Water Infrastructure Performance in Sub-Saharan Africa: An Investigation of the Drivers and Impact on Economic Growth
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data
Calculating Water Infrastructure Index
3.2. Econometric Analysis of Socioeconomic Drivers of Water Infrastructure Performance
3.3. Impact of Water Infrastructure Investment on Economic Growth
4. Results and Discussion
4.1. Key Determinants of Water Infrastructure Performance in SSA
4.2. Impact of the Determinants of Water Infrastructure Performance across Countries’ Economic Structure in SSA
4.3. Impact of Water Infrastructure on Economic Development
5. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogou, F.K.; Ojeh, V.N.; Naabil, E.; Mbah, C.I. Hydro-climatic and Water Availability Changes and its Relationship with NDVI in Northern Sub-Saharan Africa. Earth Syst. Environ. 2022, 6, 681–696. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. J. Hydrol. 2021, 601, 126658. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M.; Bateni, S.M.; Gholami Sefidkouhi, M.A.; Raeini-Sarjaz, M.; Singh, V.P. Complexity of Forces Driving Trend of Reference Evapotranspiration and Signals of Climate Change. Atmosphere 2020, 11, 1081. [Google Scholar] [CrossRef]
- Tuyishimire, A.; Liu, Y.; Yin, J.; Kou, L.; Lin, S.; Lin, J.; Kubwimana, J.J.; Moharrami, K.; Simbi, C.H. Drivers of the increasing water footprint in Africa: The food consumption perspective. Sci. Total Environ. 2022, 809, 152196. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Bardales, J.D.; Antiporta, J.; Pérez, K.; Acosta, L.; Mao, F.; Zulkafli, Z.; Gil-Ríos, J.; Angulo, O.; Grainger, S.; et al. Potential contributions of pre-Inca infiltration infrastructure to Andean water security. Nat. Sustain. 2019, 2, 584–593. [Google Scholar] [CrossRef]
- Tortajada, C. Water infrastructure as an essential element for human development. Int. J. Water Resour. Dev. 2014, 30, 8–19. [Google Scholar] [CrossRef]
- Grey, D.; Sadoff, C.W. Sink or swim? Water security for growth and development. Water Policy 2007, 9, 545–571. [Google Scholar] [CrossRef]
- Dadson, S.; Hall, J.W.; Garrick, D.; Sadoff, C.; Grey, D.; Whittington, D. Water security, risk, and economic growth: Insights from a dynamical systems model. Water Resour. Res. 2017, 53, 6425–6438. [Google Scholar] [CrossRef] [Green Version]
- Adelekan, I.O.; Simpson, N.P.; Totin, E.; Trisos, C.H. Climate Change 2022-Impacts, Adaptation and Vulnerability: Regional Factsheet Africa; IPCC Sixth Assessment Report (AR6): Geneva, Switzerland, 2022; Available online: https://policycommons.net/artifacts/2264240/ipcc_ar6_wgii_factsheet_africa/3023294/ (accessed on 28 August 2022).
- World Health Organization. Global Progress Report on Water, Sanitation and Hygiene in Health Care Facilities: Fundamentals First; 9240017542; UNICEF: New York, NY, USA, 2020.
- Affoh, R.; Zheng, H.; Dangui, K.; Dissani, B.M. The Impact of Climate Variability and Change on Food Security in Sub-Saharan Africa: Perspective from Panel Data Analysis. Sustainability 2022, 14, 759. [Google Scholar] [CrossRef]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Chang. 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Bain, R.; Johnston, R.; Mitis, F.; Chatterley, C.; Slaymaker, T. Establishing sustainable development goal baselines for household drinking water, sanitation and hygiene services. Water 2018, 10, 1711. [Google Scholar] [CrossRef] [Green Version]
- Donkor, S.M. Water in Africa: Management Options to Enhance Survival and Growth; Economic Commission for Africa; United Nations: Addis Abeba, Ethiopia, 2006. [Google Scholar]
- La Banque Africaine, D.D.P.; Bankgroup, A. The Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development; Economic Commission for Africa: Addis Ababa, Ethiopia, 2000; Available online: https://hdl.handle.net/10855/5488 (accessed on 25 August 2022).
