Multiscale Interactions of Climate Variability and Rainfall in the Sogamoso River Basin: Implications for the 1998–2000 and 2010–2012 Multiyear La Niña Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Dataset
2.3. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS v.2.0)
2.4. Oceanic and Atmospheric Data
2.5. Standardized Precipitation Index and Principal Component Analysis
2.6. Wavelet Analysis
3. Results and Discussion
3.1. Standardized Precipitation Index
3.2. Time-Frequency Variations of the SPI
3.3. Linkage between SPI and ENSO Events
3.4. Quasi-Biennial and Interannual Scales of the 1998–2000 La Niña Event
3.5. Quasi-Biennial and Interannual Scales of the 2010–2012 La Niña Event
3.6. Quasi-Decadal Scales of La Niña Events
4. Conclusions
- During the 1998–2000 La Niña event, at the quasi-biennial scale, wet conditions were produced over the SRB, the Caribbean, the Andes, and the Colombian Pacific from JJA 1998 to JJA 1999 due to a cooling of the central and eastern tropical Pacific, which intensified the CJ and promoted moisture transport from the ocean to the continent. At the interannual scale, rainfall was preserved in the same regions during 1999 due to a cooling of the western tropical Pacific, which intensified the CJ, although not at the same magnitude as on the quasi-biennial scale, and during 2000 due to the La Niña-associated SST pattern. Furthermore, the PDO transition from a warm (1977–1998) to a cold (2001–2015) phase modulated the quasi-decadal variability such that the prevailing wet conditions in 1998 weakened during 1999–2000 in the SRB due to warm-to-normal conditions in the eastern tropical Pacific near the northwestern coast of South America, which resulted in a weakly configured CJ and, therefore, a low ocean-to-continent moisture transport.
- During the 2010–2012 La Niña event, a negative SST gradient was configured between the tropical Pacific and the Caribbean Sea/TNA ((SSTPacific < SSTCaribbean/TNA), which acted on the quasi-annual scale during 2010 and on the interannual scale during 2011–2012, contributing to the strengthening of the CJ and the weakening of the CLLJ, enhancing the moisture transport from the ocean to the continent and extending the rainy seasons over most of the Colombian territory, including the SRB. Moreover, the 2010–2012 multiyear event occurred during the cold phase of the PDO, which contributed to intensification of the negative SST anomalies in the tropical Pacific, strengthening the CJ and moisture transport to the region on a quasi-decadal time scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Chapter 11: Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 345. [Google Scholar]
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science\r10.1126/science.1132588. Science 2006, 314, 1740–1745. [Google Scholar]
- Bjerknes, J. Monthly Weather Reyiew Atmospheric Teleconnections From the Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar]
- Lopes, A.B.; Andreoli, R.V.; Souza, R.A.F.; Cerón, W.L.; Kayano, M.T.; Canchala, T.; de Moraes, D.S. Multiyear La Niña effects on the precipitation in South America. Int. J. Climatol. 2022, 1–16. [Google Scholar] [CrossRef]
- Aceituno, P.; Prieto, M.D.R.; Solari, M.E.; Martínez, A.; Poveda, G.; Falvey, M. The 1877-1878 El Niño episode: Associated impacts in South America. Clim. Chang. 2009, 92, 389–416. [Google Scholar]
- Arias, P.A.; Martínez, J.A.; Vieira, S.C. Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim. Dyn. 2015, 45, 2861–2884. [Google Scholar]
- Pabón, J.D.; Montealegre, J.E. La variabilidad climatica interanual asociada al ciclo El Niño-La Niña–Oscilacion del Sur y su efecto en el patrón pluviométrico de Colombia. Meteorol. Colomb. 2000, 2, 7–21. [Google Scholar]
- Poveda, G.; Jaramillo, A.; Gil, M.M.; Quiceno, N.; Mantilla, R.I. Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [Google Scholar]
- Poveda, G.; Vélez, J.I.; Mesa, O.; Hoyos, C.; Mejía, J.; Barco, O.J.; Correa, P.L. Influencia de fenómenos macroclimáticos sobre el ciclo anual de la hidrología Colombiana: Cuantificación lineal, no lineal y percentiles probabilísticos. Meteorol. Colomb. 2002, 6, 121–130. [Google Scholar]
- Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). Efectos Naturales y Socioeconómicos del Fenómeno El Niño en Colombia; Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2002. [Google Scholar]
- Vargas, G.; Hernández, Y.; Pabón, J.D. La Niña Event 2010–2011: Hydroclimatic Effects and Socioeconomic Impacts in Colombia. In Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series; Mal, S., Singh, R., Huggel, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 217–232. [Google Scholar] [CrossRef]
- Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD) (Ed.) Fenomeno El Niño. Análisis comparativo 1997-1998//2014-2016; Milena Mor.: Bogotá, Colombia, 2016; ISBN 978-958-56017-0-3. [Google Scholar]
- Poveda, G.; Salazar, L.F. Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sens. Environ. 2004, 93, 391–401. [Google Scholar]
- Hoyos, N.; Escobar, J.; Restrepo, J.; Arango, A.; Ortiz, J.C. Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 2013, 39, 16–25. [Google Scholar]
- Iwakiri, T.; Watanabe, M. Mechanisms linking multi-year La Niña with preceding strong El Niño. Sci. Rep. 2021, 11, 17465. [Google Scholar]
- Wu, X.; Okumura, Y.M.; Dinezio, P.N. What controls the duration of El Niño and La Niña events? J. Clim. 2019, 32, 5941–5965. [Google Scholar]
- Hoerling, M.; Kumar, A. The perfect ocean for drought. Science 2003, 299, 691–694. [Google Scholar]
- Okumura, Y.M.; DiNezio, P.; Deser, C. Evolving Impacts of Multiyear La Niña Events on Atmospheric Circulation and U.S. Drought. Geophys. Res. Lett. 2017, 44, 614–623. [Google Scholar]
- Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G. A seca e a crise hídrica de 2014–2015 em São Paulo. Rev. USP 2015, 106, 31–44. [Google Scholar]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 08, 252–262. [Google Scholar]
- Comisión Económica para América Latina y el Caribe (CEPAL). Valoración de daños y pérdidas: Ola Invernal en Colombia 2010–2011; Naciones Unidas: Bogotá, Colombia, 2013. [Google Scholar]
- Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim. Dyn. 2011, 36, 2233–2249. [Google Scholar]
- Canchala, T.; Alfonso-Morales, W.; Cerón, W.L.; Carvajal-Escobar, Y.; Caicedo-Bravo, E. Teleconnections between monthly rainfall variability and large-scale climate indices in Southwestern Colombia. Water 2020, 12, 1863. [Google Scholar]
- Cerón, W.L.; Kayano, M.T.; Andreoli, R.V.; Canchala, T.; Carvajal-Escobar, Y.; Alfonso-Morales, W. Rainfall variability in Southwestern Colombia: Changes in ENSO—Related features. Pure Appl. Geophys. 2021, 178, 1087–1103. [Google Scholar]
- Hanley, D.E.; Bourassa, M.A.; O’Brien, J.J.; Smith, S.R.; Spade, E.R. A quantitative evaluation of ENSO indices. J. Clim. 2003, 16, 1249–1258. [Google Scholar]
- IDEAM; PNUD; MADS; DNP; CANCILLERÍA. Tercera Comunicación Nacional de Colombia a La Convención Marco De Las Naciones Unidas Sobre Cambio Climático (CMNUCC). Tercera Comunicación Nacional de Cambio Climático; IDEAM, PNUD, MADS, DNP, CANCILLERÍA, FNAM: Bogotá, Colombia, 2017; ISBN 9789588971735. [Google Scholar]
- Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). Estudio Nacional del Agua 2018; Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2019. [Google Scholar]
- Colombia. Ministerio de Ambiente y Desarrollo Sostenible. In Plan Integral de Gestión del Cambio Climático Territorial del Departamento de Santander; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2016. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship od drought frecuency and duration to time scales. Int. J. Climatol. 1993, 22, 1571–1592. [Google Scholar]
- Poveda, G.; Mesa, O.J. Las fases extremas del fenómeno ENSO (El Niño y La Niña) y su influencia sobre hidrología de Colombia. Ing. Hidráulica en México 1996, 11, 21–37. [Google Scholar]
- Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. Académica Colomb. Ciencias Tierra 2004, 28, 201–222. [Google Scholar]
- Estupiñan, A.R.C. Estudio de la Variabilidad Espacio Temporal de la Precipitación en Colombia. Ph.D. Dissertation, Universidad Nacional de Colombia, Bogotá, Colombia, 2016. Available online: http://bdigital.unal.edu.co/54014/1/1110490004.2016.pdf (accessed on 5 October 2019).
