Photocatalytic Removal of Dyes from Aqueous Medium by Fe, Mn and Fe-Mn Nanoparticles Synthesized Using Cannabis sativa Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Plant Extract
2.3. Synthesis of Monometallic (Fe and Mn) Nanoparticles
2.4. Synthesis of Bimetallic (Fe-Mn) Nanoparticles
2.5. Characterization of Nanoparticles
2.6. Photocatalytic Degradation of Selected Dyes
3. Results and Discussion
3.1. UV-Vis Characterization of Nanoparticles
3.2. FTIR Analysis of Nanoparticles
3.3. XRD Studies
3.4. SEM Analysis
3.5. Photocatalytic Activity
Degradation of MO
3.6. Degradation of CR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajan, A.J.; Anand, K.T.; Narayanan, K.V.; Bapu, B.R.R. A Study on Environmental Sustainability in Textile Processing Industries of South India. Indian J. Sci. Technol. 2016, 9, 1–4. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef]
- Sannino, D. Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation. J. Environ. Chem. Eng. 2013, 1, 56–60. [Google Scholar] [CrossRef]
- Ahmed, M.J. Plants: Emerging as Green Source toward Biosynthesis of Metallic Nanoparticles and its Applications. J. Bioprocess. Chem. Eng. 2014, 2, 1–7. [Google Scholar]
- Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Berenjian, A.; Ghasemi, Y. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process. Synth. 2017, 6, 469–475. [Google Scholar] [CrossRef]
- Vasantharaj, S. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. J. Photochem. Photobiol. B Biol. 2019, 192, 74–82. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ. 2017, 621, 1527–1532. [Google Scholar] [CrossRef]
- Khalil, A.T. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev. 2017, 10, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Niraimathee, V.; Subha, V.; Ravindran, R.E.; Renganathan, S. Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int. J. Environ. Sustain. Dev. 2016, 15, 227–240. [Google Scholar] [CrossRef]
- Sandiford, L.; Phinikaridou, A.; Protti, A.; Meszaros, L.K.; Cui, X.; Yan, Y.; Frodsham, G.; Williamson, P.A.; Gaddum, N.; Botnar, R.M.; et al. Bisphosphonate-Anchored PEGylation and Radiolabeling of Superparamagnetic Iron Oxide: Long-Circulating Nanoparticles for In Vivo Multimodal (T1 MRI-SPECT) Imaging. ACS Nano 2013, 7, 500–512. [Google Scholar] [CrossRef]
- Cheong, S.; Ferguson, P.; Feindel, K.W.; Hermans, I.F.; Callaghan, P.T.; Meyer, C.; Slocombe, A.; Su, C.; Cheng, F.; Yeh, C.; et al. Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angew. Chem. 2011, 123, 4292–4295. [Google Scholar] [CrossRef]
- Kievit, F.M. PEI–PEG–chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: Synthesis, complexation, and transfection. Adv. Funct. Mater. 2009, 19, 2244–2251. [Google Scholar] [CrossRef] [Green Version]
- Mallikarjuna, N. Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles. J. Appl. Polym. Sci. 2005, 97, 1868–1874. [Google Scholar] [CrossRef]
- Zhu, S.; Xia, M.; Chu, Y.; Khan, M.A.; Lei, W.; Wang, F.; Muhmood, T.; Wang, A. Adsorption and Desorption of Pb(II) on l-Lysine Modified Montmorillonite and the Simulation of Interlayer Structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Aravind, M.; Ahmad, A.; Ahmad, I.; Amalanathan, M.; Naseem, K.; Mary, S.M.M.; Parvathiraja, C.; Hussain, S.; Algarni, T.S.; Pervaiz, M.; et al. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104877. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; Alothman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Amen, T.W. Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles. Chem. Eng. Process.-Process Intensif. 2018, 130, 253–261. [Google Scholar] [CrossRef]
- Abbasi, B.H. Biogenic synthesis of Au, Ag and Au–Ag alloy nanoparticles using Cannabis sativa leaf extract. IET Nanobiotech. 2018, 12, 277–284. [Google Scholar] [CrossRef]
- Berta, L.; Coman, N.-A.; Rusu, A.; Tanase, C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. Materials 2021, 14, 7677. [Google Scholar] [CrossRef]