- Frone, S.; Frone, D.F. Challenges in Analyzing Correlation between Water Infrastructure and Economic Development. Procedia Econ. Financ. 2014, 10, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Kahsay, T.N.; Kuik, O.; Brouwer, R.; Van Der Zaag, P. The economy-wide impacts of climate change and irrigation development in the Nile Basin: A computable general equilibrium approach. Clim. Chang. Econ. 2017, 8, 1750004. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Liu, S.; Sivakumar, B. The Role of Large Dams in Promoting Economic Development under the Pressure of Population Growth. Sustainability 2019, 11, 2965. [Google Scholar] [CrossRef] [Green Version]
- Jeuland, M. The economics of dams. Oxf. Rev. Econ. Policy 2020, 36, 45–68. [Google Scholar] [CrossRef]
- Schreiner, B.G.; Mungatana, E.D.; Baleta, H. Impacts of drought induced water shortages in South Africa: Economic analysis. In WRC Report No. 2604/1/18; Report Commissioned by the Water Research Commission; Pegasys Institute: Pretoria, South Africa, 2018. [Google Scholar]
- Fuente, D.; Allaire, M.; Jeuland, M.; Whittington, D. Forecasts of mortality and economic losses from poor water and sanitation in sub-Saharan Africa. PLoS ONE 2020, 15, e0227611. [Google Scholar] [CrossRef] [Green Version]
- Sadoff, C. Can Water Undermine Growth? Evidence from Ethiopia; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Janeski, I.; Whitacre, B.C. Long-term economic impacts of USDA water and sewer infrastructure investments in Oklahoma. J. Agric. Appl. Econ. Asssoc. 2014, 46, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Adjei, E.A.; Amoabeng, K.O.; Ayetor, G.K.K.; Obeng, G.Y.; Quansah, D.A.; Adusei, J.S. Assessing the impact of hydro energy project on poverty alleviation: The case of Bui Dam in Ghana. Energy Policy 2022, 170, 113227. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Ying, L.; Chen, X.; Li, M. Correlation analysis of environmental treatment, sewage treatment and water supply efficiency in China. Sci. Total Environ. 2020, 708, 135128. [Google Scholar] [CrossRef]
- Berrittella, M.; Rehdanz, K.; Tol, R.S.J.; Zhang, J. The impact of trade liberalization on water use: A computable general equilibrium analysis. J. Econ. Integr. 2008, 23, 631–655. [Google Scholar] [CrossRef] [Green Version]
- Dang, Q.; Konar, M. Trade openness and domestic water use. Water Resour. Res. 2018, 54, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Okello, C.; Tomasello, B.; Greggio, N.; Wambiji, N.; Antonellini, M. Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya. Water 2015, 7, 1264–1290. [Google Scholar] [CrossRef]
- Buytaert, W.; De Bièvre, B. Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resour. Res. 2012, 48, W08503. [Google Scholar] [CrossRef] [Green Version]
- Hopewell, M.R.; Graham, J.P. Trends in access to water supply and sanitation in 31 major sub-Saharan African cities: An analysis of DHS data from 2000 to 2012. BMC Public Health 2014, 14, 208. [Google Scholar] [CrossRef] [Green Version]
