Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
First-Degree Regulating | Second-Degree Regulating | Third-Degree Regulating | Treatment Code |
---|---|---|---|
Emitter Discharge Rate (L/h2) | Irrigating Water Quota (m3/hm2) | Fertilization Frequency (Day) | |
0.8 | 120 | 7 | Sa1 |
14 | Sa2 | ||
28 | Sa3 | ||
150 | 7 | Sb1 | |
14 | Sb2 | ||
28 | Sb3 | ||
2.7 | 120 | 7 | Ha1 |
14 | Ha2 | ||
28 | Ha3 | ||
150 | 7 | Hb1 | |
14 | Hb2 | ||
28 | Hb3 |
2.3. Volumetric Soil Water Content
2.4. Evapotranspiration
2.5. Aboveground Dry Matter Weight
2.6. Grain Yield and Yield Composition
2.7. Water-Use Efficiency, Irrigation Water-Use Efficiency, and Precipitation Water-Use Efficiency
2.8. Partial Factor Productivity of Fertilizer (Pfp)
2.9. Statistical Analysis
3. Results and Analysis
3.1. Soil Moisture Dynamics Change and Evapotranspiration
3.2. Dry Matter Accumulation
3.3. Grain Yield and Yield Compositions
3.4. WUE, WUEI, WUEP and Pfp
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Kan, Z.; He, C.; Zhang, H. Effects of Strategic Tillage on Soil Physicochemical Properties and Grain Yield in the North China Plain. Agronomy 2020, 10, 1167. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, J.; Lang, K.; Liu, Q.; Li, Q. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the north china plain. Agric. Water Manag. 2013, 118, 87–92. [Google Scholar]
- Yang, X.; Jin, X.; Chu, Q.; Pacenka, S.; Steenhuis, T.S. Impact of climate variation from 1965 to 2016 on cotton water re-quirements in North China Plain. Agric. Water Manag. 2021, 243, 106502. [Google Scholar] [CrossRef]
- Hu, Y.; Moiwo, J.P.; Yang, Y.; Han, S.; Yang, Y. Agricultural water-saving and sustainable groundwater management in Shi-jiazhuang Irrigation District, North China Plain. J. Hydrol. 2010, 393, 219–232. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, W.; Cui, J.; Liao, J.; Fan, H.; Zheng, Z.; Ma, F. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crops Res. 2015, 179, 52–62. [Google Scholar] [CrossRef]
- Bian, C.; Ma, C.; Liu, X.; Gao, C.; Liu, Q.; Yan, Z.; Li, Q. Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE 2016, 11, e0154673. [Google Scholar] [CrossRef] [Green Version]
- Neal, J.S.; Murphy, S.R.; Harden, S.; Fulkerson, W.J. Differences in soil water content between perennial and annual forages and crops grown under deficit irrigation and used by the dairy industry. Field Crops Res. 2012, 137, 148–162. [Google Scholar] [CrossRef]
- Bezerra, I.L.; Nobre, R.G.; Gheyi, H.R.; Souza, L.D.P.; Pinheiro, F.W.; Lima, G.S.D. Morphophysiology of guava under saline water irrigation and nitrogen fertilization. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 32–37. [Google Scholar] [CrossRef]
- Ozturk, O.F.; Shukla, M.K.; Stringam, B.; Picchioni, G.A.; Gard, C. Irrigation with brackish water changes evapotranspiration, growth and ion uptake of halophytes. Agric. Water Manag. 2018, 195, 142–153. [Google Scholar] [CrossRef]
- Li, Q.; Bian, C.; Liu, X.; Ma, C.; Liu, Q. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in north china plain. Agric. Water Manag. 2015, 153, 71–76. [Google Scholar] [CrossRef]
