Bacterial Community Dynamics along a River-Wetland-Lake System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Methods and Measurement of Field Parameters
2.2. Investigation of Algal Community Composition
2.3. DNA Isolation, Illumina 16S rDNA Amplicon Sequencing and Bioinformatics Analysis
3. Results
3.1. Physical and Chemical Parameters of the Water Reservoir
3.2. Algal Community Composition of the Water Reservoir
3.3. Bacterial Community Composition of the Water Reservior
3.4. Bacterial Community Dynamics along the River–Wetland–Lake System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- G.–Tóth, L.; Parpala, L.; Balogh, C.; Tàtrai, I.; Baranyai, E. Zooplankton community response to enhanced turbulence generated by water–level decrease in Lake Balaton, the largest shallow lake in Central. Limnol. J. Oceanogr. 2011, 56, 2211–2222. [Google Scholar] [CrossRef]
- Pomogyi, P. Nutrient retention by the Kis–Balaton Water Protection System. Hydrobiologia 1993, 251, 309–320. [Google Scholar] [CrossRef]
- Tátrai, I.; Kálmán, M.; Korponai, J.; Paulovits, G.; Pomogyi, P. The role of the KisBalaton Water Protection System in the control of water quality of Lake Balaton. Ecol. Eng. 2000, 16, 73–78. [Google Scholar] [CrossRef]
- Hatvani, I.G. Application of State-of-the-Art Geomathematical Methods in Water Protection—On the Example of the Data Series of the Kis–Balaton Water Protection System. Ph.D. Dissertation, Eötvös Loránd University, Budapest, Hungary, 2014. [Google Scholar]
- Honti, M.; Gao, C.; Istvánovics, V.; Clement, A. Lessons Learnt from the Long–Term Management of a Large (Re)constructed Wetland, the Kis–Balaton Protection System (Hungary). Water 2020, 12, 659. [Google Scholar] [CrossRef] [Green Version]
- Istvánovics, V.; Honti, M.; Torma, P.; Kousal, J. Record—Setting algal bloom in polymictic Lake Balaton (Hungary): A synergistic impact of climate change and (mis)management. Freshw. Biol. 2022, 67, 1091–1106. [Google Scholar] [CrossRef]
- Farkas, M.; Kaszab, E.; Radó, J.; Háhn, J.; Tóth, G.; Harkai, P.; Ferincz, Á.; Lovász, Z.; Táncsics, A.; Vörös, L.; et al. Planktonic and Benthic Bacterial Communities of the Largest Central European Shallow Lake, Lake Balaton and Its Main Inflow Zala River. Curr. Microbiol. 2020, 77, 4016–4028. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Likens, G. Limnological Analyses; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; p. 429. [Google Scholar]
- Hillebrand, H.; Dürselen, C.D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Clement, A.; Kovács, J.; Kovács, I.S.; Korponai, J. Assessing water–quality data: The relationship between the water quality amelioration of Lake Balaton and the construction of its mitigation wetland. J. Great Lakes Res. 2014, 40, 115–125. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next–generation sequencingbased diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual–index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web–based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunin, V.; Engelbrektson, A.; Ochman, H.; Hugenholtz, P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 2010, 12, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tindall, B.J.; Rosselló–Móra, R.; Busse, H.J.; Ludwig, W.; Kämpfer, P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Hammer, Ř.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Kasalický, V.; Jezbera, J.; Šimek, K.; Hahn, M.W. Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int. J. Syst. Evol. Microbiol. 2010, 60, 2710–2714. [Google Scholar] [CrossRef] [Green Version]