- Josephson, A.L.; Ricker-Gilbert, J.; Florax, R.J.G.M. How does population density influence agricultural intensification and pro ductivity? Evidence from Ethiopia. Food Policy 2014, 48, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Munamati, M.; Nhapi, I.; Misi, S. Exploring the determinants of sanitation success in Sub-Saharan Africa. Water Res. 2016, 103, 435–443. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Adhikari, R.; Dimova, R.; Redicker, S.; Foster, T. Performance of large-scale irrigation projects in sub-Saharan Africa. Nat. Sustain. 2021, 4, 501–508. [Google Scholar] [CrossRef]
- Rudra, N. Openness and the politics of potable water. Comp. Polit. Stud. 2011, 44, 771–803. [Google Scholar] [CrossRef]
- Luh, J.; Bartram, J. Drinking water and sanitation: Progress in 73 countries in relation to socioeconomic indicators. Bull. World Health Organ. 2016, 94, 111. [Google Scholar] [CrossRef]
- Gupta, R.; Yan, K.; Singh, T.; Mo, D. Domestic and International Drivers of the Demand for Water Resources in the Context of Water Scarcity: A Cross-Country Study. J. Risk Financ. Manag. 2020, 13, 255. [Google Scholar] [CrossRef]
- Distefano, T.; Kelly, S. Are we in deep water? Water scarcity and its limits to economic growth. Ecol Econ. 2017, 142, 130–147. [Google Scholar]
- Shunglu, R.; Köpke, S.; Kanoi, L.; Nissanka, T.S.; Withanachchi, C.R.; Gamage, D.U.; Dissanayake, H.R.; Kibaroglu, A.; Ünver, O.; Withanachchi, S.S. Barriers in Participative Water Governance: A Critical Analysis of Community Development Approaches. Water 2022, 14, 762. [Google Scholar] [CrossRef]
- Aiyetan, A.O.; Das, D.K. Evaluation of the Factors and Strategies for Water Infrastructure Project Delivery in South Africa. Infrastructures 2021, 6, 65. [Google Scholar] [CrossRef]
- Etongo, D.; Fagan, G.H.; Kabonesa, C.; Asaba, B.R. Community-Managed Water Supply Systems in Rural Uganda: The Role of Participation and Capacity Development. Water 2018, 10, 1271. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.I. Chapter 1: The Facts of economic growth. In Handbook of Macroeconomics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2A, pp. 3–69. ISSN 1574-0048. [Google Scholar] [CrossRef]
- Tir, N.A.; Momeni, F.; Boboevich, G.T. Exploring the Effects of Water Sector Investment in Economic Development in Iran. Procedia Soc. Behav. Sci. 2014, 131, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Musouwir, T. Water and Economic Development: Correlation between Investment in the Water Sector and Economic Growth in Developing Countries. UNESCO-IHE. 2010. Available online: http://www.rid.go.th/thaicid/_6_activity/YPF-INACID/YPF_01_Tesar_H_M.pdf (accessed on 25 August 2022).
- Byers, L.; Friedrich, J.; Hennig, R.; Kressig, A.; Li, X.; McCormick, C.; Valeri, L.M. A Global Database of Power Plants; World Resources Institute: Washington, DC, USA, 2018; Volume 18, Available online: https://datasets.wri.org/dataset/globalpowerplantdatabase (accessed on 7 June 2022).
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef]
- WHO/UNICEF. Joint Monitoring Programme Database (JMP). 2022. Available online: https://data.unicef.org/dv_index/?q= (accessed on 1 June 2022).
- FAO. Aquastata, Area Equiped for Irrigation. 2022. Available online: https://www.fao.org/aquastat/statistics/query/ (accessed on 1 June 2022).
- World Bank. World Development Indicators. 2022. Available online: https://databank.worldbank.org/source/worldwide-governance-indicators (accessed on 1 June 2022).