- Kuang, N.; Tan, D.; Li, H.; Gou, Q.; Li, Q.; Han, H. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain. Agric. Water Manag. 2020, 227, 105786. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Shao, L.; Wang, Y. Changes in evapotranspiration over irrigated winter wheat and maize in north china plain over three decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, Y.; Kisekka, I.; Biswas, A.; Cai, H. Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agric. Water Manag. 2021, 243, 106497. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Song, P.; Zhou, B.; Wang, T.; Xue, S. Developing Situation and System Construction of Low-carbon Environment Friendly Drip Irrigation Technology. Trans. Chin. Soc. Agric. Mach. 2016, 47, 83–92. (In Chinese) [Google Scholar]
- Abdelraouf, R.E.; El-Shawadfy, M.A.; Ghoname, A.A.; Ragab, R. Improving crop production and water productivity using a new field drip irrigation design. Plant Arch. 2020, 20, 3553–3564. [Google Scholar]
- Bhunia, S.R.; Verma, I.M.; Arif, M.; Gochar, R.; Sharma, N.C. Effect of crop geometry, drip irrigation and bio-regulator on growth, yield and water use efficiency of wheat (Triticum aestivum L.). Int. J. Agric. Sci. 2015, 11, 45–49. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Ren, T.; Feng, H. Effect of different irrigation patterns in winter wheat season on yield and water utilization of winter wheat-summer maize. Chin. J. Appl. Ecol. 2011, 22, 1759–1764. [Google Scholar]
- Chen, B.; Ouyang, Z.; Cheng, W.; Liu, L. Water consumption for winter wheat and summer maize in the North China Plain in recent 50 years. J. Nat. Resour. 2012, 27, 1186–1199. [Google Scholar]
- Zhang, G.; Shen, D.; Ming, B.; Xie, R.; Jin, X.; Liu, C.; Li, S. Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. Crop J. 2019, 7, 322–334. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Zain, M.; Si, Z.; Li, S.; Gao, Y.; Mehmood, F.; Rahman, S.U.; Duan, A. The coupled effects of irrigation scheduling and nitrogen fertilization mode on growth, yield and water use efficiency in drip-irrigated winter wheat. Sustainability 2021, 13, 2742. [Google Scholar] [CrossRef]
- Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Li, Q.Q.; Chen, Y.H.; Liu, M.Y.; Zhou, X.B.; Dong, B.D.; Yu, S.L. Effect of irrigation to winter wheat on the soil moisture, evapotranspiration, and water use efficiency of summer maize in North China. Trans. ASABE 2007, 50, 2073–2080. [Google Scholar]
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Cassman, K.G.; Gines, G.C.; Dizon, M.A.; Samson, M.I.; Alcantara, J.M. Nitrogen-use efficiency in tropical lowland rice systems: Contributions from indigenous and applied nitrogen. Field Crops Res. 1996, 47, 1–12. [Google Scholar] [CrossRef]
- Adelian, D.; Haghighi, B.J.; Alizadeh, O.; Aseyfi, Z. Study and comparison of figures wheat yield on deficit irrigation. Int. J. Agron. Plant Prod. 2012, 3, 527–534. [Google Scholar]
- Wang, D.; Li, G.; Mo, Y.; Zhang, D.; Xu, X.; Wilkerson, C.J.; Hoogenboom, G. Evaluation of subsurface, mulched and non-mulched surface drip irrigation for maize production and economic benefits in northeast China. Irrig. Sci. 2021, 39, 159–171. [Google Scholar] [CrossRef]
- Yang, D.; Li, S.; Kang, S.; Du, T.; Guo, P.; Mao, X.; Niu, J. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agric. Water Manag. 2020, 232, 106001. [Google Scholar] [CrossRef]
- Peacock, W.L.; Rolston, D.E.; Aljibury, F.K.; Rauschkolb, R.S. Evaluating drip, flood, and sprinkler irrigation of wine grapes. Am. J. Enol. Vitic. 1977, 28, 193–195. [Google Scholar]