- Kasalický, V.; Zeng, Y.; Piwosz, K.; Šimek, K.; Kratochvilová, H.; Koblížek, M. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans. Appl. Environ. Microbiol. 2017, 84, e02116-17. [Google Scholar] [CrossRef] [Green Version]
- Jezberová, J.; Jezbera, J.; Znachor, P.; Nedoma, J.; Kasalický, V.; Šimek, K. The Limnohabitans genus harbors generalistic and opportunistic subtypes: Evidence from spatiotemporal succession in a canyon–shaped reservoir. Appl. Environ. Microbiol. 2017, 83, e01530-17. [Google Scholar] [CrossRef] [Green Version]
- Šimek, K.; Kasalický, V.; Zapomělová, E.; Horňák, K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl. Environ. Microbiol. 2011, 77, 7307–7315. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.W. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl. Environ. Microbiol. 2003, 69, 5248–5254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.L.; Hahn, M.W. Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake revealed at three phylogenetic levels. FEMS Microb. Ecol. 2006, 57, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, U.; Grossart, H.P.; Amann, R.; Pernthaler, J. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ. Microbiol. 2009, 11, 1854–1865. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Komatsu, N.; Ishii, Y.; Negishi, M. Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol. Ecol. 2009, 67, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Jezberová, J.; Jezbera, J.; Brandt, U.; Lindström, E.S.; Langenheder, S.; Hahn, M.W. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogeneous 2000 km area. Environ. Microbiol. 2010, 12, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Jezbera, J.; Jezberova, J.; Koll, U.; Hornak, K.; Šimek, K.; Hahn, M.W. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microb. Ecol. 2012, 81, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Pitt, A.; Schmidt, J.; Koll, U.; Hahn, M.W. Aquirufa antheringensis gen. nov., sp. nov. and Aquirufa nivalisilvae sp. nov., representing a new genus of widespread freshwater bacteria. Int. J. Syst. Evol. Microbiol. 2019, 69, 2739–2749. [Google Scholar] [CrossRef]
- Marinović, Z.; Tokodi, N.; Backović, D.D.; Šćekić, I.; Kitanović, N.; Simić, S.B.; Đorđević, N.B.; Ferincz, Á.; Staszny, Á.; Dulić, T.; et al. Does the Kis–Balaton Water Protection System (KBWPS) Effectively Safeguard Lake Balaton from Toxic Cyanobacterial Blooms? Microorganisms 2021, 9, 960. [Google Scholar] [CrossRef]
- Chiang, E.; Schmidt, M.L.; Berry, M.A.; Biddanda, B.A.; Burtner, A.; Johengen, T.H.; Palladino, D.; Denef, V.J. Verrucomicrobia are prevalent in north–temperate freshwater lakes and display class–level preferences between lake habitats. PLoS ONE 2018, 13, e0195112. [Google Scholar]
- He, S.; Stevens, S.L.; Chan, L.K.; Bertilsson, S.; del Rio, T.G.; Tringe, S.G.; Malmstrom, R.R.; McMahon, K.D. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome–assembled genomes. Msphere 2017, 2, e00277-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohshiro, T.; Harada, N.; Kobayashi, Y.; Miki, Y.; Kawamoto, H. Microbial fucoidan degradation by Luteolibacter algae H18 with deacetylation. Biosci. Biotechnol. Biochem. 2012, 76, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Sichert, A.; Corzett, C.H.; Schechter, M.S.; Unfried, F.; Markert, S.; Becher, D.; Fernandez–Guerra, A.; Liebeke, M.; Schweder, T.; Polz, M.F.; et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 2020, 5, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Lindh, M.V.; Sjöstedt, J.; Andersson, A.F.; Baltar, F.; Hugerth, L.W.; Lundin, D.; Muthusamy, S.; Legrand, C.; Pinhassi, J. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ. Microbiol. 2015, 17, 2459–2476. [Google Scholar] [CrossRef]