- Willard, M.; Kurihara, L.; Carpenter, E.; Calvin, S.; Harris, V. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 2004, 49, 125–170. [Google Scholar] [CrossRef]
- Chang, Y.; Zheng, C.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A. Cytotoxicity, anti-acute leukemia, and antioxidant properties of gold nanoparticles green-synthesized using Cannabis sativa L. leaf aqueous extract. Arab. J. Chem. 2021, 14, 103060. [Google Scholar] [CrossRef]
- Csakvari, A.C. Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts. Molecules 2021, 26, 4041. [Google Scholar] [CrossRef]
- Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 2016, 6, 209. [Google Scholar] [CrossRef] [Green Version]
- Hoseinpour, V.; Ghaemi, N. Green synthesis of manganese nanoparticles: Applications and future perspective—A review. J. Photochem. Photobiol. B Biol. 2018, 189, 234–243. [Google Scholar] [CrossRef]
- Younas, U. Radical scavenging and catalytic activity of Fe-Cu bimetallic nanoparticles synthesized from Ixora finlaysoniana extract. Coatings 2021, 11, 813. [Google Scholar] [CrossRef]
- Younas, U.; Gulzar, A.; Ali, F.; Pervaiz, M.; Ali, Z.; Khan, S.; Saeed, Z.; Ahmed, M.; Alothman, A.A. Antioxidant and Organic Dye Removal Potential of Cu-Ni Bimetallic Nanoparticles Synthesized Using Gazania rigens Extract. Water 2021, 13, 2653. [Google Scholar] [CrossRef]
- Sharma, Y.; Kawatra, A.; Sharma, V.; Dhull, D.; Kaushik, S.; Yadav, J.P.; Kaushik, S. In-vitro and in-silico evaluation of the anti-chikungunya potential of Psidium guajava leaf extract and their synthesized silver nanoparticles. Virus Dis. 2021, 32, 260–265. [Google Scholar] [CrossRef]
- Imran, M. Optimization of ecofriendly synthesis of Ag nanoparticles by Linum usitatissimum hydrogel using response surface methodology and its biological applications. Mater. Today Commun. 2021, 29, 102789. [Google Scholar] [CrossRef]
- Ali, F.; Ali, Z.; Younas, U.; Ahmad, A.; Mooin-Ud-Din, G.; Pervaiz, M.; Luque, R.; Ahmad, I.; Ashraf, A.; Albaqami, M.D.; et al. UV-Light Mediated Biosynthesis of Silver Nanowires; Characterization, Dye Degradation Potential and Kinetic Studies. Sustainability 2021, 13, 13220. [Google Scholar] [CrossRef]
- Abdel-Aziz, H.M.; Farag, R.S.; Abdel-Gawad, S.A. Carbamazepine removal from aqueous solution by green synthesis zero-valent iron/Cu nanoparticles with Ficus Benjamina leaves’ extract. Int. J. Environ. Res. 2019, 13, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Saeed, Z.; Pervaiz, M.; Mehmood, K.; Ejaz, R.; Younas, U.; Nadeem, H.A.; Hussain, S. Enhanced visible light photocatalytic activity of TiO2 co-doped with Fe, Co, and S for degradation of Cango red. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119644. [Google Scholar] [CrossRef]
- Alshehri, A. Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities. RSC Adv. 2017, 7, 25149–25159. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Lin, Y.; Sarkar, B.; Owens, G.; Chen, Z. Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. J. Colloid Interface Sci. 2020, 558, 106–114. [Google Scholar] [CrossRef]
- Jayandran, M.; Haneefa, M.M.; Balasubramanian, V. Green synthesis and characterization of Manganese nano-particles using natural plant extracts and its evaluation of antimicrobial activity. J. Appl. Pharm. Sci. 2015, 5, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, S.; Guleria, S. Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mater. Sci. Energy Technol. 2020, 3, 536–544. [Google Scholar] [CrossRef]
- Jain, R.; Mendiratta, S.; Kumar, L.; Srivastava, A. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye. Curr. Res. Green Sustain. Chem. 2021, 4, 100086. [Google Scholar] [CrossRef]
- Hoseinpour, V.; Souri, M.; Ghaemi, N. Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles. Micro Nano Lett. 2018, 13, 1560–1563. [Google Scholar] [CrossRef]