- Hodgson, A.S.; Constable, G.A.; Duddy, G.R.; Daniells, I.G. A comparison of drip and furrow irrigated cotton on a cracking clay soil. Irrig. Sci. 1990, 11, 143–148. [Google Scholar] [CrossRef]
- Malash, N.; Flowers, T.; Ragab, R. Effect of irrigation methods, managementand salinity of irrigation water on tomato yield, soil moisture and salinity dis-tribution. Irrig. Sci. 2008, 26, 313–323. [Google Scholar] [CrossRef]
- Wang, G.; Liang, Y.; Zhang, Q.; Jha, S.K.; Gao, Y.; Shen, X. Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain. Agric. Water Manag. 2016, 163, 403–407. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, X.; Li, H.; Li, H.; Zhang, F.; Rengel, Z. Comparing localized application of different n fertilizer species on maize grain yield and agronomic n-use efficiency on a calcareous soil. Field Crops Res. 2015, 180, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; He, P.; Pampolino, M.F.; Johnston, A.M.; Qiu, S.; Zhao, S. Fertilizer recommendation for maize in china based on yield response and agronomic efficiency. Field Crops Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Sun, L.; Wang, R.; Li, J.; Wang, Q.; Lyu, W.; Wang, X.; Zhang, X. Reasonable fertilization improves the conservation tillage benefit for soil water use and yield of rain-fed winter wheat: A case study from the Loess Plateau, China. Field Crops Res. 2019, 242, 107589. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Jia, S.; Liang, A.; Zhang, X.; Yang, X. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of northeast china. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Sandhu, O.S.; Gupta, R.K.; Thind, H.S.; Jat, M.L.; Sidhu, H.S. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 2019, 219, 19–26. [Google Scholar] [CrossRef]
- Sui, J.; Wang, J.; Gong, S.; Xu, D.; Zhang, Y.; Qin, Q. Assessment of maize yield-increasing potential and optimum n level under mulched drip irrigation in the northeast of china. Field Crops Res. 2018, 215, 132–139. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, Y.; Mu, Y.; Zhou, Y.; Zhang, C.; Liu, J. The effect of drip irrigation and drip fertigation on n2o and no emissions, water saving and grain yields in a maize field in the north china plain. Sci. Total Environ. 2017, 575, 1034–1040. [Google Scholar] [CrossRef]
- Li, D.; Li, M.; Shen, X.; Zhou, X.; Sun, H.; Zhao, Y.; Chen, W. Response of spatial structure of cotton root to soil-wetting patterns under mulched drip irrigation. Int. J. Agric. Biol. Eng. 2020, 13, 153–162. [Google Scholar] [CrossRef]
- Hardie, M.; Ridges, J.; Swarts, N.; Close, D. Drip irrigation wetting patterns and nitrate distribution: Comparison between electrical resistivity (ERI), dye tracer, and 2D soil–water modelling approaches. Irrig. Sci. 2018, 36, 97–110. [Google Scholar] [CrossRef]
- Boštjan, N.; Kechavarzi, C.; Coulon, F.; Pintar, M. Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrig. Sci. 2014, 32, 421–436. [Google Scholar]
- Subbaiah, R. A review of models for predicting soil water dynamics during trickle irrigation. Irrig. Sci. 2013, 31, 225–258. [Google Scholar] [CrossRef]
- Souza, C.F.; Folegatti, M.V. Characterization Spatial and Temporal Patterns of Water and Solute Distribution. In 2008 Providence, Rhode Island, June 29–July 2, 2008; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008; p. 1. [Google Scholar]