- Kaiser, H.F. A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 1961, 14, 1–2. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis. Technometrics 2005, 3, 1580–1584. [Google Scholar] [CrossRef]
- Allison, P.D. Fixed Effect Regression Models; Sage Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287. [Google Scholar] [CrossRef]
- Baltagi, B.H. Heteroskedasticity and Serial Correlation in the Error Component Model. In Econometric Analysis of Panel Data; Book Series; Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–147. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Cazcarro, I.; Duarte, R.; Sánchez-Chóliz, J. Economic growth and the evolution of water consumption in Spain: A structural decomposition analysis. Ecol Econ. 2013, 96, 51–61. [Google Scholar] [CrossRef]
- Li, H.; Cohen, A.; Li, Z.; Zhang, M. The Impacts of Socioeconomic Development on Rural Drinking Water Safety in China: A Provincial-Level Comparative Analysis. Sustainability 2019, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wu, S.; Lei, Y.; Li, S. China’s water footprint by province, and inter-provincial transfer of virtual water. Ecol Indic. 2017, 74, 321–333. [Google Scholar] [CrossRef]
- Zhang, P.; Zou, Z.; Liu, G.; Feng, C.; Liang, S.; Xu, M. Socioeconomic drivers of water use in China during 2002–2017. Resour. Conserv. Recycl. 2020, 154, 104636. [Google Scholar] [CrossRef]
- Maltha, A.; Veldman, R. A market-based approach to scale up sustainable rural water supply: Experiences from Tanzania. In Proceedings of the 39th WEDC International Conference, Kumasi, Ghana, 11–15 July 2016. [Google Scholar]
- Oluwasanya, G.; Smith, J.; Carter, R. Self supply systems: Urban dug wells in Abeokuta, Nigeria. Water Supply 2011, 11, 172–178. [Google Scholar] [CrossRef]
- Foster, T.; Priadi, C.; Kotra, K.K.; Odagiri, M.; Rand, E.C.; Willetts, J. Self-supplied drinking water in low- and middle-income countries in the Asia-Pacific. NPJ Clean Water 2021, 4, 37. [Google Scholar] [CrossRef]
- Doeffinger, T.; Hall, J.W. Water stress and productivity: An empirical analysis of trends and drivers. Water Resour. Res. 2020, 56, e2019WR025925. [Google Scholar] [CrossRef]
- Meeks, R. Water Works: The Economic Impact of Water Infrastructure. J. Hum. Resour. 2017, 52, 1119–1153. [Google Scholar] [CrossRef]
- Maji, I.K. Does clean energy contribute to economic growth? Evidence from Nigeria. Energy Rep. 2015, 1, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Burney, J.A.; Naylor, R.L.; Postel, S.L. The case for distributed irrigation as a development priority in sub-Saharan Africa. Proc. Natl. Acad. Sci. 2013, 110, 12513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asongu, S.A.; Odhiambo, N.M. Insurance Policy Thresholds for Economic Growth in Africa. Eur. J. Dev. Res. 2020, 32, 672–689. [Google Scholar] [CrossRef]
- Asongu, S.A.; Odhiambo, N.M. Foreign direct investment, information technology and economic growth dynamics in Sub-Saharan Africa. Telecommun. Policy 2020, 44, 101838. [Google Scholar] [CrossRef]
- Kargbo, A.A.; Ding, Y.; Kargbo, M. Financial development, human capital and economic growth: New evidence from Sierra Leone. J. Financ. Bank Manag. 2016, 4, 49–67. [Google Scholar] [CrossRef]
- Akinola, G.W.; Bokana, K.G. Human capital, higher education enrolment and economic growth in the SSA countries (panel model approach). J. Econ. Behav. Stud. 2017, 9, 215–226. [Google Scholar] [CrossRef]
- Sorlini, S.; Collivignarelli, M.C.; Miino, M.C. Technologies for the control of emerging contaminants in drinking water treatment plants. Environ. Eng. Manag. J. 2019, 18, 2203–2213. Available online: http://www.eemj.icpm.tuiasi.ro/pdfs/vol18/no10/11_85_Sorlini_19.pdf (accessed on 28 August 2022).