- Shaker, K.; AbdAlsalm, A. Synthesis and Characterization Nano Structure of MnO2 via Chemical Method. Eng. Technol. J. 2018, 36, 946–950. [Google Scholar] [CrossRef]
- Chopra, N.; Claypoole, L.; Bachas, L.G. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures. J. Nanopart. Res. 2010, 12, 2883–2893. [Google Scholar] [CrossRef]
- Ljubas, D.; Smoljanić, G.; Juretić, H. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation. J. Environ. Manag. 2015, 161, 83–91. [Google Scholar] [CrossRef]
- Cyril, N.; George, J.B.; Joseph, L.; Sylas, V.P. Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris trifoliata. J. Clust. Sci. 2019, 30, 459–468. [Google Scholar] [CrossRef]
- Shahwan, T. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011, 172, 258–266. [Google Scholar] [CrossRef]
- Singh, H.P.; Gupta, N.; Sharma, S.K.; Sharma, R.K. Synthesis of bimetallic Pt–Cu nanoparticles and their application in the reduction of rhodamine B. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 416, 43–50. [Google Scholar] [CrossRef]
- Jegadeesan, G.B.; Amirthavarshini, S.; Divya, J.; Gunarani, G. Catalytic peroxygen activation by biosynthesized iron nanoparticles for enhanced degradation of Congo red dye. Adv. Powder Technol. 2019, 30, 2890–2899. [Google Scholar] [CrossRef]
- Kamran, U.; Bhatti, H.N.; Iqbal, M.; Jamil, S.; Zahid, M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct. 2018, 1179, 532–539. [Google Scholar] [CrossRef]
2 Theta (deg) | M.I (hkl) | d Pacing | FWHM | Crystallite Size |
---|---|---|---|---|
31.79 | 100 | 2.8126 | 0.10528 | 11.94061 |
42.45 | 100 | 2.1018 | 0.04379 | 24.70497 |
44.66 | 101 | 2.0270 | 0.9992 | 1.052824 |
47.39 | 104 | 1.9165 | 0.57504 | 1.741224 |
49.41 | 102 | 1.8429 | 0.05196 | 18.5197 |
65.9 | 104 | 1.4162 | 0.09656 | 6.254256 |
2 Theta (deg) | M.I (hkl) | d Spacing | FWHM | Crystallite Size |
---|---|---|---|---|
22.86 | 111 | 4.0300 | 0.10675 | 12.84302 |
28.68 | 210 | 3.1300 | 0.02312 | 56.22286 |
32.07 | 211 | 2.8440 | 3.64897 | 0.345882 |
36.13 | 220 | 2.4720 | 0.59902 | 1.989576 |
45.98 | 320 | 1.9350 | 0.14555 | 7.212654 |
54.02 | 410 | 1.6960 | 0.02891 | 30.05543 |
57.16 | 331 | 1.6100 | 0.022 | 36.45642 |
60.50 | 1.5290 | 421 | 2.77674 | 0.26228 |
2 Theta (deg) | M.I (hkl) | d Spacing | FWHM | Crystallite Size D |
---|---|---|---|---|
32.66 | 2 1 0 | 0.2166265 | 8.97065 | 0.1582146 |
44.32 | 2 2 1 | 0.2905815 | 17.70622 | 0.0773574 |
51.90 | 3 2 0 | 0.3371019 | 0.42078 | 3.1604 |
59.32 | 4 1 0 | 0.381237 | 15.15031 | 0.0848259 |
65.45 | 3 3 2 | 0.4164671 | 4.57589 | 0.2718989 |
76.69 | 4 3 0 | 0.4779015 | 23.79657 | 0.0487435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, S.; Kalsoom, R.; Ali, F.; Amjed, N.; Younas, U.; Pervaiz, M.; Alsaiari, M.; Faisal, M.; Harraz, F.A.; Luque, R. Photocatalytic Removal of Dyes from Aqueous Medium by Fe, Mn and Fe-Mn Nanoparticles Synthesized Using Cannabis sativa Leaf Extract. Water 2022, 14, 3535. https://doi.org/10.3390/w14213535
Naz S, Kalsoom R, Ali F, Amjed N, Younas U, Pervaiz M, Alsaiari M, Faisal M, Harraz FA, Luque R. Photocatalytic Removal of Dyes from Aqueous Medium by Fe, Mn and Fe-Mn Nanoparticles Synthesized Using Cannabis sativa Leaf Extract. Water. 2022; 14(21):3535. https://doi.org/10.3390/w14213535
Chicago/Turabian StyleNaz, Sadaf, Rimsha Kalsoom, Faisal Ali, Nyla Amjed, Umer Younas, Muhammad Pervaiz, Mabkhoot Alsaiari, M. Faisal, Farid A. Harraz, and Rafael Luque. 2022. "Photocatalytic Removal of Dyes from Aqueous Medium by Fe, Mn and Fe-Mn Nanoparticles Synthesized Using Cannabis sativa Leaf Extract" Water 14, no. 21: 3535. https://doi.org/10.3390/w14213535
APA StyleNaz, S., Kalsoom, R., Ali, F., Amjed, N., Younas, U., Pervaiz, M., Alsaiari, M., Faisal, M., Harraz, F. A., & Luque, R. (2022). Photocatalytic Removal of Dyes from Aqueous Medium by Fe, Mn and Fe-Mn Nanoparticles Synthesized Using Cannabis sativa Leaf Extract. Water, 14(21), 3535. https://doi.org/10.3390/w14213535