- Gärdenäs, A.I.; Hopmans, J.W.; Hanson, B.R.; Šimůnek, J. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric. Water Manag. 2005, 74, 219–242. [Google Scholar] [CrossRef]
- Bucks, D.A.; Nakayama, F.S. Trickle Irrigation for Crop Production: Design, Operation and Management; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Bajpai, A.; Kaushal, A. Soil moisture distribution under trickle irrigation: A review. Water Supply 2020, 20, 761–772. [Google Scholar] [CrossRef]
- Faraj, I.S.; Abid, M.B. Water Movement through Soil under Drip Irrigation using Different Hydraulic Soil Models. J. Eng. 2020, 26, 43–61. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Cook, F.J.; Bristow, K.L. Soil-dependent wetting from trickle emitters: Implications for system design and management. Irrig. Sci. 2003, 22, 121–127. [Google Scholar] [CrossRef]
- Cote, C.M.; Bristow, K.L.; Charlesworth, P.B.; Cook, F.J.; Thorburn, P.J. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrig. Sci. 2003, 22, 143–156. [Google Scholar] [CrossRef]
- Zhou, Q.; Kang, S.L.F.; Zhang, L. Comparison of dynamic and static apri-models to simulate soil water dynamics in a vineyard over the growing season under alternate partial root-zone drip irrigation. Agric. Water Manag. 2008, 95, 767–775. [Google Scholar] [CrossRef]
- Bhatnagar, P.R.; Chauhan, H.S. Soil water movement under a single surface trickle source. Agric. Water Manag. 2008, 95, 799–808. [Google Scholar] [CrossRef]
- Li, M.; Kang, S.; Sun, H. Relationships between dripper discharge and soil wetting pattern for drip irrigation. Trans. Chin. Soc. Agric. Eng. 2006, 4, 32–35. (In Chinese) [Google Scholar]
- Bresler, E. Analysis of trickle irrigation with application to design problems. Irrig. Sci. 1978, 1, 3–17. [Google Scholar] [CrossRef]
- Xie, X.; Machikowa, T.; Wonprasaid, S. Fertigation based on a nutrient balance model for cassava production in two different textured soils. Plant Prod. Sci. 2020, 23, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yang, J.; Li, X.; Liu, G.; Yu, M.; Wang, J. Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest china. Irrig. Sci. 2013, 31, 675–688. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hokam, E.M.; Schmidhalter, U. Drip irrigation frequency: The effects and their interaction with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions. J. Agron. Crop Sci. 2008, 194, 180–192. [Google Scholar] [CrossRef]
- Cook, W.P.; Sanders, D.C. Nitrogen application frequency for drip-irrigated tomatoes. HortScience 1991, 26, 250–252. [Google Scholar] [CrossRef]
- Thompson, T.L.; Doerge, T.A.; Godin, R.E. Subsurface drip irrigation and fertigation of broccoli. Soil Sci. Soc. Am. J. 2002, 66, 178–185. [Google Scholar]
- Azad, N.; Behmanes, J.; Rezaverdinejad, V.; Abbasi; Navabian, M. Evaluation of fertigation management impacts of surface drip irrigation on reducing nitrate leaching using numerical modeling. Environ. Sci. Pollut. Res. 2019, 26, 36499–36514. [Google Scholar] [CrossRef]
- Uçan, K.; Kıllı, F.; Gençoğlan, C.; Merdun, H. Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum, L.) under field conditions. Field Crops Res. 2007, 101, 249–258. [Google Scholar] [CrossRef]
- Chen, R.; Xiong, X.P.; Cheng, W.H. Root characteristics of spring wheat under drip irrigation and their relationship with aboveground biomass and yield. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Kang, Y.; Liu, S.P. Effects of drip irrigation frequency on soil wetting pattern and potato growth in north china plain. Agric. Water Manag. 2006, 79, 248–264. [Google Scholar] [CrossRef]