- Sorlini, S.; Collivignarelli, C.; Miino, M.C.; Caccamo, F.M.; Collivignarelli, M.C. Kinetics of microcystin-LR removal in a real lake water by UV/H2O2 treatment and analysis of specific energy consumption. Toxin 2020, 12, 810. [Google Scholar] [CrossRef]
- Narzetti, D.A.; Marques, R.C. Policies and incentives for developing universal access to water and sanitation for vulnerable families. Water Policy 2022, 24, 485–499. [Google Scholar] [CrossRef]
Definition | Source | |
---|---|---|
Data for calculation | ||
Access to clean water | Number of the population with access to improved drinking source | [47] |
Access to sanitation | Number of the population with access to improved sanitation facilities | |
Irrigated land | The total area of land equipped and provided with water exclusively for agricultural purposes. | [48] |
Hydropower plants | The total capacity of hydropower plant installed | [45] |
Other variables | ||
Logarithm of regulatory quality index (L.RQ) | Rates the ability of the governments in each country to formulate and implement sound policies and regulations to promote private sector development (logarithmic value) | |
Logarithm of population density (L.PD) | Measure the total number of people per square kilometer of land area (logarithmic value) | |
Logarithm of trade openness (L.TO) | Refers to a country’s level of engagement in the global trading system, and is calculated as the sum of imports and exports adjusted by GDP (logarithmic value) | [49] |
Logarithm of total population (L.Pop) | Expresses the total number of people of each country at a given time (logarithmic value) | |
Logarithm of financial development (L.FD) | Expresses the total credit provided by banks to private sector as a percentage of GDP (logarithmic value) | |
Logarithm of human capital (L.HC) | The total population of each country in the age of working between 15 and 64 (logarithmic value) | |
Logarithm of GDP per capita (L.GDP) | Measure of economic outcome in constant price (logarithmic value) | |
Population growth rate (PGR) | Refers to the change in population size as a factor of time |
Mean | sd | Min | Max | Kurtosis | Skew | Obs. | |
---|---|---|---|---|---|---|---|
L.GDP | 7.00 | 0.98 | 5.37 | 9.23 | −0.44 | 0.68 | 558 |
L.TO | 22.96 | 1.57 | 19.56 | 28.19 | 1.76 | 0.93 | 558 |
L.RQ | 0.84 | 0.26 | −0.27 | 1.42 | 1.90 | −0.97 | 558 |
L.Pop | 16.27 | 1.15 | 13.82 | 19.07 | −0.15 | −0.23 | 558 |
L.HC | 15.90 | 1.21 | 13.17 | 18.47 | −0.19 | −0.46 | 558 |
L.PD | 3.87 | 1.21 | 0.78 | 6.43 | 0.10 | −0.19 | 558 |
L.FD | 21.21 | 1.73 | 16.80 | 26.38 | 0.96 | 0.52 | 558 |
L.labor | 15.32 | 1.18 | 12.58 | 17.87 | −0.22 | −0.39 | 558 |
L.WI | 0.01 | 0.66 | −0.86 | 2.34 | 1.33 | 1.10 | 558 |
PGR | 0.81 | 0.58 | −2.68 | 1.72 | 1.38 | 0.90 | 558 |
Dependent Variable: L.WI | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
Method | Fixed Effect | Random Effect | Fixed Effect | Random Effect | Fixed Effect | Random Effect |
L.GDP | 0.20 *** (0.070) | 0.22 *** (0.043) | 0.23 ** (0.079) | 0.24 *** (0.074) | 0.20 *** (0.073) | 0.22 *** (0.070) |