- Ghylin, T.W.; Garcia, S.L.; Moya, F.; Oyserman, B.O.; Schwientek, P.; Forest, K.T.; Mutschler, J.; Dwulit–Smith, J.; Chan, L.K.; Martinez–Garcia, M.; et al. Comparative single–cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 2014, 8, 2503. [Google Scholar] [CrossRef] [Green Version]
- Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T. Covariance of bacterioplankton compositionand environmental variables in a temperate delta system. Aquat. Microb. Ecol. 2003, 31, 85–98. [Google Scholar] [CrossRef]
- Hugoni, M.; Vellet, A.; Debroas, D. Unique and highly variable bacterial communities inhabiting the surface microlayer of an oligotrophic lake. Aquat. Microb. Ecol. 2017, 79, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Papale, M.; Rappazzo, A.C.; Mikkonen, A.; Rizzo, C.; Moscheo, F.; Conte, A.; Michaud, L.; Lo Giudice, A. Bacterial Diversity in a Dynamic and Extreme Sub–Arctic Watercourse (Pasvik River, Norwegian Arctic). Water 2020, 12, 3098. [Google Scholar] [CrossRef]
- Samad, M.S.; Lee, H.J.; Cerbin, S.; Meima–Franke, M.; Bodelier, P. Niche Differentiation of Host–Associated Pelagic Microbes and Their Potential Contribution to Biogeochemical Cycling in Artificially Warmed Lakes. Front. Microbiol. 2020, 11, 582. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Zhu, G.; Zhao, L.; Yao, X.; Zhang, Y.; Gao, G.; Qin, B. Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environ. Sci. Pollut. Res. 2013, 20, 1803–1811. [Google Scholar] [CrossRef]
- Watanabe, K.; Morohoshi, S.; Kunihiro, T.; Ishii, Y.; Takayasu, L.; Ogata, Y.; Shindo, C.; Suda, W. Fluviibacter phosphoraccumulans gen. nov., sp. nov., a polyphosphate–accumulating bacterium of Fluviibacteraceae fam. nov., isolated from surface river water. Int. J. Syst. Evol. Microbiol. 2020, 70, 5551–5560. [Google Scholar] [CrossRef] [PubMed]
- Satoh, H.; Mino, T.; Matsuo, T. Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge. Water Sci. Technol. 1998, 37, 579–582. [Google Scholar] [CrossRef]
- Seviour, R.J.; Mino, T.; Onuki, M. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 2003, 27, 99–127. [Google Scholar] [CrossRef] [Green Version]
- Somogyi, B.; Felföldi, T.; Tóth, L.G.; Bernát, G.; Vörös, L. Photoautotrophic picoplankton–A review on their occurrence, role and diversity in Lake Balaton. Biol. Futur. 2020, 71, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Felföldi, T.; Duleba, M.; Somogyi, B.; Vajna, B.; Nikolausz, M.; Présing, M.; Márialigeti, K.; Vörös, L. Diversity and seasonal dynamics of the photoautotrophic picoplankton in Lake Balaton (Hungary). Aquat. Microb. Ecol. 2011, 63, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.; Richl, P.; Ernst, A. Seasonal and habitat—Related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol. Ecol. 2007, 62, 64–77. [Google Scholar] [CrossRef]
- Grigorszky, I.; Borics., G.; Nagy, S.; Vasas, G.; Padisák, J.; Varga, S.; M-Hamvas, M.; Molnár, E.; Dévai, G.; Borbély, G. Adatok Magyarország Dinophyta Fajainak Ismeretéhez I. Hidr. Közl. 1999, 78, 348–350. [Google Scholar]