- Tomaz, A.; Palma, P.; Alvarenga, P.; Gonçalves, M.C. Soil salinity risk in a climate change scenario and its effect on crop yield. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 351–396. [Google Scholar]
Soil Layer | Rapidly Available | Total | Organic Matter | pH | ||||
---|---|---|---|---|---|---|---|---|
Nitrogen | Phosphorus | Potassium | Nitrogen | Phosphorus | Potassium | |||
cm | mg/kg | mg/kg | mg/kg | g/kg | mg/kg | g/kg | g/kg | |
0–10 | 634.18 | 32.0 | 168.90 | 2.26 | 639.83 | 11.01 | 296.7 | 7.24 |
20–40 | 591.55 | 33.9 | 187.77 | 2.02 | 661.06 | 12.21 | 282.7 | 7.43 |
20–40 | 372.02 | 26.2 | 216.30 | 1.62 | 359.31 | 20.94 | 256.0 | 7.64 |
40–60 | 417.50 | 25.6 | 204.53 | 1.61 | 374.24 | 12.94 | 257.3 | 7.58 |
60–80 | 714.14 | 24.8 | 205.60 | 2.51 | 371.21 | 13.30 | 306.0 | 7.53 |
Treatments | Soil Moisture Consumption (mm) | ET (mm) | Soil Moisture Consumption (mm) | ET (mm) |
---|---|---|---|---|
2016 | −91.46 a | 298.3 a | 2017 | |
S | −49.40 a | 463.25 a | ||
H | −104.93 b | 284.83 b | −66.84 b | 426.92 b |
a | −104.67 b | 281.35 b | −68.89 b | 431.13 b |
b | −91.72 a | 301.78 a | −47.34 a | 459.05 a |
1 | −106.63 b | 283.13 c | −60.50 a | 443.26 a |
2 | −102.59 b | 287.17 b | −56.71 a | 447.05 a |
3 | −85.37 a | 304.39 a | −57.14 a | 444.95 a |
Sa1 | −113.03 ef | 272.99 d | −68.6 cd | 421.42 de |
Sa2 | −83.16 bc | 302.86 b | −33.89 a | 456.13 ab |
Sa3 | −79.08 b | 306.94 b | −40.57 ab | 449.45 ab |
Sb1 | −115.04 f | 278.46 d | −39.26 ab | 458.24 ab |
Sb2 | −91.22 c | 302.28 b | −45.32 ab | 452.18 ab |
Sb3 | −67.24 a | 326.26 a | −68.74 cd | 428.76 cd |
Ha1 | −111.49 ef | 274.53 d | −94.72 e | 395.3 f |
Ha2 | −136.44 g | 249.58 e | −92.71 e | 397.31 f |
Ha3 | −104.85 de | 281.17 d | −82.88 de | 407.14 ef |
Hb1 | −86.95 bc | 306.55 b | −39.42 ab | 458.08 ab |
Hb2 | −99.52 d | 293.98 c | −54.92 bc | 442.58 bc |
Hb3 | −90.32 c | 303.18 b | −36.39 a | 461.11 a |
Treatments | Rows per Spike (Rows Spikes−1) | Kernels per Row (Kernels Row−1) | 1000-Kernel Weight (g) | Grain Yield (kg/hm2) |
---|---|---|---|---|
2016 S | 9596.85 a | |||
14.06 a | 32.34 a | 261.63 a | ||
H | 14.15 a | 29.62 b | 254.30 b | 8470.20 b |
a | 13.90 a | 30.10 b | 254.96 b | 8825.85 b |
b | 14.31 a | 31.86 a | 260.97 a | 9241.21 a |
1 | 14.25 a | 31.20 b | 264.91 a | 9071.12 b |
2 | 13.99 a | 32.14 a | 256.14 b | 9243.75 a |
3 | 14.08 a | 29.60 c | 252.84 c | 8785.80 c |
Sa1 | 14.44 abc | 33.30 b | 264.49 b | 9783.33 b |
Sa2 | 14.00 abc | 32.67 b | 259.84 c | 9300.45 c |
Sa3 | 14.00 abc | 30.53 cd | 250.39 f | 9148.65 c |
Sb1 | 13.11 c | 35.33 a | 278.62 a | 10,129.65 a |
Sb2 | 14.00 abc | 33.48 b | 260.16 c | 9934.20 b |
Sb3 | 14.83 ab | 28.74 ef | 256.30 de | 9284.55 c |
Ha1 | 15.11 a | 26.37 g | 253.07 ef | 7702.05 f |
Ha2 | 14.44 abc | 29.59 de | 250.53 f | 8575.50 de |
Ha3 | 14.39 abc | 28.13 f | 251.44 f | 8445.32 de |
Hb1 | 14.33 abc | 29.80 de | 263.48 b | 8669.10 d |
Hb2 | 13.50 bc | 32.83 b | 254.04 ef | 9164.55 c |
Hb3 | 13.11 c | 31.00 c | 253.22 ef | 8264.85 e |
2017 | ||||
S | 15.25 a | 37.92 a | 295.00 a | 10,393.05 a |
H | 15.33 a | 37.12 a | 290.63 b | 9606.60 b |
a | 15.17 a | 37.36 a | 287.15 b | 9730.65 b |
b | 15.42 a | 37.68 a | 298.49 a | 10,269.01 a |
1 | 15.50 a | 37.17 b | 305.49 a | 10,107.15 a |