- Cerón, W.L.; Carvajal-Escobar, Y.; Andreoli, R.V.; Kayano, M.T.; González, N.L. Spatio-temporal analysis of the droughts in Cali, Colombia and their primary relationships with the El Niño-Southern Oscillation (ENSO) between 1971 and 2011. Atmosfera 2020, 33, 51–69. [Google Scholar]
- Hoyos, I.; Baquero-Bernal, A.; Jacob, D.; Rodríguez, B. Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim. Dyn. 2013, 40, 1985–2003. [Google Scholar]
- Poveda, G.; Jaramillo, L.; Vallejo, L.F. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 2014, 50, 98–118. [Google Scholar]
- Yepes, J.; Poveda, G.; Mejía, J.F.; Moreno, L.; Rueda, C. Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bull. Am. Meteorol. Soc. 2019, 100, 779–796. [Google Scholar]
- CVC; DAGMA; CIAT; Alcaldía de Santiago de Cali. Identificación de Zonas y Formulación de Propuestas para el Tratamiento de Islas de Calor Municipio de Santiago de Cali; CIAT: Cali, Colombia, 2015; Volume 110. [Google Scholar]
- Guzmán, D.; Ruíz, J.F.; Cadena, M. Regionalización de colombia según la estacionalidad de la precipitación media mensual, a través Análisis de Componentes Principales (ACP); Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2014. [Google Scholar]
- World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation WMO-No. 8; World Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. data 2015, 2, 150066. [Google Scholar]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D. A global satellite assisted precipitation climatology. Earth Syst. Dyn. Discuss. 2015, 8, 401–425. [Google Scholar]
- Muthoni, F. Spatial-temporal trends of rainfall, maximum and minimum temperatures over West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2960–2973. [Google Scholar]
- Cerón, W.L.; Molina-Carpio, J.; Rivera, I.A.; Andreoli, R.V.; Kayano, M.T.; Canchala, T. A principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the La Plata Basin, Southern South America. Nat. Hazards 2020, 103, 767–783. [Google Scholar]
- Zhang, Y.; Wu, C.; Yeh, P.J.F.; Li, J.; Hu, B.X.; Feng, P.; Jun, C. Evaluation and comparison of precipitation estimates and hydrologic utility of CHIRPS, TRMM 3B42 V7 and PERSIANN-CDR products in various climate regimes. Atmos. Res. 2022, 265, 105881. [Google Scholar]
- Tian, W.; Liu, X.; Wang, K.; Bai, P.; Liang, K.; Liu, C. Evaluation of six precipitation products in the Mekong River Basin. Atmos. Res. 2021, 255, 105539. [Google Scholar]
- Urrea, V.; Ochoa, A.; Mesa, O. Seasonality of Rainfall in Colombia. Water Resour. Res. 2019, 55, 4149–4162. [Google Scholar]
- López-Bermeo, C.; Montoya, R.D.; Caro-Lopera, F.J.; Díaz-García, J.A. Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Phys. Chem. Earth Parts A/B/C 2022, 127, 103184. [Google Scholar]
- Ocampo-Marulanda, C.; Fernández-Álvarez, C.; Cerón, W.L.; Canchala, T.; Carvajal-Escobar, Y.; Alfonso-Morales, W. A spatiotemporal assessment of the high-resolution CHIRPS rainfall dataset in southwestern Colombia using combined principal component analysis. Ain Shams Eng. J. 2022, 13, 101739. [Google Scholar]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar]
