
13 | Elaeis sp. | Arecaceae | sawit | - |
14 | Enterolobium cyclocarpum | Fabaceae | sengon buto | LC [60] |
15 | Ficus benghalensis | Moraceae | beringin | - |
16 | Heliconia psittacorum | Heliconiaceae | pisang hias | - |
17 | Leucaena leucocephala | Fabaceae | lamtoro | - |
18 | Lonicera fragrantissima | Caprifoliaceae | january jasmine | - |
19 | Macaranga trichocarpa | Euphorbiaceae | sapat | - |
20 | Manilkara zapota | Sapotaceae | sawo kecik | LC [61] |
21 | Phylanthus | Phyllanthaceae | meniran | - |
22 | Pinus pinea | Pinaceae | tusam | - |
23 | Populus sp. | Salicaceae | - | LC * |
24 | Schefflera arboricola | Araliaceae | pohon gurita | - |
25 | Silene antirrhina | Caryophyllaceae | sleepy catchfly | - |
26 | Spigelia anthelmia | Loganiaceae | kemangi cina | - |
27 | Stachytarpheta jamaicensis | Verbenaceae | pecut kuda | LC [62] |
28 | Tabernaemontana divaricata | Apocynaceae | mondokaki | LC [63] |
29 | Typha angustifolia | Typhaceae | lembang | - |
30 | Tridax procumbens | Asteraceae | songgo langit | - |
31 | Vitis sp. | Vitaceae | anggur-angguran | - |
Number | Species | Study Sites | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||
1 | A. alba | + | + | |||||||||||
2 | A. marina | ++ | ++ | |||||||||||
3 | B. gymnorhiza | + | + | |||||||||||
4 | R. mucronata | + | + | + | ||||||||||
5 | R. stylosa | + | ||||||||||||
6 | R. apiculata | + | ++ | + | +++ | + | ||||||||
7 | S. alba | + | + | +++ | +++ | +++ | ++ | +++ | ||||||
8 | S. caseolaris | + | ++ | |||||||||||
9 | E. agallocha | + | ||||||||||||
10 | A. ilicifolius | + | + | |||||||||||
11 | N. fruticans | + | + | ++ | ++ | + | ||||||||
Total | 2 | 2 | 1 | 6 | 5 | 6 | - | 2 | 6 | 2 | - | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soeprobowati, T.R.; Anggoro, S.; Puryono, S.; Purnaweni, H.; Sularto, R.B.; Mersyah, R. Species Composition and Distribution in the Mangrove Ecosystem in the City of Bengkulu, Indonesia. Water 2022, 14, 3516. https://doi.org/10.3390/w14213516
Soeprobowati TR, Anggoro S, Puryono S, Purnaweni H, Sularto RB, Mersyah R. Species Composition and Distribution in the Mangrove Ecosystem in the City of Bengkulu, Indonesia. Water. 2022; 14(21):3516. https://doi.org/10.3390/w14213516
Chicago/Turabian StyleSoeprobowati, Tri Retnaningsih, Sutrisno Anggoro, Sri Puryono, Hartuti Purnaweni, Raden Bambang Sularto, and Rohidin Mersyah. 2022. "Species Composition and Distribution in the Mangrove Ecosystem in the City of Bengkulu, Indonesia" Water 14, no. 21: 3516. https://doi.org/10.3390/w14213516
APA StyleSoeprobowati, T. R., Anggoro, S., Puryono, S., Purnaweni, H., Sularto, R. B., & Mersyah, R. (2022). Species Composition and Distribution in the Mangrove Ecosystem in the City of Bengkulu, Indonesia. Water, 14(21), 3516. https://doi.org/10.3390/w14213516