L.RQ | −0.14 ** (0.063) | −0.15 *** (0.062) | −0.11 ** (0.073) | −0.11 (0.067) | ||
L.PD | −0.21 (0.104) | −0.005 (0.010) | −0.74 *** (0.073) | −0.64 *** (0.057) | −0.76 *** (0.076) | −0.66 *** (0.062) |
L.TO | 0.02 (0.015) | 0.02 ** (0.014) | 0.03 * (0.016) | 0.05 *** (0.021) | 0.03 * (0.02) | 0.05 * (0.019) |
L.HC | −0.63 * (0.259) | −0.67 *** (0.196) | ||||
L.Pop | 1.15 *** (0.253) | 1.34 (0.198) | ||||
PGR | −0.01 (0.16) | −0.02 (0.02) | −0.01 (0.01) | −0.02 (0.15) | ||
Constant | −9.81 (2.34) | −13.06 (0.782) | 0.68 (0.900) | −0.25 *** (0.751) | 0.93 (0.889) | −0.01 (0.768) |
R squared | 0.871 | 0.870 | 0.857 | 0.854 | 0.852 | 0.858 |
Number of obs. | 558 | 558 | 558 | 558 | 558 | 558 |
Dependent Variable: L.WI | |||
---|---|---|---|
Variables | Low Income | Lower-Middle Income | Upper-Middle Income |
L.GDP | 0.21 ** (0.094) | 0.20 * (0.092) | 0.05 (0.101) |
L.TO | 0.01 (0.029) | 0.08 (0.095) | 0.08 (0.081) |
L.PD | −0.79 *** (0.130) | −0.78 *** (0.124) | −0.25 * (0.097) |
Constant | 1.04 (0.692) | −0.03 (2.686) | −0.12 (0.873) |
R squared | 0.905 | 0.852 | 0.555 |
Obs. | 252 | 234 | 72 |
Dependent Variable: L.GDP | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
Fixed Effect | Random Effect | Fixed Effect | Random Effect | Fixed Effect | Random Effect | |
L.WI | 0.71 ** (0.151) | 0.80 *** (0.142) | 0.53 *** (0.144) | 0.56 *** (0.138) | 0.55 ** (0.550) | 0.57 *** (0.139) |
L.RQ | 0.40 *** (0.131) | 0.42 *** (0.122) | 0.21 * (0.122) | 0.20 * (0.114) | 0.21 *** (0.121) | 0.20 * (0.114) |
L.Labor | 1.84 ** (0.940) | 2.32 *** (0.926) | 2.26 ** (0.816) | 2.48 *** (0.718) | 2.19 ** (0.798) | 2.42 *** (0.710) |
L.HC | −1.93 ** (0.992) | −2.57 *** (0.960) | −2.74 ** (0.889) | −3.04 *** (0.733) | −2.66 ** (0.868) | −2.98 (0.726) |
L.FD | 0.13 *** (0.0.03) | 0.14 *** (0.023) | 0.13 *** (0.025) | 0.13 *** (0.023) | ||
L.FD*WI | −0.01 ** (0.002) | −0.009 *** (0.002) | ||||
Constant | 9.24 ** (2.947) | 12.03 *** (2.5) | 12.93 *** (2.84) | 14.27 *** (1.8) | 13.11 *** (2.82) | 14.48 *** (1.89) |
Obs. | 558 | |||||
R squared | 0.640 | 0.714 | 0.713 | 0.718 | 0.717 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dangui, K.; Jia, S. Water Infrastructure Performance in Sub-Saharan Africa: An Investigation of the Drivers and Impact on Economic Growth. Water 2022, 14, 3522. https://doi.org/10.3390/w14213522
Dangui K, Jia S. Water Infrastructure Performance in Sub-Saharan Africa: An Investigation of the Drivers and Impact on Economic Growth. Water. 2022; 14(21):3522. https://doi.org/10.3390/w14213522
Chicago/Turabian StyleDangui, Kokou, and Shaofeng Jia. 2022. "Water Infrastructure Performance in Sub-Saharan Africa: An Investigation of the Drivers and Impact on Economic Growth" Water 14, no. 21: 3522. https://doi.org/10.3390/w14213522
APA StyleDangui, K., & Jia, S. (2022). Water Infrastructure Performance in Sub-Saharan Africa: An Investigation of the Drivers and Impact on Economic Growth. Water, 14(21), 3522. https://doi.org/10.3390/w14213522