- Cerón, W.L.; Kayano, M.T.; Andreoli, R.V.; Avila-Diaz, A.; de Souza, I.P.; Souza, R.A.F. Pacific and atlantic multidecadal variability relations with the choco and caribbean low-level jets during the 1900–2015 period. Atmosphere 2021, 12, 1120. [Google Scholar]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Souza, R.A.F.; Jones, C.; Carvalho, L.M.V. The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere 2020, 11, 174. [Google Scholar]
- Wang, C. Variability of the Caribbean Low-Level Jet and its relations to climate. Clim. Dyn. 2007, 29, 411–422. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3214. [Google Scholar]
- Vicente-Serrano, S.M.; González-Hidalgo, J.C.; de Luis, M.; Raventós, J. Drought patterns in the Mediterranean area: The Valencia region (eastern Spain). Clim. Res. 2004, 26, 5–15. [Google Scholar]
- Vicente-Serrano, S.M.; López-Moreno, J.I. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. 2005, 9, 523–533. [Google Scholar]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Gimeno, L.; Nieto, R.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Beguería, S.; Azorin-Molina, C. A multiscalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. Atmos. 2011, 116, 1–23. [Google Scholar]
- Santos, C.A.G.; Brasil Neto, R.M.; Passos, J.S.A.; da Silva, R.M. Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil. Environ. Monit. Assess. 2017, 189, 250. [Google Scholar]
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of droughts in Romania using the Standardized Precipitation Index. Nat. Hazards 2016, 81, 1483–1498. [Google Scholar]
- Dehghani, M.; Saghafian, B.; Nasiri Saleh, F.; Farokhnia, A.; Noori, R. Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int. J. Climatol. 2014, 34, 1169–1180. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar]
- Zhang, Y.; Li, W.; Chen, Q.; Pu, X.; Xiang, L. Multi-models for SPI drought forecasting in the north of Haihe River Basin, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 2471–2481. [Google Scholar]
- Björnsson, H.; Venegas, S.A. A Manual for EOF and SVD Analyses od Climatic Data. CCGCR Rep. 1997, 97, 112–134. [Google Scholar]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Scientific Report No.1 Statistical Forecasting Project; Massachusetts Institute of Technology, Department of Meteorology: Cambridge, UK, 1956; Volume 49. [Google Scholar]
- Wilks, D.S. Principal Component (EOF) Analysis. In International Geophysics; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 519–562. ISBN 9780123850225. [Google Scholar]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis Christopher. Bull. Am. Meteorol. Soc. 1998, 97, 61–78. [Google Scholar]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO-monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar]
- Ding, R.; Tseng, Y.-H.; Di Lorenzo, E.; Shi, L.; Li, J.; Yu, J.Y.; Wang, C.; Sun, C.; Luo, J.J.; Ha, K.J.; et al. Multi-year El Niño events tied to the North Pacific Oscillation. Nat. Commun. 2022, 13, 3871. [Google Scholar]
- Lee, C.W.; Tseng, Y.H.; Sui, C.H.; Zheng, F.; Wu, E.T. Characteristics of the Prolonged El Niño Events During 1960–2020. Geophys. Res. Lett. 2020, 47, e2020GL088345. [Google Scholar]
- Kim, J.W.; Yu, J.Y. Understanding Reintensified Multiyear El Niño Events. Geophys. Res. Lett. 2020, 47, e2020GL087644. [Google Scholar]