2 | 15.21 a | 38.17 a | 286.74 b | 10,366.95 a |
3 | 15.17 a | 37.22 b | 286.23 b | 9525.60 b |
Sa1 | 15.50 a | 38.53 a | 307.93 c | 10,973.85 b |
Sa2 | 15.17 a | 38.50 a | 278.06 i | 9885.75 g |
Sa3 | 14.83 a | 37.20 bcd | 274.93 j | 9688.35 i |
Sb1 | 15.67 a | 38.60 a | 316.50 a | 11,024.55 a |
Sb2 | 15.00 a | 37.57 a | 310.06 b | 10,846.52 c |
Sb3 | 15.33 a | 37.13 cd | 282.54 h | 9939.15 f |
Ha1 | 14.83 a | 35.27 f | 295.83 f | 8623.95 i |
Ha2 | 15.00 a | 38.03 a | 277.18 i | 10,140.90 e |
Ha3 | 15.67 a | 36.63 de | 288.98 g | 9071.25 k |
Hb1 | 16.00 a | 36.30 e | 301.68 d | 9806.10 h |
Hb2 | 15.67 a | 38.57 a | 281.67 h | 10,594.21 d |
Hb3 | 14.83 a | 37.93 a | 298.46 e | 9403.35 j |
Treatments | WUE (kg/m3) | WUEI (kg/m3) | WUEp (kg/m3) | Pfp (kg/kg) | WUE (kg/m3) | WUEI (kg/m3) | WUEp (kg/m3) | Pfp (kg/kg) |
---|---|---|---|---|---|---|---|---|
2016 S | 3.24 a | 20.87 a | 2017 | |||||
2.80 a | 41.95 a | 2.34 a | 40.32 a | 2.23 a | 45.43 a | |||
H | 3.00 b | 18.49 b | 2.47 b | 37.03 b | 2.26 b | 37.20 b | 2.06 b | 42.00 b |
a | 3.01 b | 18.04 b | 2.63 a | 38.58 b | 2.29 a | 34.26 b | 2.20 a | 42.54 b |
b | 3.24 a | 21.32 a | 2.64 a | 40.40 a | 2.32 a | 43.25 a | 2.08 b | 44.89 a |
1 | 3.23 a | 19.78 a | 2.64 b | 39.66 b | 2.34 b | 39.15 b | 2.16 b | 44.18 a |
2 | 3.24 a | 20.13 a | 2.69 a | 40.41 a | 2.38 a | 40.14 a | 2.22 a | 45.32 a |
3 | 2.89 b | 19.12 b | 2.56 c | 38.41 c | 2.19 c | 36.98 c | 2.04 c | 41.64 b |
Sa1 | 3.64 a | 20.28 c | 2.95 a | 42.77 b | 2.41 b | 36.79 g | 2.36 a | 47.97 b |
Sa2 | 3.29 b | 19.89 cd | 2.89 ab | 40.66 c | 2.4 b | 36.19 h | 2.32 c | 43.22 j |
Sa3 | 2.85 ef | 18.59 e | 2.71 c | 39.99 c | 2.32 c | 33.16 j | 2.13 f | 42.35 i |
Sb1 | 3.59 a | 23.03 a | 2.85 b | 44.28 a | 2.61 a | 48.78 a | 2.35 b | 48.19 a |
Sb2 | 3.07 cd | 21.9 b | 2.71 c | 43.43 b | 2.17 de | 43.94 c | 2.12 g | 47.42 c |
Sb3 | 2.99 de | 21.54 b | 2.67 c | 40.59 c | 2.16 de | 43.06 d | 2.07 i | 43.45 f |
Ha1 | 2.52 g | 15.42 g | 2.24 f | 33.67 f | 2.14 e | 32.72 k | 2.1 h | 37.70 i |
Ha2 | 2.92 def | 17.17 f | 2.5 de | 37.49 de | 2.4 bc | 35.35 i | 2.27 d | 44.33 e |
Ha3 | 2.79 f | 16.91 f | 2.46 de | 36.92 de | 2.04 f | 31.38 l | 2.01 j | 39.66 k |
Hb1 | 3.16 bc | 20.41 c | 2.53 d | 37.90 d | 2.18 de | 38.33 f | 1.85 l | 42.87 h |
Hb2 | 3.67 a | 21.58 b | 2.67 c | 40.06 c | 2.56 a | 45.08 b | 2.17 e | 46.31 d |
Hb3 | 2.94 def | 19.46 d | 2.41 e | 36.13 d | 2.23 d | 40.32 e | 1.94 k | 41.11 j |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Liu, S.; Wang, X.; Wang, L.; Muhammad, T.; Xiao, Y.; Wang, Y.; Sun, Z.; Li, Y. Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation. Water 2022, 14, 3680. https://doi.org/10.3390/w14223680
Ma C, Liu S, Wang X, Wang L, Muhammad T, Xiao Y, Wang Y, Sun Z, Li Y. Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation. Water. 2022; 14(22):3680. https://doi.org/10.3390/w14223680
Chicago/Turabian StyleMa, Changjian, Shenglin Liu, Xuejun Wang, Lu Wang, Tahir Muhammad, Yang Xiao, Yue Wang, Zeqiang Sun, and Yunkai Li. 2022. "Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation" Water 14, no. 22: 3680. https://doi.org/10.3390/w14223680
APA StyleMa, C., Liu, S., Wang, X., Wang, L., Muhammad, T., Xiao, Y., Wang, Y., Sun, Z., & Li, Y. (2022). Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation. Water, 14(22), 3680. https://doi.org/10.3390/w14223680