- Somogyi, B.; Tugyi, N.; Vörös, L. A fitoplankton szezonális dinamikája a Balatonban 2016–ban. Ecol. Lake Bal. 2016, 3, 16–26. [Google Scholar]
- Lindström, K. Ceratium in Lake Erken: Vertical distribution, migration and form variation. Nord. J. Bot. 1992, 12, 541–556. [Google Scholar] [CrossRef]
- Pérez–Martínez, C.; Sánchez–Castillo, P. Winter dominance of Ceratium hirundinella in a southern north–temperate reservoir. J. Plankton Res. 2002, 24, 89–96. [Google Scholar] [CrossRef]
- Macêdo, R.L.; Russo, P.; Corrêa, R.F.; Rocha, O.; dos Santos, L.N.; Branco, C.W.C. The drifting dinoflagellate Ceratium furcoides (Levander) Langhans 1925: Fundamental niche shift during global invasion. Hydrobiologia 2021, 848, 2105–2117. [Google Scholar] [CrossRef]
- Reynolds, C.S. Vegetative Processes in the Pelagic: A Model for Ecosystem Theory; Ecology Institute: Oldendorf/Luhe, Germany, 1997; 371p. [Google Scholar]
- Salcher, M.M.; Pernthaler, J.; Posch, T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J. 2011, 5, 1242–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeder, M.; Peter, S.; Shabarova, T.; Pernthaler, J. A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ. Microbiol. 2009, 11, 2676–2686. [Google Scholar] [CrossRef]
- Parulekar, N.N.; Kolekar, P.; Jenkins, A.; Kleiven, S.; Utkilen, H.; Johansen, A.; Sawant, S.; Kulkarni–Kale, U.; Kale, M.; Sæbø, M. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS ONE 2017, 12, e0173408. [Google Scholar] [CrossRef]
- Seymour, J.R.; Amin, S.A.; Raina, J.B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef]
- Sethuraman, A.; Stancheva, R.; Sanders, C.; Caceres, L.; Castro, D.; Hausknecht–Buss, H.; Henry, S.; Johansen, H.; Kasler, A.; Lastor, S.; et al. Genome of a novel Sediminibacterium discovered in association with two species of freshwater cyanobacteria from streams in Southern California. G3 Genes Genomes Genet. 2022, 12, jkac123. [Google Scholar] [CrossRef]
April/May | June | July | Early August | Late August | September | October | |
---|---|---|---|---|---|---|---|
Zala River | 4.64 | 5.75 | 4.42 | 4.56 | 4.47 | 5.08 | 4.13 |
Wetland Phase I | 4.68 | 4.70 | 4.74 | 4.05 | 4.63 | 4.52 | 4.58 |
Wetland Phase II | 4.81 | 3.96 | 4.68 | 4.59 | 4.48 | 5.11 | 4.54 |
Lake Balaton | 3.94 | 3.43 | 4.05 | 4.09 | 3.06 | 4.35 | 4.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkas, M.; Szoboszlay, S.; Vörös, L.; Lovász, Z.; Méhes, N.; Mátyás, K.; Sebők, R.; Kaszab, E.; Háhn, J.; Tóth, G.; et al. Bacterial Community Dynamics along a River-Wetland-Lake System. Water 2022, 14, 3519. https://doi.org/10.3390/w14213519
Farkas M, Szoboszlay S, Vörös L, Lovász Z, Méhes N, Mátyás K, Sebők R, Kaszab E, Háhn J, Tóth G, et al. Bacterial Community Dynamics along a River-Wetland-Lake System. Water. 2022; 14(21):3519. https://doi.org/10.3390/w14213519
Chicago/Turabian StyleFarkas, Milán, Sándor Szoboszlay, Lajos Vörös, Zsófia Lovász, Nikoletta Méhes, Kálmán Mátyás, Rózsa Sebők, Edit Kaszab, Judit Háhn, Gergő Tóth, and et al. 2022. "Bacterial Community Dynamics along a River-Wetland-Lake System" Water 14, no. 21: 3519. https://doi.org/10.3390/w14213519
APA StyleFarkas, M., Szoboszlay, S., Vörös, L., Lovász, Z., Méhes, N., Mátyás, K., Sebők, R., Kaszab, E., Háhn, J., Tóth, G., Harkai, P., Ferincz, Á., Táncsics, A., & Kriszt, B. (2022). Bacterial Community Dynamics along a River-Wetland-Lake System. Water, 14(21), 3519. https://doi.org/10.3390/w14213519