- Shabbar, A.; Yu, B. The 1998-2000 la Niña in the context of historically strong la Niña events. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar]
- Kim, W.; Yeh, S.W.; Kim, J.H.; Kug, J.S.; Kwon, M. The unique 2009-2010 El Niño event: A fast phase transition of warm pool El Niño to la Niña. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar]
- Rasmusson, E.M.; Wang, X.; Ropelewski, C.F. The biennial component of ENSO variability. J. Mar. Syst. 1990, 1, 71–96. [Google Scholar]
- Gershunov, A.; Barnett, T.P. Interdecadal Modulation of ENSO Teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2725. [Google Scholar]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Avila-Diaz, A. Role of the eastern Pacific-Caribbean Sea SST gradient in the Choco low-level jet variations from 1900–2015. Clim. Res. 2021, 83, 61–74. [Google Scholar]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar]
- Kayano, M.T.; Andreoli, R.V.; Souza, R.A.F. Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. Int. J. Climatol. 2020, 40, 2183–2200. [Google Scholar]
- Kayano, M.T.; Andreoli, R.V.; Souza, R.A.F. El Niño–Southern Oscillation related teleconnections over South America under distinct Atlantic Multidecadal Oscillation and Pacific Interdecadal Oscillation backgrounds: La Niña. Int. J. Climatol. 2019, 39, 1359–1372. [Google Scholar]
- Silva, C.B.; Silva, M.E.S.; Krusche, N.; Ambrizzi, T.; de Jesus Ferreira, N.; da Silva Dias, P.L. The analysis of global surface temperature wavelets from 1884 to 2014. Theor. Appl. Climatol. 2019, 136, 1435–1451. [Google Scholar]
- Silva, C.B.; Silva, M.E.S.; Ambrizzi, T.; Patucci, N.N.; Lima, B.S.; Correa, W.C. Spatial distribution of spectral SST oscillations over the equatorial pacific in the period 1888–2014. Int. J. Climatol. 2021, 41, 3841–3864. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerón, W.L.; Díaz, N.; Escobar-Carbonari, D.; Tapasco, J.; Andreoli, R.V.; Kayano, M.T.; Canchala, T. Multiscale Interactions of Climate Variability and Rainfall in the Sogamoso River Basin: Implications for the 1998–2000 and 2010–2012 Multiyear La Niña Events. Water 2022, 14, 3635. https://doi.org/10.3390/w14223635
Cerón WL, Díaz N, Escobar-Carbonari D, Tapasco J, Andreoli RV, Kayano MT, Canchala T. Multiscale Interactions of Climate Variability and Rainfall in the Sogamoso River Basin: Implications for the 1998–2000 and 2010–2012 Multiyear La Niña Events. Water. 2022; 14(22):3635. https://doi.org/10.3390/w14223635
Chicago/Turabian StyleCerón, Wilmar L., Nilton Díaz, Daniel Escobar-Carbonari, Jeimar Tapasco, Rita V. Andreoli, Mary T. Kayano, and Teresita Canchala. 2022. "Multiscale Interactions of Climate Variability and Rainfall in the Sogamoso River Basin: Implications for the 1998–2000 and 2010–2012 Multiyear La Niña Events" Water 14, no. 22: 3635. https://doi.org/10.3390/w14223635
APA StyleCerón, W. L., Díaz, N., Escobar-Carbonari, D., Tapasco, J., Andreoli, R. V., Kayano, M. T., & Canchala, T. (2022). Multiscale Interactions of Climate Variability and Rainfall in the Sogamoso River Basin: Implications for the 1998–2000 and 2010–2012 Multiyear La Niña Events. Water, 14(22), 3635. https://doi.org/10.3390/w14223635